12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- // go-qrcode
- // Copyright 2014 Tom Harwood
- // Package reedsolomon provides error correction encoding for QR Code 2005.
- //
- // QR Code 2005 uses a Reed-Solomon error correcting code to detect and correct
- // errors encountered during decoding.
- //
- // The generated RS codes are systematic, and consist of the input data with
- // error correction bytes appended.
- package reedsolomon
- import (
- "log"
- bitset "github.com/skip2/go-qrcode/bitset"
- )
- // Encode data for QR Code 2005 using the appropriate Reed-Solomon code.
- //
- // numECBytes is the number of error correction bytes to append, and is
- // determined by the target QR Code's version and error correction level.
- //
- // ISO/IEC 18004 table 9 specifies the numECBytes required. e.g. a 1-L code has
- // numECBytes=7.
- func Encode(data *bitset.Bitset, numECBytes int) *bitset.Bitset {
- // Create a polynomial representing |data|.
- //
- // The bytes are interpreted as the sequence of coefficients of a polynomial.
- // The last byte's value becomes the x^0 coefficient, the second to last
- // becomes the x^1 coefficient and so on.
- ecpoly := newGFPolyFromData(data)
- ecpoly = gfPolyMultiply(ecpoly, newGFPolyMonomial(gfOne, numECBytes))
- // Pick the generator polynomial.
- generator := rsGeneratorPoly(numECBytes)
- // Generate the error correction bytes.
- remainder := gfPolyRemainder(ecpoly, generator)
- // Combine the data & error correcting bytes.
- // The mathematically correct answer is:
- //
- // result := gfPolyAdd(ecpoly, remainder).
- //
- // The encoding used by QR Code 2005 is slightly different this result: To
- // preserve the original |data| bit sequence exactly, the data and remainder
- // are combined manually below. This ensures any most significant zero bits
- // are preserved (and not optimised away).
- result := bitset.Clone(data)
- result.AppendBytes(remainder.data(numECBytes))
- return result
- }
- // rsGeneratorPoly returns the Reed-Solomon generator polynomial with |degree|.
- //
- // The generator polynomial is calculated as:
- // (x + a^0)(x + a^1)...(x + a^degree-1)
- func rsGeneratorPoly(degree int) gfPoly {
- if degree < 2 {
- log.Panic("degree < 2")
- }
- generator := gfPoly{term: []gfElement{1}}
- for i := 0; i < degree; i++ {
- nextPoly := gfPoly{term: []gfElement{gfExpTable[i], 1}}
- generator = gfPolyMultiply(generator, nextPoly)
- }
- return generator
- }
|