|
|
@@ -0,0 +1,1867 @@
|
|
|
+// Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
|
|
|
+// this source code is governed by a BSD-style license that can be found in
|
|
|
+// the LICENSE file.
|
|
|
+//
|
|
|
+// Package excelize providing a set of functions that allow you to write to
|
|
|
+// and read from XLSX / XLSM / XLTM files. Supports reading and writing
|
|
|
+// spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
|
|
|
+// complex components by high compatibility, and provided streaming API for
|
|
|
+// generating or reading data from a worksheet with huge amounts of data. This
|
|
|
+// library needs Go version 1.10 or later.
|
|
|
+
|
|
|
+package excelize
|
|
|
+
|
|
|
+import (
|
|
|
+ "container/list"
|
|
|
+ "errors"
|
|
|
+ "fmt"
|
|
|
+ "math"
|
|
|
+ "reflect"
|
|
|
+ "strconv"
|
|
|
+ "strings"
|
|
|
+
|
|
|
+ "github.com/xuri/efp"
|
|
|
+)
|
|
|
+
|
|
|
+// Excel formula errors
|
|
|
+const (
|
|
|
+ formulaErrorDIV = "#DIV/0!"
|
|
|
+ formulaErrorNAME = "#NAME?"
|
|
|
+ formulaErrorNA = "#N/A"
|
|
|
+ formulaErrorNUM = "#NUM!"
|
|
|
+ formulaErrorVALUE = "#VALUE!"
|
|
|
+ formulaErrorREF = "#REF!"
|
|
|
+ formulaErrorNULL = "#NULL"
|
|
|
+ formulaErrorSPILL = "#SPILL!"
|
|
|
+ formulaErrorCALC = "#CALC!"
|
|
|
+ formulaErrorGETTINGDATA = "#GETTING_DATA"
|
|
|
+)
|
|
|
+
|
|
|
+// cellRef defines the structure of a cell reference.
|
|
|
+type cellRef struct {
|
|
|
+ Col int
|
|
|
+ Row int
|
|
|
+ Sheet string
|
|
|
+}
|
|
|
+
|
|
|
+// cellRef defines the structure of a cell range.
|
|
|
+type cellRange struct {
|
|
|
+ From cellRef
|
|
|
+ To cellRef
|
|
|
+}
|
|
|
+
|
|
|
+// formulaArg is the argument of a formula or function.
|
|
|
+type formulaArg struct {
|
|
|
+ Value string
|
|
|
+ Matrix []string
|
|
|
+}
|
|
|
+
|
|
|
+// formulaFuncs is the type of the formula functions.
|
|
|
+type formulaFuncs struct{}
|
|
|
+
|
|
|
+// CalcCellValue provides a function to get calculated cell value. This
|
|
|
+// feature is currently in beta. Array formula, table formula and some other
|
|
|
+// formulas are not supported currently.
|
|
|
+func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
|
|
|
+ var (
|
|
|
+ formula string
|
|
|
+ token efp.Token
|
|
|
+ )
|
|
|
+ if formula, err = f.GetCellFormula(sheet, cell); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ ps := efp.ExcelParser()
|
|
|
+ tokens := ps.Parse(formula)
|
|
|
+ if tokens == nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if token, err = f.evalInfixExp(sheet, tokens); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = token.TValue
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// getPriority calculate arithmetic operator priority.
|
|
|
+func getPriority(token efp.Token) (pri int) {
|
|
|
+ var priority = map[string]int{
|
|
|
+ "*": 2,
|
|
|
+ "/": 2,
|
|
|
+ "+": 1,
|
|
|
+ "-": 1,
|
|
|
+ }
|
|
|
+ pri, _ = priority[token.TValue]
|
|
|
+ if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
|
|
|
+ pri = 3
|
|
|
+ }
|
|
|
+ if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
|
|
|
+ pri = 0
|
|
|
+ }
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// evalInfixExp evaluate syntax analysis by given infix expression after
|
|
|
+// lexical analysis. Evaluate an infix expression containing formulas by
|
|
|
+// stacks:
|
|
|
+//
|
|
|
+// opd - Operand
|
|
|
+// opt - Operator
|
|
|
+// opf - Operation formula
|
|
|
+// opfd - Operand of the operation formula
|
|
|
+// opft - Operator of the operation formula
|
|
|
+//
|
|
|
+// Evaluate arguments of the operation formula by list:
|
|
|
+//
|
|
|
+// args - Arguments of the operation formula
|
|
|
+//
|
|
|
+// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
|
|
|
+//
|
|
|
+func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
|
|
|
+ var err error
|
|
|
+ opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
|
|
|
+ argsList := list.New()
|
|
|
+ for i := 0; i < len(tokens); i++ {
|
|
|
+ token := tokens[i]
|
|
|
+
|
|
|
+ // out of function stack
|
|
|
+ if opfStack.Len() == 0 {
|
|
|
+ if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
|
|
|
+ return efp.Token{}, err
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // function start
|
|
|
+ if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
|
|
|
+ opfStack.Push(token)
|
|
|
+ continue
|
|
|
+ }
|
|
|
+
|
|
|
+ // in function stack, walk 2 token at once
|
|
|
+ if opfStack.Len() > 0 {
|
|
|
+ var nextToken efp.Token
|
|
|
+ if i+1 < len(tokens) {
|
|
|
+ nextToken = tokens[i+1]
|
|
|
+ }
|
|
|
+
|
|
|
+ // current token is args or range, skip next token, order required: parse reference first
|
|
|
+ if token.TSubType == efp.TokenSubTypeRange {
|
|
|
+ if !opftStack.Empty() {
|
|
|
+ // parse reference: must reference at here
|
|
|
+ result, _, err := f.parseReference(sheet, token.TValue)
|
|
|
+ if err != nil {
|
|
|
+ return efp.Token{TValue: formulaErrorNAME}, err
|
|
|
+ }
|
|
|
+ if len(result) != 1 {
|
|
|
+ return efp.Token{}, errors.New(formulaErrorVALUE)
|
|
|
+ }
|
|
|
+ opfdStack.Push(efp.Token{
|
|
|
+ TType: efp.TokenTypeOperand,
|
|
|
+ TSubType: efp.TokenSubTypeNumber,
|
|
|
+ TValue: result[0],
|
|
|
+ })
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
|
|
|
+ // parse reference: reference or range at here
|
|
|
+ result, matrix, err := f.parseReference(sheet, token.TValue)
|
|
|
+ if err != nil {
|
|
|
+ return efp.Token{TValue: formulaErrorNAME}, err
|
|
|
+ }
|
|
|
+ for idx, val := range result {
|
|
|
+ arg := formulaArg{Value: val}
|
|
|
+ if idx < len(matrix) {
|
|
|
+ arg.Matrix = matrix[idx]
|
|
|
+ }
|
|
|
+ argsList.PushBack(arg)
|
|
|
+ }
|
|
|
+ if len(result) == 0 {
|
|
|
+ return efp.Token{}, errors.New(formulaErrorVALUE)
|
|
|
+ }
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // check current token is opft
|
|
|
+ if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
|
|
|
+ return efp.Token{}, err
|
|
|
+ }
|
|
|
+
|
|
|
+ // current token is arg
|
|
|
+ if token.TType == efp.TokenTypeArgument {
|
|
|
+ for !opftStack.Empty() {
|
|
|
+ // calculate trigger
|
|
|
+ topOpt := opftStack.Peek().(efp.Token)
|
|
|
+ if err := calculate(opfdStack, topOpt); err != nil {
|
|
|
+ return efp.Token{}, err
|
|
|
+ }
|
|
|
+ opftStack.Pop()
|
|
|
+ }
|
|
|
+ if !opfdStack.Empty() {
|
|
|
+ argsList.PushBack(formulaArg{
|
|
|
+ Value: opfdStack.Pop().(efp.Token).TValue,
|
|
|
+ })
|
|
|
+ }
|
|
|
+ continue
|
|
|
+ }
|
|
|
+
|
|
|
+ // current token is logical
|
|
|
+ if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
|
|
|
+ }
|
|
|
+
|
|
|
+ // current token is text
|
|
|
+ if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
|
|
|
+ argsList.PushBack(formulaArg{
|
|
|
+ Value: token.TValue,
|
|
|
+ })
|
|
|
+ }
|
|
|
+
|
|
|
+ // current token is function stop
|
|
|
+ if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
|
|
|
+ for !opftStack.Empty() {
|
|
|
+ // calculate trigger
|
|
|
+ topOpt := opftStack.Peek().(efp.Token)
|
|
|
+ if err := calculate(opfdStack, topOpt); err != nil {
|
|
|
+ return efp.Token{}, err
|
|
|
+ }
|
|
|
+ opftStack.Pop()
|
|
|
+ }
|
|
|
+
|
|
|
+ // push opfd to args
|
|
|
+ if opfdStack.Len() > 0 {
|
|
|
+ argsList.PushBack(formulaArg{
|
|
|
+ Value: opfdStack.Pop().(efp.Token).TValue,
|
|
|
+ })
|
|
|
+ }
|
|
|
+ // call formula function to evaluate
|
|
|
+ result, err := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
|
|
|
+ "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
|
|
|
+ []reflect.Value{reflect.ValueOf(argsList)})
|
|
|
+ if err != nil {
|
|
|
+ return efp.Token{}, err
|
|
|
+ }
|
|
|
+ argsList.Init()
|
|
|
+ opfStack.Pop()
|
|
|
+ if opfStack.Len() > 0 { // still in function stack
|
|
|
+ opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
+ } else {
|
|
|
+ opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ for optStack.Len() != 0 {
|
|
|
+ topOpt := optStack.Peek().(efp.Token)
|
|
|
+ if err = calculate(opdStack, topOpt); err != nil {
|
|
|
+ return efp.Token{}, err
|
|
|
+ }
|
|
|
+ optStack.Pop()
|
|
|
+ }
|
|
|
+ return opdStack.Peek().(efp.Token), err
|
|
|
+}
|
|
|
+
|
|
|
+// calculate evaluate basic arithmetic operations.
|
|
|
+func calculate(opdStack *Stack, opt efp.Token) error {
|
|
|
+ if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
|
|
|
+ opd := opdStack.Pop().(efp.Token)
|
|
|
+ opdVal, err := strconv.ParseFloat(opd.TValue, 64)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ result := 0 - opdVal
|
|
|
+ opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
+ }
|
|
|
+ if opt.TValue == "+" {
|
|
|
+ rOpd := opdStack.Pop().(efp.Token)
|
|
|
+ lOpd := opdStack.Pop().(efp.Token)
|
|
|
+ lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ result := lOpdVal + rOpdVal
|
|
|
+ opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
+ }
|
|
|
+ if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
|
|
|
+ rOpd := opdStack.Pop().(efp.Token)
|
|
|
+ lOpd := opdStack.Pop().(efp.Token)
|
|
|
+ lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ result := lOpdVal - rOpdVal
|
|
|
+ opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
+ }
|
|
|
+ if opt.TValue == "*" {
|
|
|
+ rOpd := opdStack.Pop().(efp.Token)
|
|
|
+ lOpd := opdStack.Pop().(efp.Token)
|
|
|
+ lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ result := lOpdVal * rOpdVal
|
|
|
+ opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
+ }
|
|
|
+ if opt.TValue == "/" {
|
|
|
+ rOpd := opdStack.Pop().(efp.Token)
|
|
|
+ lOpd := opdStack.Pop().(efp.Token)
|
|
|
+ lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ result := lOpdVal / rOpdVal
|
|
|
+ if rOpdVal == 0 {
|
|
|
+ return errors.New(formulaErrorDIV)
|
|
|
+ }
|
|
|
+ opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
+ }
|
|
|
+ return nil
|
|
|
+}
|
|
|
+
|
|
|
+// parseToken parse basic arithmetic operator priority and evaluate based on
|
|
|
+// operators and operands.
|
|
|
+func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
|
|
|
+ // parse reference: must reference at here
|
|
|
+ if token.TSubType == efp.TokenSubTypeRange {
|
|
|
+ result, _, err := f.parseReference(sheet, token.TValue)
|
|
|
+ if err != nil {
|
|
|
+ return errors.New(formulaErrorNAME)
|
|
|
+ }
|
|
|
+ if len(result) != 1 {
|
|
|
+ return errors.New(formulaErrorVALUE)
|
|
|
+ }
|
|
|
+ token.TValue = result[0]
|
|
|
+ token.TType = efp.TokenTypeOperand
|
|
|
+ token.TSubType = efp.TokenSubTypeNumber
|
|
|
+ }
|
|
|
+ if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
|
|
|
+ if optStack.Len() == 0 {
|
|
|
+ optStack.Push(token)
|
|
|
+ } else {
|
|
|
+ tokenPriority := getPriority(token)
|
|
|
+ topOpt := optStack.Peek().(efp.Token)
|
|
|
+ topOptPriority := getPriority(topOpt)
|
|
|
+ if tokenPriority > topOptPriority {
|
|
|
+ optStack.Push(token)
|
|
|
+ } else {
|
|
|
+ for tokenPriority <= topOptPriority {
|
|
|
+ optStack.Pop()
|
|
|
+ if err := calculate(opdStack, topOpt); err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ if optStack.Len() > 0 {
|
|
|
+ topOpt = optStack.Peek().(efp.Token)
|
|
|
+ topOptPriority = getPriority(topOpt)
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ break
|
|
|
+ }
|
|
|
+ optStack.Push(token)
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
|
|
|
+ optStack.Push(token)
|
|
|
+ }
|
|
|
+ if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
|
|
|
+ for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
|
|
|
+ topOpt := optStack.Peek().(efp.Token)
|
|
|
+ if err := calculate(opdStack, topOpt); err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+ optStack.Pop()
|
|
|
+ }
|
|
|
+ optStack.Pop()
|
|
|
+ }
|
|
|
+ // opd
|
|
|
+ if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
|
|
|
+ opdStack.Push(token)
|
|
|
+ }
|
|
|
+ return nil
|
|
|
+}
|
|
|
+
|
|
|
+// parseReference parse reference and extract values by given reference
|
|
|
+// characters and default sheet name.
|
|
|
+func (f *File) parseReference(sheet, reference string) (result []string, matrix [][]string, err error) {
|
|
|
+ reference = strings.Replace(reference, "$", "", -1)
|
|
|
+ refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
|
|
|
+ for _, ref := range strings.Split(reference, ":") {
|
|
|
+ tokens := strings.Split(ref, "!")
|
|
|
+ cr := cellRef{}
|
|
|
+ if len(tokens) == 2 { // have a worksheet name
|
|
|
+ cr.Sheet = tokens[0]
|
|
|
+ if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if refs.Len() > 0 {
|
|
|
+ e := refs.Back()
|
|
|
+ cellRefs.PushBack(e.Value.(cellRef))
|
|
|
+ refs.Remove(e)
|
|
|
+ }
|
|
|
+ refs.PushBack(cr)
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ e := refs.Back()
|
|
|
+ if e == nil {
|
|
|
+ cr.Sheet = sheet
|
|
|
+ refs.PushBack(cr)
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ cellRanges.PushBack(cellRange{
|
|
|
+ From: e.Value.(cellRef),
|
|
|
+ To: cr,
|
|
|
+ })
|
|
|
+ refs.Remove(e)
|
|
|
+ }
|
|
|
+ if refs.Len() > 0 {
|
|
|
+ e := refs.Back()
|
|
|
+ cellRefs.PushBack(e.Value.(cellRef))
|
|
|
+ refs.Remove(e)
|
|
|
+ }
|
|
|
+
|
|
|
+ result, matrix, err = f.rangeResolver(cellRefs, cellRanges)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// rangeResolver extract value as string from given reference and range list.
|
|
|
+// This function will not ignore the empty cell. Note that the result of 3D
|
|
|
+// range references may be different from Excel in some cases, for example,
|
|
|
+// A1:A2:A2:B3 in Excel will include B1, but we wont.
|
|
|
+func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (result []string, matrix [][]string, err error) {
|
|
|
+ filter := map[string]string{}
|
|
|
+ // extract value from ranges
|
|
|
+ for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
|
|
|
+ cr := temp.Value.(cellRange)
|
|
|
+ if cr.From.Sheet != cr.To.Sheet {
|
|
|
+ err = errors.New(formulaErrorVALUE)
|
|
|
+ }
|
|
|
+ rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
|
|
|
+ sortCoordinates(rng)
|
|
|
+ matrix = [][]string{}
|
|
|
+ for row := rng[1]; row <= rng[3]; row++ {
|
|
|
+ var matrixRow = []string{}
|
|
|
+ for col := rng[0]; col <= rng[2]; col++ {
|
|
|
+ var cell, value string
|
|
|
+ if cell, err = CoordinatesToCellName(col, row); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if value, err = f.GetCellValue(cr.From.Sheet, cell); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ filter[cell] = value
|
|
|
+ matrixRow = append(matrixRow, value)
|
|
|
+ }
|
|
|
+ matrix = append(matrix, matrixRow)
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // extract value from references
|
|
|
+ for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
|
|
|
+ cr := temp.Value.(cellRef)
|
|
|
+ var cell string
|
|
|
+ if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if filter[cell], err = f.GetCellValue(cr.Sheet, cell); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for _, val := range filter {
|
|
|
+ result = append(result, val)
|
|
|
+ }
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// callFuncByName calls the no error or only error return function with
|
|
|
+// reflect by given receiver, name and parameters.
|
|
|
+func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
|
|
|
+ function := reflect.ValueOf(receiver).MethodByName(name)
|
|
|
+ if function.IsValid() {
|
|
|
+ rt := function.Call(params)
|
|
|
+ if len(rt) == 0 {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if !rt[1].IsNil() {
|
|
|
+ err = rt[1].Interface().(error)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = rt[0].Interface().(string)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ err = fmt.Errorf("not support %s function", name)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// Math and Trigonometric functions
|
|
|
+
|
|
|
+// ABS function returns the absolute value of any supplied number. The syntax
|
|
|
+// of the function is:
|
|
|
+//
|
|
|
+// ABS(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("ABS requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Abs(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
|
|
|
+// number, and returns an angle, in radians, between 0 and π. The syntax of
|
|
|
+// the function is:
|
|
|
+//
|
|
|
+// ACOS(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("ACOS requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Acos(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
|
|
|
+// of the function is:
|
|
|
+//
|
|
|
+// ACOSH(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("ACOSH requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Acosh(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
|
|
|
+// given number, and returns an angle, in radians, between 0 and π. The syntax
|
|
|
+// of the function is:
|
|
|
+//
|
|
|
+// ACOT(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("ACOT requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
|
|
|
+// value. The syntax of the function is:
|
|
|
+//
|
|
|
+// ACOTH(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("ACOTH requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Atanh(1/val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
|
|
|
+// of the function is:
|
|
|
+//
|
|
|
+// ARABIC(text)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("ARABIC requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ val, last, prefix := 0.0, 0.0, 1.0
|
|
|
+ for _, char := range argsList.Front().Value.(formulaArg).Value {
|
|
|
+ digit := 0.0
|
|
|
+ switch char {
|
|
|
+ case '-':
|
|
|
+ prefix = -1
|
|
|
+ continue
|
|
|
+ case 'I':
|
|
|
+ digit = 1
|
|
|
+ case 'V':
|
|
|
+ digit = 5
|
|
|
+ case 'X':
|
|
|
+ digit = 10
|
|
|
+ case 'L':
|
|
|
+ digit = 50
|
|
|
+ case 'C':
|
|
|
+ digit = 100
|
|
|
+ case 'D':
|
|
|
+ digit = 500
|
|
|
+ case 'M':
|
|
|
+ digit = 1000
|
|
|
+ }
|
|
|
+ val += digit
|
|
|
+ switch {
|
|
|
+ case last == digit && (last == 5 || last == 50 || last == 500):
|
|
|
+ result = formulaErrorVALUE
|
|
|
+ return
|
|
|
+ case 2*last == digit:
|
|
|
+ result = formulaErrorVALUE
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if last < digit {
|
|
|
+ val -= 2 * last
|
|
|
+ }
|
|
|
+ last = digit
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", prefix*val)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// ASIN function calculates the arcsine (i.e. the inverse sine) of a given
|
|
|
+// number, and returns an angle, in radians, between -π/2 and π/2. The syntax
|
|
|
+// of the function is:
|
|
|
+//
|
|
|
+// ASIN(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("ASIN requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Asin(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// ASINH function calculates the inverse hyperbolic sine of a supplied number.
|
|
|
+// The syntax of the function is:
|
|
|
+//
|
|
|
+// ASINH(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("ASINH requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Asinh(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
|
|
|
+// given number, and returns an angle, in radians, between -π/2 and +π/2. The
|
|
|
+// syntax of the function is:
|
|
|
+//
|
|
|
+// ATAN(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("ATAN requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Atan(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// ATANH function calculates the inverse hyperbolic tangent of a supplied
|
|
|
+// number. The syntax of the function is:
|
|
|
+//
|
|
|
+// ATANH(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("ATANH requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Atanh(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
|
|
|
+// given set of x and y coordinates, and returns an angle, in radians, between
|
|
|
+// -π/2 and +π/2. The syntax of the function is:
|
|
|
+//
|
|
|
+// ATAN2(x_num,y_num)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 2 {
|
|
|
+ err = errors.New("ATAN2 requires 2 numeric arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var x, y float64
|
|
|
+ if x, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if y, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Atan2(x, y))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// gcd returns the greatest common divisor of two supplied integers.
|
|
|
+func gcd(x, y float64) float64 {
|
|
|
+ x, y = math.Trunc(x), math.Trunc(y)
|
|
|
+ if x == 0 {
|
|
|
+ return y
|
|
|
+ }
|
|
|
+ if y == 0 {
|
|
|
+ return x
|
|
|
+ }
|
|
|
+ for x != y {
|
|
|
+ if x > y {
|
|
|
+ x = x - y
|
|
|
+ } else {
|
|
|
+ y = y - x
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return x
|
|
|
+}
|
|
|
+
|
|
|
+// BASE function converts a number into a supplied base (radix), and returns a
|
|
|
+// text representation of the calculated value. The syntax of the function is:
|
|
|
+//
|
|
|
+// BASE(number,radix,[min_length])
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() < 2 {
|
|
|
+ err = errors.New("BASE requires at least 2 arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 3 {
|
|
|
+ err = errors.New("BASE allows at most 3 arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number float64
|
|
|
+ var radix, minLength int
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).Value); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if radix < 2 || radix > 36 {
|
|
|
+ err = errors.New("radix must be an integer ≥ 2 and ≤ 36")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 2 {
|
|
|
+ if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+ result = strconv.FormatInt(int64(number), radix)
|
|
|
+ if len(result) < minLength {
|
|
|
+ result = strings.Repeat("0", minLength-len(result)) + result
|
|
|
+ }
|
|
|
+ result = strings.ToUpper(result)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// CEILING function rounds a supplied number away from zero, to the nearest
|
|
|
+// multiple of a given number. The syntax of the function is:
|
|
|
+//
|
|
|
+// CEILING(number,significance)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) CEILING(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() == 0 {
|
|
|
+ err = errors.New("CEILING requires at least 1 argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 2 {
|
|
|
+ err = errors.New("CEILING allows at most 2 arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number, significance float64 = 0, 1
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if number < 0 {
|
|
|
+ significance = -1
|
|
|
+ }
|
|
|
+ if argsList.Len() > 1 {
|
|
|
+ if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if significance < 0 && number > 0 {
|
|
|
+ err = errors.New("negative sig to CEILING invalid")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() == 1 {
|
|
|
+ result = fmt.Sprintf("%g", math.Ceil(number))
|
|
|
+ return
|
|
|
+ }
|
|
|
+ number, res := math.Modf(number / significance)
|
|
|
+ if res > 0 {
|
|
|
+ number++
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", number*significance)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// CEILINGMATH function rounds a supplied number up to a supplied multiple of
|
|
|
+// significance. The syntax of the function is:
|
|
|
+//
|
|
|
+// CEILING.MATH(number,[significance],[mode])
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() == 0 {
|
|
|
+ err = errors.New("CEILING.MATH requires at least 1 argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 3 {
|
|
|
+ err = errors.New("CEILING.MATH allows at most 3 arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number, significance, mode float64 = 0, 1, 1
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if number < 0 {
|
|
|
+ significance = -1
|
|
|
+ }
|
|
|
+ if argsList.Len() > 1 {
|
|
|
+ if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if argsList.Len() == 1 {
|
|
|
+ result = fmt.Sprintf("%g", math.Ceil(number))
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 2 {
|
|
|
+ if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+ val, res := math.Modf(number / significance)
|
|
|
+ if res != 0 {
|
|
|
+ if number > 0 {
|
|
|
+ val++
|
|
|
+ } else if mode < 0 {
|
|
|
+ val--
|
|
|
+ }
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", val*significance)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// CEILINGPRECISE function rounds a supplied number up (regardless of the
|
|
|
+// number's sign), to the nearest multiple of a given number. The syntax of
|
|
|
+// the function is:
|
|
|
+//
|
|
|
+// CEILING.PRECISE(number,[significance])
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() == 0 {
|
|
|
+ err = errors.New("CEILING.PRECISE requires at least 1 argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 2 {
|
|
|
+ err = errors.New("CEILING.PRECISE allows at most 2 arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number, significance float64 = 0, 1
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if number < 0 {
|
|
|
+ significance = -1
|
|
|
+ }
|
|
|
+ if argsList.Len() == 1 {
|
|
|
+ result = fmt.Sprintf("%g", math.Ceil(number))
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 1 {
|
|
|
+ if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ significance = math.Abs(significance)
|
|
|
+ if significance == 0 {
|
|
|
+ result = "0"
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+ val, res := math.Modf(number / significance)
|
|
|
+ if res != 0 {
|
|
|
+ if number > 0 {
|
|
|
+ val++
|
|
|
+ }
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", val*significance)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// COMBIN function calculates the number of combinations (in any order) of a
|
|
|
+// given number objects from a set. The syntax of the function is:
|
|
|
+//
|
|
|
+// COMBIN(number,number_chosen)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) COMBIN(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 2 {
|
|
|
+ err = errors.New("COMBIN requires 2 argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number, chosen, val float64 = 0, 0, 1
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ number, chosen = math.Trunc(number), math.Trunc(chosen)
|
|
|
+ if chosen > number {
|
|
|
+ err = errors.New("COMBIN requires number >= number_chosen")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if chosen == number || chosen == 0 {
|
|
|
+ result = "1"
|
|
|
+ return
|
|
|
+ }
|
|
|
+ for c := float64(1); c <= chosen; c++ {
|
|
|
+ val *= (number + 1 - c) / c
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Ceil(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// COMBINA function calculates the number of combinations, with repetitions,
|
|
|
+// of a given number objects from a set. The syntax of the function is:
|
|
|
+//
|
|
|
+// COMBINA(number,number_chosen)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) COMBINA(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 2 {
|
|
|
+ err = errors.New("COMBINA requires 2 argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number, chosen float64
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ number, chosen = math.Trunc(number), math.Trunc(chosen)
|
|
|
+ if number < chosen {
|
|
|
+ err = errors.New("COMBINA requires number > number_chosen")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if number == 0 {
|
|
|
+ result = "0"
|
|
|
+ return
|
|
|
+ }
|
|
|
+ args := list.New()
|
|
|
+ args.PushBack(formulaArg{
|
|
|
+ Value: fmt.Sprintf("%g", number+chosen-1),
|
|
|
+ })
|
|
|
+ args.PushBack(formulaArg{
|
|
|
+ Value: fmt.Sprintf("%g", number-1),
|
|
|
+ })
|
|
|
+ return fn.COMBIN(args)
|
|
|
+}
|
|
|
+
|
|
|
+// COS function calculates the cosine of a given angle. The syntax of the
|
|
|
+// function is:
|
|
|
+//
|
|
|
+// COS(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) COS(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("COS requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Cos(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
|
|
|
+// The syntax of the function is:
|
|
|
+//
|
|
|
+// COSH(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) COSH(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("COSH requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Cosh(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// COT function calculates the cotangent of a given angle. The syntax of the
|
|
|
+// function is:
|
|
|
+//
|
|
|
+// COT(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) COT(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("COT requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if val == 0 {
|
|
|
+ err = errors.New(formulaErrorNAME)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Tan(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// COTH function calculates the hyperbolic cotangent (coth) of a supplied
|
|
|
+// angle. The syntax of the function is:
|
|
|
+//
|
|
|
+// COTH(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) COTH(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("COTH requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if val == 0 {
|
|
|
+ err = errors.New(formulaErrorNAME)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Tanh(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// CSC function calculates the cosecant of a given angle. The syntax of the
|
|
|
+// function is:
|
|
|
+//
|
|
|
+// CSC(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) CSC(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("CSC requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if val == 0 {
|
|
|
+ err = errors.New(formulaErrorNAME)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", 1/math.Sin(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// CSCH function calculates the hyperbolic cosecant (csch) of a supplied
|
|
|
+// angle. The syntax of the function is:
|
|
|
+//
|
|
|
+// CSCH(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) CSCH(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("CSCH requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if val == 0 {
|
|
|
+ err = errors.New(formulaErrorNAME)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", 1/math.Sinh(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// DECIMAL function converts a text representation of a number in a specified
|
|
|
+// base, into a decimal value. The syntax of the function is:
|
|
|
+//
|
|
|
+// DECIMAL(text,radix)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) DECIMAL(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 2 {
|
|
|
+ err = errors.New("DECIMAL requires 2 numeric arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var text = argsList.Front().Value.(formulaArg).Value
|
|
|
+ var radix int
|
|
|
+ if radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
|
|
|
+ text = text[2:]
|
|
|
+ }
|
|
|
+ val, err := strconv.ParseInt(text, radix, 64)
|
|
|
+ if err != nil {
|
|
|
+ err = errors.New(formulaErrorNUM)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", float64(val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// DEGREES function converts radians into degrees. The syntax of the function
|
|
|
+// is:
|
|
|
+//
|
|
|
+// DEGREES(angle)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) DEGREES(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("DEGREES requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if val == 0 {
|
|
|
+ err = errors.New(formulaErrorNAME)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", 180.0/math.Pi*val)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// EVEN function rounds a supplied number away from zero (i.e. rounds a
|
|
|
+// positive number up and a negative number down), to the next even number.
|
|
|
+// The syntax of the function is:
|
|
|
+//
|
|
|
+// EVEN(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) EVEN(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("EVEN requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number float64
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ sign := math.Signbit(number)
|
|
|
+ m, frac := math.Modf(number / 2)
|
|
|
+ val := m * 2
|
|
|
+ if frac != 0 {
|
|
|
+ if !sign {
|
|
|
+ val += 2
|
|
|
+ } else {
|
|
|
+ val -= 2
|
|
|
+ }
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", val)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// EXP function calculates the value of the mathematical constant e, raised to
|
|
|
+// the power of a given number. The syntax of the function is:
|
|
|
+//
|
|
|
+// EXP(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) EXP(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("EXP requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number float64
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = strings.ToUpper(fmt.Sprintf("%g", math.Exp(number)))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// fact returns the factorial of a supplied number.
|
|
|
+func fact(number float64) float64 {
|
|
|
+ val := float64(1)
|
|
|
+ for i := float64(2); i <= number; i++ {
|
|
|
+ val *= i
|
|
|
+ }
|
|
|
+ return val
|
|
|
+}
|
|
|
+
|
|
|
+// FACT function returns the factorial of a supplied number. The syntax of the
|
|
|
+// function is:
|
|
|
+//
|
|
|
+// FACT(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) FACT(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("FACT requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number float64
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if number < 0 {
|
|
|
+ err = errors.New(formulaErrorNUM)
|
|
|
+ }
|
|
|
+ result = strings.ToUpper(fmt.Sprintf("%g", fact(number)))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// FACTDOUBLE function returns the double factorial of a supplied number. The
|
|
|
+// syntax of the function is:
|
|
|
+//
|
|
|
+// FACTDOUBLE(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("FACTDOUBLE requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number, val float64 = 0, 1
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if number < 0 {
|
|
|
+ err = errors.New(formulaErrorNUM)
|
|
|
+ }
|
|
|
+ for i := math.Trunc(number); i > 1; i -= 2 {
|
|
|
+ val *= i
|
|
|
+ }
|
|
|
+ result = strings.ToUpper(fmt.Sprintf("%g", val))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// FLOOR function rounds a supplied number towards zero to the nearest
|
|
|
+// multiple of a specified significance. The syntax of the function is:
|
|
|
+//
|
|
|
+// FLOOR(number,significance)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) FLOOR(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 2 {
|
|
|
+ err = errors.New("FLOOR requires 2 numeric arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number, significance float64 = 0, 1
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if significance < 0 && number >= 0 {
|
|
|
+ err = errors.New(formulaErrorNUM)
|
|
|
+ }
|
|
|
+ val := number
|
|
|
+ val, res := math.Modf(val / significance)
|
|
|
+ if res != 0 {
|
|
|
+ if number < 0 && res < 0 {
|
|
|
+ val--
|
|
|
+ }
|
|
|
+ }
|
|
|
+ result = strings.ToUpper(fmt.Sprintf("%g", val*significance))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// FLOORMATH function rounds a supplied number down to a supplied multiple of
|
|
|
+// significance. The syntax of the function is:
|
|
|
+//
|
|
|
+// FLOOR.MATH(number,[significance],[mode])
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) FLOORMATH(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() == 0 {
|
|
|
+ err = errors.New("FLOOR.MATH requires at least 1 argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 3 {
|
|
|
+ err = errors.New("FLOOR.MATH allows at most 3 arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number, significance, mode float64 = 0, 1, 1
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if number < 0 {
|
|
|
+ significance = -1
|
|
|
+ }
|
|
|
+ if argsList.Len() > 1 {
|
|
|
+ if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if argsList.Len() == 1 {
|
|
|
+ result = fmt.Sprintf("%g", math.Floor(number))
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 2 {
|
|
|
+ if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+ val, res := math.Modf(number / significance)
|
|
|
+ if res != 0 && number < 0 && mode > 0 {
|
|
|
+ val--
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", val*significance)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// FLOORPRECISE function rounds a supplied number down to a supplied multiple
|
|
|
+// of significance. The syntax of the function is:
|
|
|
+//
|
|
|
+// FLOOR.PRECISE(number,[significance])
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() == 0 {
|
|
|
+ err = errors.New("FLOOR.PRECISE requires at least 1 argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 2 {
|
|
|
+ err = errors.New("FLOOR.PRECISE allows at most 2 arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number, significance float64 = 0, 1
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if number < 0 {
|
|
|
+ significance = -1
|
|
|
+ }
|
|
|
+ if argsList.Len() == 1 {
|
|
|
+ result = fmt.Sprintf("%g", math.Floor(number))
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 1 {
|
|
|
+ if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ significance = math.Abs(significance)
|
|
|
+ if significance == 0 {
|
|
|
+ result = "0"
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+ val, res := math.Modf(number / significance)
|
|
|
+ if res != 0 {
|
|
|
+ if number < 0 {
|
|
|
+ val--
|
|
|
+ }
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", val*significance)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// GCD function returns the greatest common divisor of two or more supplied
|
|
|
+// integers. The syntax of the function is:
|
|
|
+//
|
|
|
+// GCD(number1,[number2],...)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() == 0 {
|
|
|
+ err = errors.New("GCD requires at least 1 argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var (
|
|
|
+ val float64
|
|
|
+ nums = []float64{}
|
|
|
+ )
|
|
|
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
+ token := arg.Value.(formulaArg).Value
|
|
|
+ if token == "" {
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ if val, err = strconv.ParseFloat(token, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ nums = append(nums, val)
|
|
|
+ }
|
|
|
+ if nums[0] < 0 {
|
|
|
+ err = errors.New("GCD only accepts positive arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if len(nums) == 1 {
|
|
|
+ result = fmt.Sprintf("%g", nums[0])
|
|
|
+ return
|
|
|
+ }
|
|
|
+ cd := nums[0]
|
|
|
+ for i := 1; i < len(nums); i++ {
|
|
|
+ if nums[i] < 0 {
|
|
|
+ err = errors.New("GCD only accepts positive arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ cd = gcd(cd, nums[i])
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", cd)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// INT function truncates a supplied number down to the closest integer. The
|
|
|
+// syntax of the function is:
|
|
|
+//
|
|
|
+// INT(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) INT(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("INT requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number float64
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ val, frac := math.Modf(number)
|
|
|
+ if frac < 0 {
|
|
|
+ val--
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", val)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// ISOCEILING function rounds a supplied number up (regardless of the number's
|
|
|
+// sign), to the nearest multiple of a supplied significance. The syntax of
|
|
|
+// the function is:
|
|
|
+//
|
|
|
+// ISO.CEILING(number,[significance])
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) ISOCEILING(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() == 0 {
|
|
|
+ err = errors.New("ISO.CEILING requires at least 1 argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 2 {
|
|
|
+ err = errors.New("ISO.CEILING allows at most 2 arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number, significance float64 = 0, 1
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if number < 0 {
|
|
|
+ significance = -1
|
|
|
+ }
|
|
|
+ if argsList.Len() == 1 {
|
|
|
+ result = fmt.Sprintf("%g", math.Ceil(number))
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 1 {
|
|
|
+ if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ significance = math.Abs(significance)
|
|
|
+ if significance == 0 {
|
|
|
+ result = "0"
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+ val, res := math.Modf(number / significance)
|
|
|
+ if res != 0 {
|
|
|
+ if number > 0 {
|
|
|
+ val++
|
|
|
+ }
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", val*significance)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// lcm returns the least common multiple of two supplied integers.
|
|
|
+func lcm(a, b float64) float64 {
|
|
|
+ a = math.Trunc(a)
|
|
|
+ b = math.Trunc(b)
|
|
|
+ if a == 0 && b == 0 {
|
|
|
+ return 0
|
|
|
+ }
|
|
|
+ return a * b / gcd(a, b)
|
|
|
+}
|
|
|
+
|
|
|
+// LCM function returns the least common multiple of two or more supplied
|
|
|
+// integers. The syntax of the function is:
|
|
|
+//
|
|
|
+// LCM(number1,[number2],...)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() == 0 {
|
|
|
+ err = errors.New("LCM requires at least 1 argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var (
|
|
|
+ val float64
|
|
|
+ nums = []float64{}
|
|
|
+ )
|
|
|
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
+ token := arg.Value.(formulaArg).Value
|
|
|
+ if token == "" {
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ if val, err = strconv.ParseFloat(token, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ nums = append(nums, val)
|
|
|
+ }
|
|
|
+ if nums[0] < 0 {
|
|
|
+ err = errors.New("LCM only accepts positive arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if len(nums) == 1 {
|
|
|
+ result = fmt.Sprintf("%g", nums[0])
|
|
|
+ return
|
|
|
+ }
|
|
|
+ cm := nums[0]
|
|
|
+ for i := 1; i < len(nums); i++ {
|
|
|
+ if nums[i] < 0 {
|
|
|
+ err = errors.New("LCM only accepts positive arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ cm = lcm(cm, nums[i])
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", cm)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// LN function calculates the natural logarithm of a given number. The syntax
|
|
|
+// of the function is:
|
|
|
+//
|
|
|
+// LN(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) LN(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("LN requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number float64
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Log(number))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// LOG function calculates the logarithm of a given number, to a supplied
|
|
|
+// base. The syntax of the function is:
|
|
|
+//
|
|
|
+// LOG(number,[base])
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) LOG(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() == 0 {
|
|
|
+ err = errors.New("LOG requires at least 1 argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 2 {
|
|
|
+ err = errors.New("LOG allows at most 2 arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number, base float64 = 0, 10
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if argsList.Len() > 1 {
|
|
|
+ if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if number == 0 {
|
|
|
+ err = errors.New(formulaErrorNUM)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if base == 0 {
|
|
|
+ err = errors.New(formulaErrorNUM)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if base == 1 {
|
|
|
+ err = errors.New(formulaErrorDIV)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Log(number)/math.Log(base))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// LOG10 function calculates the base 10 logarithm of a given number. The
|
|
|
+// syntax of the function is:
|
|
|
+//
|
|
|
+// LOG10(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) LOG10(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("LOG10 requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var number float64
|
|
|
+ if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Log10(number))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+func minor(sqMtx [][]float64, idx int) [][]float64 {
|
|
|
+ ret := [][]float64{}
|
|
|
+ for i := range sqMtx {
|
|
|
+ if i == 0 {
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ row := []float64{}
|
|
|
+ for j := range sqMtx {
|
|
|
+ if j == idx {
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ row = append(row, sqMtx[i][j])
|
|
|
+ }
|
|
|
+ ret = append(ret, row)
|
|
|
+ }
|
|
|
+ return ret
|
|
|
+}
|
|
|
+
|
|
|
+// det determinant of the 2x2 matrix.
|
|
|
+func det(sqMtx [][]float64) float64 {
|
|
|
+ if len(sqMtx) == 2 {
|
|
|
+ m00 := sqMtx[0][0]
|
|
|
+ m01 := sqMtx[0][1]
|
|
|
+ m10 := sqMtx[1][0]
|
|
|
+ m11 := sqMtx[1][1]
|
|
|
+ return m00*m11 - m10*m01
|
|
|
+ }
|
|
|
+ var res, sgn float64 = 0, 1
|
|
|
+ for j := range sqMtx {
|
|
|
+ res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
|
|
|
+ sgn *= -1
|
|
|
+ }
|
|
|
+ return res
|
|
|
+}
|
|
|
+
|
|
|
+// MDETERM calculates the determinant of a square matrix. The
|
|
|
+// syntax of the function is:
|
|
|
+//
|
|
|
+// MDETERM(array)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error) {
|
|
|
+ var num float64
|
|
|
+ var rows int
|
|
|
+ var numMtx = [][]float64{}
|
|
|
+ var strMtx = [][]string{}
|
|
|
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
+ if len(arg.Value.(formulaArg).Matrix) == 0 {
|
|
|
+ break
|
|
|
+ }
|
|
|
+ strMtx = append(strMtx, arg.Value.(formulaArg).Matrix)
|
|
|
+ rows++
|
|
|
+ }
|
|
|
+ for _, row := range strMtx {
|
|
|
+ if len(row) != rows {
|
|
|
+ err = errors.New(formulaErrorVALUE)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ numRow := []float64{}
|
|
|
+ for _, ele := range row {
|
|
|
+ if num, err = strconv.ParseFloat(ele, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ numRow = append(numRow, num)
|
|
|
+ }
|
|
|
+ numMtx = append(numMtx, numRow)
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", det(numMtx))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// POWER function calculates a given number, raised to a supplied power.
|
|
|
+// The syntax of the function is:
|
|
|
+//
|
|
|
+// POWER(number,power)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 2 {
|
|
|
+ err = errors.New("POWER requires 2 numeric arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var x, y float64
|
|
|
+ if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if x == 0 && y == 0 {
|
|
|
+ err = errors.New(formulaErrorNUM)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if x == 0 && y < 0 {
|
|
|
+ err = errors.New(formulaErrorDIV)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Pow(x, y))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// PRODUCT function returns the product (multiplication) of a supplied set of
|
|
|
+// numerical values. The syntax of the function is:
|
|
|
+//
|
|
|
+// PRODUCT(number1,[number2],...)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
|
|
|
+ var val, product float64 = 0, 1
|
|
|
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
+ token := arg.Value.(formulaArg)
|
|
|
+ if token.Value == "" {
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ product = product * val
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", product)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
|
|
|
+// number. I.e. if the number is positive, the Sign function returns +1, if
|
|
|
+// the number is negative, the function returns -1 and if the number is 0
|
|
|
+// (zero), the function returns 0. The syntax of the function is:
|
|
|
+//
|
|
|
+// SIGN(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("SIGN requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var val float64
|
|
|
+ if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if val < 0 {
|
|
|
+ result = "-1"
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if val > 0 {
|
|
|
+ result = "1"
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = "0"
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// SQRT function calculates the positive square root of a supplied number. The
|
|
|
+// syntax of the function is:
|
|
|
+//
|
|
|
+// SQRT(number)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 1 {
|
|
|
+ err = errors.New("SQRT requires 1 numeric argument")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var res float64
|
|
|
+ var value = argsList.Front().Value.(formulaArg).Value
|
|
|
+ if value == "" {
|
|
|
+ result = "0"
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if res, err = strconv.ParseFloat(value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if res < 0 {
|
|
|
+ err = errors.New(formulaErrorNUM)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Sqrt(res))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// SUM function adds together a supplied set of numbers and returns the sum of
|
|
|
+// these values. The syntax of the function is:
|
|
|
+//
|
|
|
+// SUM(number1,[number2],...)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
|
|
|
+ var val, sum float64
|
|
|
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
+ token := arg.Value.(formulaArg)
|
|
|
+ if token.Value == "" {
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ sum += val
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", sum)
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// QUOTIENT function returns the integer portion of a division between two
|
|
|
+// supplied numbers. The syntax of the function is:
|
|
|
+//
|
|
|
+// QUOTIENT(numerator,denominator)
|
|
|
+//
|
|
|
+func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
|
|
|
+ if argsList.Len() != 2 {
|
|
|
+ err = errors.New("QUOTIENT requires 2 numeric arguments")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ var x, y float64
|
|
|
+ if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if y == 0 {
|
|
|
+ err = errors.New(formulaErrorDIV)
|
|
|
+ return
|
|
|
+ }
|
|
|
+ result = fmt.Sprintf("%g", math.Trunc(x/y))
|
|
|
+ return
|
|
|
+}
|