calc.go 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867
  1. // Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "container/list"
  14. "errors"
  15. "fmt"
  16. "math"
  17. "reflect"
  18. "strconv"
  19. "strings"
  20. "github.com/xuri/efp"
  21. )
  22. // Excel formula errors
  23. const (
  24. formulaErrorDIV = "#DIV/0!"
  25. formulaErrorNAME = "#NAME?"
  26. formulaErrorNA = "#N/A"
  27. formulaErrorNUM = "#NUM!"
  28. formulaErrorVALUE = "#VALUE!"
  29. formulaErrorREF = "#REF!"
  30. formulaErrorNULL = "#NULL"
  31. formulaErrorSPILL = "#SPILL!"
  32. formulaErrorCALC = "#CALC!"
  33. formulaErrorGETTINGDATA = "#GETTING_DATA"
  34. )
  35. // cellRef defines the structure of a cell reference.
  36. type cellRef struct {
  37. Col int
  38. Row int
  39. Sheet string
  40. }
  41. // cellRef defines the structure of a cell range.
  42. type cellRange struct {
  43. From cellRef
  44. To cellRef
  45. }
  46. // formulaArg is the argument of a formula or function.
  47. type formulaArg struct {
  48. Value string
  49. Matrix []string
  50. }
  51. // formulaFuncs is the type of the formula functions.
  52. type formulaFuncs struct{}
  53. // CalcCellValue provides a function to get calculated cell value. This
  54. // feature is currently in beta. Array formula, table formula and some other
  55. // formulas are not supported currently.
  56. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  57. var (
  58. formula string
  59. token efp.Token
  60. )
  61. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  62. return
  63. }
  64. ps := efp.ExcelParser()
  65. tokens := ps.Parse(formula)
  66. if tokens == nil {
  67. return
  68. }
  69. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  70. return
  71. }
  72. result = token.TValue
  73. return
  74. }
  75. // getPriority calculate arithmetic operator priority.
  76. func getPriority(token efp.Token) (pri int) {
  77. var priority = map[string]int{
  78. "*": 2,
  79. "/": 2,
  80. "+": 1,
  81. "-": 1,
  82. }
  83. pri, _ = priority[token.TValue]
  84. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  85. pri = 3
  86. }
  87. if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
  88. pri = 0
  89. }
  90. return
  91. }
  92. // evalInfixExp evaluate syntax analysis by given infix expression after
  93. // lexical analysis. Evaluate an infix expression containing formulas by
  94. // stacks:
  95. //
  96. // opd - Operand
  97. // opt - Operator
  98. // opf - Operation formula
  99. // opfd - Operand of the operation formula
  100. // opft - Operator of the operation formula
  101. //
  102. // Evaluate arguments of the operation formula by list:
  103. //
  104. // args - Arguments of the operation formula
  105. //
  106. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  107. //
  108. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  109. var err error
  110. opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  111. argsList := list.New()
  112. for i := 0; i < len(tokens); i++ {
  113. token := tokens[i]
  114. // out of function stack
  115. if opfStack.Len() == 0 {
  116. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  117. return efp.Token{}, err
  118. }
  119. }
  120. // function start
  121. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
  122. opfStack.Push(token)
  123. continue
  124. }
  125. // in function stack, walk 2 token at once
  126. if opfStack.Len() > 0 {
  127. var nextToken efp.Token
  128. if i+1 < len(tokens) {
  129. nextToken = tokens[i+1]
  130. }
  131. // current token is args or range, skip next token, order required: parse reference first
  132. if token.TSubType == efp.TokenSubTypeRange {
  133. if !opftStack.Empty() {
  134. // parse reference: must reference at here
  135. result, _, err := f.parseReference(sheet, token.TValue)
  136. if err != nil {
  137. return efp.Token{TValue: formulaErrorNAME}, err
  138. }
  139. if len(result) != 1 {
  140. return efp.Token{}, errors.New(formulaErrorVALUE)
  141. }
  142. opfdStack.Push(efp.Token{
  143. TType: efp.TokenTypeOperand,
  144. TSubType: efp.TokenSubTypeNumber,
  145. TValue: result[0],
  146. })
  147. continue
  148. }
  149. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  150. // parse reference: reference or range at here
  151. result, matrix, err := f.parseReference(sheet, token.TValue)
  152. if err != nil {
  153. return efp.Token{TValue: formulaErrorNAME}, err
  154. }
  155. for idx, val := range result {
  156. arg := formulaArg{Value: val}
  157. if idx < len(matrix) {
  158. arg.Matrix = matrix[idx]
  159. }
  160. argsList.PushBack(arg)
  161. }
  162. if len(result) == 0 {
  163. return efp.Token{}, errors.New(formulaErrorVALUE)
  164. }
  165. continue
  166. }
  167. }
  168. // check current token is opft
  169. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  170. return efp.Token{}, err
  171. }
  172. // current token is arg
  173. if token.TType == efp.TokenTypeArgument {
  174. for !opftStack.Empty() {
  175. // calculate trigger
  176. topOpt := opftStack.Peek().(efp.Token)
  177. if err := calculate(opfdStack, topOpt); err != nil {
  178. return efp.Token{}, err
  179. }
  180. opftStack.Pop()
  181. }
  182. if !opfdStack.Empty() {
  183. argsList.PushBack(formulaArg{
  184. Value: opfdStack.Pop().(efp.Token).TValue,
  185. })
  186. }
  187. continue
  188. }
  189. // current token is logical
  190. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  191. }
  192. // current token is text
  193. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  194. argsList.PushBack(formulaArg{
  195. Value: token.TValue,
  196. })
  197. }
  198. // current token is function stop
  199. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
  200. for !opftStack.Empty() {
  201. // calculate trigger
  202. topOpt := opftStack.Peek().(efp.Token)
  203. if err := calculate(opfdStack, topOpt); err != nil {
  204. return efp.Token{}, err
  205. }
  206. opftStack.Pop()
  207. }
  208. // push opfd to args
  209. if opfdStack.Len() > 0 {
  210. argsList.PushBack(formulaArg{
  211. Value: opfdStack.Pop().(efp.Token).TValue,
  212. })
  213. }
  214. // call formula function to evaluate
  215. result, err := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
  216. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  217. []reflect.Value{reflect.ValueOf(argsList)})
  218. if err != nil {
  219. return efp.Token{}, err
  220. }
  221. argsList.Init()
  222. opfStack.Pop()
  223. if opfStack.Len() > 0 { // still in function stack
  224. opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  225. } else {
  226. opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  227. }
  228. }
  229. }
  230. }
  231. for optStack.Len() != 0 {
  232. topOpt := optStack.Peek().(efp.Token)
  233. if err = calculate(opdStack, topOpt); err != nil {
  234. return efp.Token{}, err
  235. }
  236. optStack.Pop()
  237. }
  238. return opdStack.Peek().(efp.Token), err
  239. }
  240. // calculate evaluate basic arithmetic operations.
  241. func calculate(opdStack *Stack, opt efp.Token) error {
  242. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  243. opd := opdStack.Pop().(efp.Token)
  244. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  245. if err != nil {
  246. return err
  247. }
  248. result := 0 - opdVal
  249. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  250. }
  251. if opt.TValue == "+" {
  252. rOpd := opdStack.Pop().(efp.Token)
  253. lOpd := opdStack.Pop().(efp.Token)
  254. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  255. if err != nil {
  256. return err
  257. }
  258. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  259. if err != nil {
  260. return err
  261. }
  262. result := lOpdVal + rOpdVal
  263. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  264. }
  265. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  266. rOpd := opdStack.Pop().(efp.Token)
  267. lOpd := opdStack.Pop().(efp.Token)
  268. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  269. if err != nil {
  270. return err
  271. }
  272. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  273. if err != nil {
  274. return err
  275. }
  276. result := lOpdVal - rOpdVal
  277. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  278. }
  279. if opt.TValue == "*" {
  280. rOpd := opdStack.Pop().(efp.Token)
  281. lOpd := opdStack.Pop().(efp.Token)
  282. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  283. if err != nil {
  284. return err
  285. }
  286. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  287. if err != nil {
  288. return err
  289. }
  290. result := lOpdVal * rOpdVal
  291. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  292. }
  293. if opt.TValue == "/" {
  294. rOpd := opdStack.Pop().(efp.Token)
  295. lOpd := opdStack.Pop().(efp.Token)
  296. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  297. if err != nil {
  298. return err
  299. }
  300. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  301. if err != nil {
  302. return err
  303. }
  304. result := lOpdVal / rOpdVal
  305. if rOpdVal == 0 {
  306. return errors.New(formulaErrorDIV)
  307. }
  308. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  309. }
  310. return nil
  311. }
  312. // parseToken parse basic arithmetic operator priority and evaluate based on
  313. // operators and operands.
  314. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  315. // parse reference: must reference at here
  316. if token.TSubType == efp.TokenSubTypeRange {
  317. result, _, err := f.parseReference(sheet, token.TValue)
  318. if err != nil {
  319. return errors.New(formulaErrorNAME)
  320. }
  321. if len(result) != 1 {
  322. return errors.New(formulaErrorVALUE)
  323. }
  324. token.TValue = result[0]
  325. token.TType = efp.TokenTypeOperand
  326. token.TSubType = efp.TokenSubTypeNumber
  327. }
  328. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
  329. if optStack.Len() == 0 {
  330. optStack.Push(token)
  331. } else {
  332. tokenPriority := getPriority(token)
  333. topOpt := optStack.Peek().(efp.Token)
  334. topOptPriority := getPriority(topOpt)
  335. if tokenPriority > topOptPriority {
  336. optStack.Push(token)
  337. } else {
  338. for tokenPriority <= topOptPriority {
  339. optStack.Pop()
  340. if err := calculate(opdStack, topOpt); err != nil {
  341. return err
  342. }
  343. if optStack.Len() > 0 {
  344. topOpt = optStack.Peek().(efp.Token)
  345. topOptPriority = getPriority(topOpt)
  346. continue
  347. }
  348. break
  349. }
  350. optStack.Push(token)
  351. }
  352. }
  353. }
  354. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
  355. optStack.Push(token)
  356. }
  357. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
  358. for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
  359. topOpt := optStack.Peek().(efp.Token)
  360. if err := calculate(opdStack, topOpt); err != nil {
  361. return err
  362. }
  363. optStack.Pop()
  364. }
  365. optStack.Pop()
  366. }
  367. // opd
  368. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  369. opdStack.Push(token)
  370. }
  371. return nil
  372. }
  373. // parseReference parse reference and extract values by given reference
  374. // characters and default sheet name.
  375. func (f *File) parseReference(sheet, reference string) (result []string, matrix [][]string, err error) {
  376. reference = strings.Replace(reference, "$", "", -1)
  377. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  378. for _, ref := range strings.Split(reference, ":") {
  379. tokens := strings.Split(ref, "!")
  380. cr := cellRef{}
  381. if len(tokens) == 2 { // have a worksheet name
  382. cr.Sheet = tokens[0]
  383. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  384. return
  385. }
  386. if refs.Len() > 0 {
  387. e := refs.Back()
  388. cellRefs.PushBack(e.Value.(cellRef))
  389. refs.Remove(e)
  390. }
  391. refs.PushBack(cr)
  392. continue
  393. }
  394. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  395. return
  396. }
  397. e := refs.Back()
  398. if e == nil {
  399. cr.Sheet = sheet
  400. refs.PushBack(cr)
  401. continue
  402. }
  403. cellRanges.PushBack(cellRange{
  404. From: e.Value.(cellRef),
  405. To: cr,
  406. })
  407. refs.Remove(e)
  408. }
  409. if refs.Len() > 0 {
  410. e := refs.Back()
  411. cellRefs.PushBack(e.Value.(cellRef))
  412. refs.Remove(e)
  413. }
  414. result, matrix, err = f.rangeResolver(cellRefs, cellRanges)
  415. return
  416. }
  417. // rangeResolver extract value as string from given reference and range list.
  418. // This function will not ignore the empty cell. Note that the result of 3D
  419. // range references may be different from Excel in some cases, for example,
  420. // A1:A2:A2:B3 in Excel will include B1, but we wont.
  421. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (result []string, matrix [][]string, err error) {
  422. filter := map[string]string{}
  423. // extract value from ranges
  424. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  425. cr := temp.Value.(cellRange)
  426. if cr.From.Sheet != cr.To.Sheet {
  427. err = errors.New(formulaErrorVALUE)
  428. }
  429. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  430. sortCoordinates(rng)
  431. matrix = [][]string{}
  432. for row := rng[1]; row <= rng[3]; row++ {
  433. var matrixRow = []string{}
  434. for col := rng[0]; col <= rng[2]; col++ {
  435. var cell, value string
  436. if cell, err = CoordinatesToCellName(col, row); err != nil {
  437. return
  438. }
  439. if value, err = f.GetCellValue(cr.From.Sheet, cell); err != nil {
  440. return
  441. }
  442. filter[cell] = value
  443. matrixRow = append(matrixRow, value)
  444. }
  445. matrix = append(matrix, matrixRow)
  446. }
  447. }
  448. // extract value from references
  449. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  450. cr := temp.Value.(cellRef)
  451. var cell string
  452. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  453. return
  454. }
  455. if filter[cell], err = f.GetCellValue(cr.Sheet, cell); err != nil {
  456. return
  457. }
  458. }
  459. for _, val := range filter {
  460. result = append(result, val)
  461. }
  462. return
  463. }
  464. // callFuncByName calls the no error or only error return function with
  465. // reflect by given receiver, name and parameters.
  466. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
  467. function := reflect.ValueOf(receiver).MethodByName(name)
  468. if function.IsValid() {
  469. rt := function.Call(params)
  470. if len(rt) == 0 {
  471. return
  472. }
  473. if !rt[1].IsNil() {
  474. err = rt[1].Interface().(error)
  475. return
  476. }
  477. result = rt[0].Interface().(string)
  478. return
  479. }
  480. err = fmt.Errorf("not support %s function", name)
  481. return
  482. }
  483. // Math and Trigonometric functions
  484. // ABS function returns the absolute value of any supplied number. The syntax
  485. // of the function is:
  486. //
  487. // ABS(number)
  488. //
  489. func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
  490. if argsList.Len() != 1 {
  491. err = errors.New("ABS requires 1 numeric argument")
  492. return
  493. }
  494. var val float64
  495. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  496. return
  497. }
  498. result = fmt.Sprintf("%g", math.Abs(val))
  499. return
  500. }
  501. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  502. // number, and returns an angle, in radians, between 0 and π. The syntax of
  503. // the function is:
  504. //
  505. // ACOS(number)
  506. //
  507. func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
  508. if argsList.Len() != 1 {
  509. err = errors.New("ACOS requires 1 numeric argument")
  510. return
  511. }
  512. var val float64
  513. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  514. return
  515. }
  516. result = fmt.Sprintf("%g", math.Acos(val))
  517. return
  518. }
  519. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  520. // of the function is:
  521. //
  522. // ACOSH(number)
  523. //
  524. func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
  525. if argsList.Len() != 1 {
  526. err = errors.New("ACOSH requires 1 numeric argument")
  527. return
  528. }
  529. var val float64
  530. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  531. return
  532. }
  533. result = fmt.Sprintf("%g", math.Acosh(val))
  534. return
  535. }
  536. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  537. // given number, and returns an angle, in radians, between 0 and π. The syntax
  538. // of the function is:
  539. //
  540. // ACOT(number)
  541. //
  542. func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
  543. if argsList.Len() != 1 {
  544. err = errors.New("ACOT requires 1 numeric argument")
  545. return
  546. }
  547. var val float64
  548. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  549. return
  550. }
  551. result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
  552. return
  553. }
  554. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  555. // value. The syntax of the function is:
  556. //
  557. // ACOTH(number)
  558. //
  559. func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
  560. if argsList.Len() != 1 {
  561. err = errors.New("ACOTH requires 1 numeric argument")
  562. return
  563. }
  564. var val float64
  565. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  566. return
  567. }
  568. result = fmt.Sprintf("%g", math.Atanh(1/val))
  569. return
  570. }
  571. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  572. // of the function is:
  573. //
  574. // ARABIC(text)
  575. //
  576. func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
  577. if argsList.Len() != 1 {
  578. err = errors.New("ARABIC requires 1 numeric argument")
  579. return
  580. }
  581. val, last, prefix := 0.0, 0.0, 1.0
  582. for _, char := range argsList.Front().Value.(formulaArg).Value {
  583. digit := 0.0
  584. switch char {
  585. case '-':
  586. prefix = -1
  587. continue
  588. case 'I':
  589. digit = 1
  590. case 'V':
  591. digit = 5
  592. case 'X':
  593. digit = 10
  594. case 'L':
  595. digit = 50
  596. case 'C':
  597. digit = 100
  598. case 'D':
  599. digit = 500
  600. case 'M':
  601. digit = 1000
  602. }
  603. val += digit
  604. switch {
  605. case last == digit && (last == 5 || last == 50 || last == 500):
  606. result = formulaErrorVALUE
  607. return
  608. case 2*last == digit:
  609. result = formulaErrorVALUE
  610. return
  611. }
  612. if last < digit {
  613. val -= 2 * last
  614. }
  615. last = digit
  616. }
  617. result = fmt.Sprintf("%g", prefix*val)
  618. return
  619. }
  620. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  621. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  622. // of the function is:
  623. //
  624. // ASIN(number)
  625. //
  626. func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
  627. if argsList.Len() != 1 {
  628. err = errors.New("ASIN requires 1 numeric argument")
  629. return
  630. }
  631. var val float64
  632. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  633. return
  634. }
  635. result = fmt.Sprintf("%g", math.Asin(val))
  636. return
  637. }
  638. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  639. // The syntax of the function is:
  640. //
  641. // ASINH(number)
  642. //
  643. func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
  644. if argsList.Len() != 1 {
  645. err = errors.New("ASINH requires 1 numeric argument")
  646. return
  647. }
  648. var val float64
  649. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  650. return
  651. }
  652. result = fmt.Sprintf("%g", math.Asinh(val))
  653. return
  654. }
  655. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  656. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  657. // syntax of the function is:
  658. //
  659. // ATAN(number)
  660. //
  661. func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
  662. if argsList.Len() != 1 {
  663. err = errors.New("ATAN requires 1 numeric argument")
  664. return
  665. }
  666. var val float64
  667. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  668. return
  669. }
  670. result = fmt.Sprintf("%g", math.Atan(val))
  671. return
  672. }
  673. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  674. // number. The syntax of the function is:
  675. //
  676. // ATANH(number)
  677. //
  678. func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
  679. if argsList.Len() != 1 {
  680. err = errors.New("ATANH requires 1 numeric argument")
  681. return
  682. }
  683. var val float64
  684. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  685. return
  686. }
  687. result = fmt.Sprintf("%g", math.Atanh(val))
  688. return
  689. }
  690. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  691. // given set of x and y coordinates, and returns an angle, in radians, between
  692. // -π/2 and +π/2. The syntax of the function is:
  693. //
  694. // ATAN2(x_num,y_num)
  695. //
  696. func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
  697. if argsList.Len() != 2 {
  698. err = errors.New("ATAN2 requires 2 numeric arguments")
  699. return
  700. }
  701. var x, y float64
  702. if x, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  703. return
  704. }
  705. if y, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  706. return
  707. }
  708. result = fmt.Sprintf("%g", math.Atan2(x, y))
  709. return
  710. }
  711. // gcd returns the greatest common divisor of two supplied integers.
  712. func gcd(x, y float64) float64 {
  713. x, y = math.Trunc(x), math.Trunc(y)
  714. if x == 0 {
  715. return y
  716. }
  717. if y == 0 {
  718. return x
  719. }
  720. for x != y {
  721. if x > y {
  722. x = x - y
  723. } else {
  724. y = y - x
  725. }
  726. }
  727. return x
  728. }
  729. // BASE function converts a number into a supplied base (radix), and returns a
  730. // text representation of the calculated value. The syntax of the function is:
  731. //
  732. // BASE(number,radix,[min_length])
  733. //
  734. func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
  735. if argsList.Len() < 2 {
  736. err = errors.New("BASE requires at least 2 arguments")
  737. return
  738. }
  739. if argsList.Len() > 3 {
  740. err = errors.New("BASE allows at most 3 arguments")
  741. return
  742. }
  743. var number float64
  744. var radix, minLength int
  745. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  746. return
  747. }
  748. if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).Value); err != nil {
  749. return
  750. }
  751. if radix < 2 || radix > 36 {
  752. err = errors.New("radix must be an integer ≥ 2 and ≤ 36")
  753. return
  754. }
  755. if argsList.Len() > 2 {
  756. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
  757. return
  758. }
  759. }
  760. result = strconv.FormatInt(int64(number), radix)
  761. if len(result) < minLength {
  762. result = strings.Repeat("0", minLength-len(result)) + result
  763. }
  764. result = strings.ToUpper(result)
  765. return
  766. }
  767. // CEILING function rounds a supplied number away from zero, to the nearest
  768. // multiple of a given number. The syntax of the function is:
  769. //
  770. // CEILING(number,significance)
  771. //
  772. func (fn *formulaFuncs) CEILING(argsList *list.List) (result string, err error) {
  773. if argsList.Len() == 0 {
  774. err = errors.New("CEILING requires at least 1 argument")
  775. return
  776. }
  777. if argsList.Len() > 2 {
  778. err = errors.New("CEILING allows at most 2 arguments")
  779. return
  780. }
  781. var number, significance float64 = 0, 1
  782. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  783. return
  784. }
  785. if number < 0 {
  786. significance = -1
  787. }
  788. if argsList.Len() > 1 {
  789. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  790. return
  791. }
  792. }
  793. if significance < 0 && number > 0 {
  794. err = errors.New("negative sig to CEILING invalid")
  795. return
  796. }
  797. if argsList.Len() == 1 {
  798. result = fmt.Sprintf("%g", math.Ceil(number))
  799. return
  800. }
  801. number, res := math.Modf(number / significance)
  802. if res > 0 {
  803. number++
  804. }
  805. result = fmt.Sprintf("%g", number*significance)
  806. return
  807. }
  808. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  809. // significance. The syntax of the function is:
  810. //
  811. // CEILING.MATH(number,[significance],[mode])
  812. //
  813. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) (result string, err error) {
  814. if argsList.Len() == 0 {
  815. err = errors.New("CEILING.MATH requires at least 1 argument")
  816. return
  817. }
  818. if argsList.Len() > 3 {
  819. err = errors.New("CEILING.MATH allows at most 3 arguments")
  820. return
  821. }
  822. var number, significance, mode float64 = 0, 1, 1
  823. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  824. return
  825. }
  826. if number < 0 {
  827. significance = -1
  828. }
  829. if argsList.Len() > 1 {
  830. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).Value, 64); err != nil {
  831. return
  832. }
  833. }
  834. if argsList.Len() == 1 {
  835. result = fmt.Sprintf("%g", math.Ceil(number))
  836. return
  837. }
  838. if argsList.Len() > 2 {
  839. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  840. return
  841. }
  842. }
  843. val, res := math.Modf(number / significance)
  844. if res != 0 {
  845. if number > 0 {
  846. val++
  847. } else if mode < 0 {
  848. val--
  849. }
  850. }
  851. result = fmt.Sprintf("%g", val*significance)
  852. return
  853. }
  854. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  855. // number's sign), to the nearest multiple of a given number. The syntax of
  856. // the function is:
  857. //
  858. // CEILING.PRECISE(number,[significance])
  859. //
  860. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) (result string, err error) {
  861. if argsList.Len() == 0 {
  862. err = errors.New("CEILING.PRECISE requires at least 1 argument")
  863. return
  864. }
  865. if argsList.Len() > 2 {
  866. err = errors.New("CEILING.PRECISE allows at most 2 arguments")
  867. return
  868. }
  869. var number, significance float64 = 0, 1
  870. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  871. return
  872. }
  873. if number < 0 {
  874. significance = -1
  875. }
  876. if argsList.Len() == 1 {
  877. result = fmt.Sprintf("%g", math.Ceil(number))
  878. return
  879. }
  880. if argsList.Len() > 1 {
  881. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  882. return
  883. }
  884. significance = math.Abs(significance)
  885. if significance == 0 {
  886. result = "0"
  887. return
  888. }
  889. }
  890. val, res := math.Modf(number / significance)
  891. if res != 0 {
  892. if number > 0 {
  893. val++
  894. }
  895. }
  896. result = fmt.Sprintf("%g", val*significance)
  897. return
  898. }
  899. // COMBIN function calculates the number of combinations (in any order) of a
  900. // given number objects from a set. The syntax of the function is:
  901. //
  902. // COMBIN(number,number_chosen)
  903. //
  904. func (fn *formulaFuncs) COMBIN(argsList *list.List) (result string, err error) {
  905. if argsList.Len() != 2 {
  906. err = errors.New("COMBIN requires 2 argument")
  907. return
  908. }
  909. var number, chosen, val float64 = 0, 0, 1
  910. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  911. return
  912. }
  913. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  914. return
  915. }
  916. number, chosen = math.Trunc(number), math.Trunc(chosen)
  917. if chosen > number {
  918. err = errors.New("COMBIN requires number >= number_chosen")
  919. return
  920. }
  921. if chosen == number || chosen == 0 {
  922. result = "1"
  923. return
  924. }
  925. for c := float64(1); c <= chosen; c++ {
  926. val *= (number + 1 - c) / c
  927. }
  928. result = fmt.Sprintf("%g", math.Ceil(val))
  929. return
  930. }
  931. // COMBINA function calculates the number of combinations, with repetitions,
  932. // of a given number objects from a set. The syntax of the function is:
  933. //
  934. // COMBINA(number,number_chosen)
  935. //
  936. func (fn *formulaFuncs) COMBINA(argsList *list.List) (result string, err error) {
  937. if argsList.Len() != 2 {
  938. err = errors.New("COMBINA requires 2 argument")
  939. return
  940. }
  941. var number, chosen float64
  942. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  943. return
  944. }
  945. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  946. return
  947. }
  948. number, chosen = math.Trunc(number), math.Trunc(chosen)
  949. if number < chosen {
  950. err = errors.New("COMBINA requires number > number_chosen")
  951. return
  952. }
  953. if number == 0 {
  954. result = "0"
  955. return
  956. }
  957. args := list.New()
  958. args.PushBack(formulaArg{
  959. Value: fmt.Sprintf("%g", number+chosen-1),
  960. })
  961. args.PushBack(formulaArg{
  962. Value: fmt.Sprintf("%g", number-1),
  963. })
  964. return fn.COMBIN(args)
  965. }
  966. // COS function calculates the cosine of a given angle. The syntax of the
  967. // function is:
  968. //
  969. // COS(number)
  970. //
  971. func (fn *formulaFuncs) COS(argsList *list.List) (result string, err error) {
  972. if argsList.Len() != 1 {
  973. err = errors.New("COS requires 1 numeric argument")
  974. return
  975. }
  976. var val float64
  977. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  978. return
  979. }
  980. result = fmt.Sprintf("%g", math.Cos(val))
  981. return
  982. }
  983. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  984. // The syntax of the function is:
  985. //
  986. // COSH(number)
  987. //
  988. func (fn *formulaFuncs) COSH(argsList *list.List) (result string, err error) {
  989. if argsList.Len() != 1 {
  990. err = errors.New("COSH requires 1 numeric argument")
  991. return
  992. }
  993. var val float64
  994. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  995. return
  996. }
  997. result = fmt.Sprintf("%g", math.Cosh(val))
  998. return
  999. }
  1000. // COT function calculates the cotangent of a given angle. The syntax of the
  1001. // function is:
  1002. //
  1003. // COT(number)
  1004. //
  1005. func (fn *formulaFuncs) COT(argsList *list.List) (result string, err error) {
  1006. if argsList.Len() != 1 {
  1007. err = errors.New("COT requires 1 numeric argument")
  1008. return
  1009. }
  1010. var val float64
  1011. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1012. return
  1013. }
  1014. if val == 0 {
  1015. err = errors.New(formulaErrorNAME)
  1016. return
  1017. }
  1018. result = fmt.Sprintf("%g", math.Tan(val))
  1019. return
  1020. }
  1021. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1022. // angle. The syntax of the function is:
  1023. //
  1024. // COTH(number)
  1025. //
  1026. func (fn *formulaFuncs) COTH(argsList *list.List) (result string, err error) {
  1027. if argsList.Len() != 1 {
  1028. err = errors.New("COTH requires 1 numeric argument")
  1029. return
  1030. }
  1031. var val float64
  1032. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1033. return
  1034. }
  1035. if val == 0 {
  1036. err = errors.New(formulaErrorNAME)
  1037. return
  1038. }
  1039. result = fmt.Sprintf("%g", math.Tanh(val))
  1040. return
  1041. }
  1042. // CSC function calculates the cosecant of a given angle. The syntax of the
  1043. // function is:
  1044. //
  1045. // CSC(number)
  1046. //
  1047. func (fn *formulaFuncs) CSC(argsList *list.List) (result string, err error) {
  1048. if argsList.Len() != 1 {
  1049. err = errors.New("CSC requires 1 numeric argument")
  1050. return
  1051. }
  1052. var val float64
  1053. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1054. return
  1055. }
  1056. if val == 0 {
  1057. err = errors.New(formulaErrorNAME)
  1058. return
  1059. }
  1060. result = fmt.Sprintf("%g", 1/math.Sin(val))
  1061. return
  1062. }
  1063. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1064. // angle. The syntax of the function is:
  1065. //
  1066. // CSCH(number)
  1067. //
  1068. func (fn *formulaFuncs) CSCH(argsList *list.List) (result string, err error) {
  1069. if argsList.Len() != 1 {
  1070. err = errors.New("CSCH requires 1 numeric argument")
  1071. return
  1072. }
  1073. var val float64
  1074. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1075. return
  1076. }
  1077. if val == 0 {
  1078. err = errors.New(formulaErrorNAME)
  1079. return
  1080. }
  1081. result = fmt.Sprintf("%g", 1/math.Sinh(val))
  1082. return
  1083. }
  1084. // DECIMAL function converts a text representation of a number in a specified
  1085. // base, into a decimal value. The syntax of the function is:
  1086. //
  1087. // DECIMAL(text,radix)
  1088. //
  1089. func (fn *formulaFuncs) DECIMAL(argsList *list.List) (result string, err error) {
  1090. if argsList.Len() != 2 {
  1091. err = errors.New("DECIMAL requires 2 numeric arguments")
  1092. return
  1093. }
  1094. var text = argsList.Front().Value.(formulaArg).Value
  1095. var radix int
  1096. if radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
  1097. return
  1098. }
  1099. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1100. text = text[2:]
  1101. }
  1102. val, err := strconv.ParseInt(text, radix, 64)
  1103. if err != nil {
  1104. err = errors.New(formulaErrorNUM)
  1105. return
  1106. }
  1107. result = fmt.Sprintf("%g", float64(val))
  1108. return
  1109. }
  1110. // DEGREES function converts radians into degrees. The syntax of the function
  1111. // is:
  1112. //
  1113. // DEGREES(angle)
  1114. //
  1115. func (fn *formulaFuncs) DEGREES(argsList *list.List) (result string, err error) {
  1116. if argsList.Len() != 1 {
  1117. err = errors.New("DEGREES requires 1 numeric argument")
  1118. return
  1119. }
  1120. var val float64
  1121. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1122. return
  1123. }
  1124. if val == 0 {
  1125. err = errors.New(formulaErrorNAME)
  1126. return
  1127. }
  1128. result = fmt.Sprintf("%g", 180.0/math.Pi*val)
  1129. return
  1130. }
  1131. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1132. // positive number up and a negative number down), to the next even number.
  1133. // The syntax of the function is:
  1134. //
  1135. // EVEN(number)
  1136. //
  1137. func (fn *formulaFuncs) EVEN(argsList *list.List) (result string, err error) {
  1138. if argsList.Len() != 1 {
  1139. err = errors.New("EVEN requires 1 numeric argument")
  1140. return
  1141. }
  1142. var number float64
  1143. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1144. return
  1145. }
  1146. sign := math.Signbit(number)
  1147. m, frac := math.Modf(number / 2)
  1148. val := m * 2
  1149. if frac != 0 {
  1150. if !sign {
  1151. val += 2
  1152. } else {
  1153. val -= 2
  1154. }
  1155. }
  1156. result = fmt.Sprintf("%g", val)
  1157. return
  1158. }
  1159. // EXP function calculates the value of the mathematical constant e, raised to
  1160. // the power of a given number. The syntax of the function is:
  1161. //
  1162. // EXP(number)
  1163. //
  1164. func (fn *formulaFuncs) EXP(argsList *list.List) (result string, err error) {
  1165. if argsList.Len() != 1 {
  1166. err = errors.New("EXP requires 1 numeric argument")
  1167. return
  1168. }
  1169. var number float64
  1170. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1171. return
  1172. }
  1173. result = strings.ToUpper(fmt.Sprintf("%g", math.Exp(number)))
  1174. return
  1175. }
  1176. // fact returns the factorial of a supplied number.
  1177. func fact(number float64) float64 {
  1178. val := float64(1)
  1179. for i := float64(2); i <= number; i++ {
  1180. val *= i
  1181. }
  1182. return val
  1183. }
  1184. // FACT function returns the factorial of a supplied number. The syntax of the
  1185. // function is:
  1186. //
  1187. // FACT(number)
  1188. //
  1189. func (fn *formulaFuncs) FACT(argsList *list.List) (result string, err error) {
  1190. if argsList.Len() != 1 {
  1191. err = errors.New("FACT requires 1 numeric argument")
  1192. return
  1193. }
  1194. var number float64
  1195. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1196. return
  1197. }
  1198. if number < 0 {
  1199. err = errors.New(formulaErrorNUM)
  1200. }
  1201. result = strings.ToUpper(fmt.Sprintf("%g", fact(number)))
  1202. return
  1203. }
  1204. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1205. // syntax of the function is:
  1206. //
  1207. // FACTDOUBLE(number)
  1208. //
  1209. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) (result string, err error) {
  1210. if argsList.Len() != 1 {
  1211. err = errors.New("FACTDOUBLE requires 1 numeric argument")
  1212. return
  1213. }
  1214. var number, val float64 = 0, 1
  1215. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1216. return
  1217. }
  1218. if number < 0 {
  1219. err = errors.New(formulaErrorNUM)
  1220. }
  1221. for i := math.Trunc(number); i > 1; i -= 2 {
  1222. val *= i
  1223. }
  1224. result = strings.ToUpper(fmt.Sprintf("%g", val))
  1225. return
  1226. }
  1227. // FLOOR function rounds a supplied number towards zero to the nearest
  1228. // multiple of a specified significance. The syntax of the function is:
  1229. //
  1230. // FLOOR(number,significance)
  1231. //
  1232. func (fn *formulaFuncs) FLOOR(argsList *list.List) (result string, err error) {
  1233. if argsList.Len() != 2 {
  1234. err = errors.New("FLOOR requires 2 numeric arguments")
  1235. return
  1236. }
  1237. var number, significance float64 = 0, 1
  1238. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1239. return
  1240. }
  1241. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1242. return
  1243. }
  1244. if significance < 0 && number >= 0 {
  1245. err = errors.New(formulaErrorNUM)
  1246. }
  1247. val := number
  1248. val, res := math.Modf(val / significance)
  1249. if res != 0 {
  1250. if number < 0 && res < 0 {
  1251. val--
  1252. }
  1253. }
  1254. result = strings.ToUpper(fmt.Sprintf("%g", val*significance))
  1255. return
  1256. }
  1257. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1258. // significance. The syntax of the function is:
  1259. //
  1260. // FLOOR.MATH(number,[significance],[mode])
  1261. //
  1262. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) (result string, err error) {
  1263. if argsList.Len() == 0 {
  1264. err = errors.New("FLOOR.MATH requires at least 1 argument")
  1265. return
  1266. }
  1267. if argsList.Len() > 3 {
  1268. err = errors.New("FLOOR.MATH allows at most 3 arguments")
  1269. return
  1270. }
  1271. var number, significance, mode float64 = 0, 1, 1
  1272. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1273. return
  1274. }
  1275. if number < 0 {
  1276. significance = -1
  1277. }
  1278. if argsList.Len() > 1 {
  1279. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).Value, 64); err != nil {
  1280. return
  1281. }
  1282. }
  1283. if argsList.Len() == 1 {
  1284. result = fmt.Sprintf("%g", math.Floor(number))
  1285. return
  1286. }
  1287. if argsList.Len() > 2 {
  1288. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1289. return
  1290. }
  1291. }
  1292. val, res := math.Modf(number / significance)
  1293. if res != 0 && number < 0 && mode > 0 {
  1294. val--
  1295. }
  1296. result = fmt.Sprintf("%g", val*significance)
  1297. return
  1298. }
  1299. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1300. // of significance. The syntax of the function is:
  1301. //
  1302. // FLOOR.PRECISE(number,[significance])
  1303. //
  1304. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) (result string, err error) {
  1305. if argsList.Len() == 0 {
  1306. err = errors.New("FLOOR.PRECISE requires at least 1 argument")
  1307. return
  1308. }
  1309. if argsList.Len() > 2 {
  1310. err = errors.New("FLOOR.PRECISE allows at most 2 arguments")
  1311. return
  1312. }
  1313. var number, significance float64 = 0, 1
  1314. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1315. return
  1316. }
  1317. if number < 0 {
  1318. significance = -1
  1319. }
  1320. if argsList.Len() == 1 {
  1321. result = fmt.Sprintf("%g", math.Floor(number))
  1322. return
  1323. }
  1324. if argsList.Len() > 1 {
  1325. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1326. return
  1327. }
  1328. significance = math.Abs(significance)
  1329. if significance == 0 {
  1330. result = "0"
  1331. return
  1332. }
  1333. }
  1334. val, res := math.Modf(number / significance)
  1335. if res != 0 {
  1336. if number < 0 {
  1337. val--
  1338. }
  1339. }
  1340. result = fmt.Sprintf("%g", val*significance)
  1341. return
  1342. }
  1343. // GCD function returns the greatest common divisor of two or more supplied
  1344. // integers. The syntax of the function is:
  1345. //
  1346. // GCD(number1,[number2],...)
  1347. //
  1348. func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
  1349. if argsList.Len() == 0 {
  1350. err = errors.New("GCD requires at least 1 argument")
  1351. return
  1352. }
  1353. var (
  1354. val float64
  1355. nums = []float64{}
  1356. )
  1357. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1358. token := arg.Value.(formulaArg).Value
  1359. if token == "" {
  1360. continue
  1361. }
  1362. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1363. return
  1364. }
  1365. nums = append(nums, val)
  1366. }
  1367. if nums[0] < 0 {
  1368. err = errors.New("GCD only accepts positive arguments")
  1369. return
  1370. }
  1371. if len(nums) == 1 {
  1372. result = fmt.Sprintf("%g", nums[0])
  1373. return
  1374. }
  1375. cd := nums[0]
  1376. for i := 1; i < len(nums); i++ {
  1377. if nums[i] < 0 {
  1378. err = errors.New("GCD only accepts positive arguments")
  1379. return
  1380. }
  1381. cd = gcd(cd, nums[i])
  1382. }
  1383. result = fmt.Sprintf("%g", cd)
  1384. return
  1385. }
  1386. // INT function truncates a supplied number down to the closest integer. The
  1387. // syntax of the function is:
  1388. //
  1389. // INT(number)
  1390. //
  1391. func (fn *formulaFuncs) INT(argsList *list.List) (result string, err error) {
  1392. if argsList.Len() != 1 {
  1393. err = errors.New("INT requires 1 numeric argument")
  1394. return
  1395. }
  1396. var number float64
  1397. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1398. return
  1399. }
  1400. val, frac := math.Modf(number)
  1401. if frac < 0 {
  1402. val--
  1403. }
  1404. result = fmt.Sprintf("%g", val)
  1405. return
  1406. }
  1407. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1408. // sign), to the nearest multiple of a supplied significance. The syntax of
  1409. // the function is:
  1410. //
  1411. // ISO.CEILING(number,[significance])
  1412. //
  1413. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) (result string, err error) {
  1414. if argsList.Len() == 0 {
  1415. err = errors.New("ISO.CEILING requires at least 1 argument")
  1416. return
  1417. }
  1418. if argsList.Len() > 2 {
  1419. err = errors.New("ISO.CEILING allows at most 2 arguments")
  1420. return
  1421. }
  1422. var number, significance float64 = 0, 1
  1423. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1424. return
  1425. }
  1426. if number < 0 {
  1427. significance = -1
  1428. }
  1429. if argsList.Len() == 1 {
  1430. result = fmt.Sprintf("%g", math.Ceil(number))
  1431. return
  1432. }
  1433. if argsList.Len() > 1 {
  1434. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1435. return
  1436. }
  1437. significance = math.Abs(significance)
  1438. if significance == 0 {
  1439. result = "0"
  1440. return
  1441. }
  1442. }
  1443. val, res := math.Modf(number / significance)
  1444. if res != 0 {
  1445. if number > 0 {
  1446. val++
  1447. }
  1448. }
  1449. result = fmt.Sprintf("%g", val*significance)
  1450. return
  1451. }
  1452. // lcm returns the least common multiple of two supplied integers.
  1453. func lcm(a, b float64) float64 {
  1454. a = math.Trunc(a)
  1455. b = math.Trunc(b)
  1456. if a == 0 && b == 0 {
  1457. return 0
  1458. }
  1459. return a * b / gcd(a, b)
  1460. }
  1461. // LCM function returns the least common multiple of two or more supplied
  1462. // integers. The syntax of the function is:
  1463. //
  1464. // LCM(number1,[number2],...)
  1465. //
  1466. func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
  1467. if argsList.Len() == 0 {
  1468. err = errors.New("LCM requires at least 1 argument")
  1469. return
  1470. }
  1471. var (
  1472. val float64
  1473. nums = []float64{}
  1474. )
  1475. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1476. token := arg.Value.(formulaArg).Value
  1477. if token == "" {
  1478. continue
  1479. }
  1480. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1481. return
  1482. }
  1483. nums = append(nums, val)
  1484. }
  1485. if nums[0] < 0 {
  1486. err = errors.New("LCM only accepts positive arguments")
  1487. return
  1488. }
  1489. if len(nums) == 1 {
  1490. result = fmt.Sprintf("%g", nums[0])
  1491. return
  1492. }
  1493. cm := nums[0]
  1494. for i := 1; i < len(nums); i++ {
  1495. if nums[i] < 0 {
  1496. err = errors.New("LCM only accepts positive arguments")
  1497. return
  1498. }
  1499. cm = lcm(cm, nums[i])
  1500. }
  1501. result = fmt.Sprintf("%g", cm)
  1502. return
  1503. }
  1504. // LN function calculates the natural logarithm of a given number. The syntax
  1505. // of the function is:
  1506. //
  1507. // LN(number)
  1508. //
  1509. func (fn *formulaFuncs) LN(argsList *list.List) (result string, err error) {
  1510. if argsList.Len() != 1 {
  1511. err = errors.New("LN requires 1 numeric argument")
  1512. return
  1513. }
  1514. var number float64
  1515. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1516. return
  1517. }
  1518. result = fmt.Sprintf("%g", math.Log(number))
  1519. return
  1520. }
  1521. // LOG function calculates the logarithm of a given number, to a supplied
  1522. // base. The syntax of the function is:
  1523. //
  1524. // LOG(number,[base])
  1525. //
  1526. func (fn *formulaFuncs) LOG(argsList *list.List) (result string, err error) {
  1527. if argsList.Len() == 0 {
  1528. err = errors.New("LOG requires at least 1 argument")
  1529. return
  1530. }
  1531. if argsList.Len() > 2 {
  1532. err = errors.New("LOG allows at most 2 arguments")
  1533. return
  1534. }
  1535. var number, base float64 = 0, 10
  1536. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1537. return
  1538. }
  1539. if argsList.Len() > 1 {
  1540. if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1541. return
  1542. }
  1543. }
  1544. if number == 0 {
  1545. err = errors.New(formulaErrorNUM)
  1546. return
  1547. }
  1548. if base == 0 {
  1549. err = errors.New(formulaErrorNUM)
  1550. return
  1551. }
  1552. if base == 1 {
  1553. err = errors.New(formulaErrorDIV)
  1554. return
  1555. }
  1556. result = fmt.Sprintf("%g", math.Log(number)/math.Log(base))
  1557. return
  1558. }
  1559. // LOG10 function calculates the base 10 logarithm of a given number. The
  1560. // syntax of the function is:
  1561. //
  1562. // LOG10(number)
  1563. //
  1564. func (fn *formulaFuncs) LOG10(argsList *list.List) (result string, err error) {
  1565. if argsList.Len() != 1 {
  1566. err = errors.New("LOG10 requires 1 numeric argument")
  1567. return
  1568. }
  1569. var number float64
  1570. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1571. return
  1572. }
  1573. result = fmt.Sprintf("%g", math.Log10(number))
  1574. return
  1575. }
  1576. func minor(sqMtx [][]float64, idx int) [][]float64 {
  1577. ret := [][]float64{}
  1578. for i := range sqMtx {
  1579. if i == 0 {
  1580. continue
  1581. }
  1582. row := []float64{}
  1583. for j := range sqMtx {
  1584. if j == idx {
  1585. continue
  1586. }
  1587. row = append(row, sqMtx[i][j])
  1588. }
  1589. ret = append(ret, row)
  1590. }
  1591. return ret
  1592. }
  1593. // det determinant of the 2x2 matrix.
  1594. func det(sqMtx [][]float64) float64 {
  1595. if len(sqMtx) == 2 {
  1596. m00 := sqMtx[0][0]
  1597. m01 := sqMtx[0][1]
  1598. m10 := sqMtx[1][0]
  1599. m11 := sqMtx[1][1]
  1600. return m00*m11 - m10*m01
  1601. }
  1602. var res, sgn float64 = 0, 1
  1603. for j := range sqMtx {
  1604. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  1605. sgn *= -1
  1606. }
  1607. return res
  1608. }
  1609. // MDETERM calculates the determinant of a square matrix. The
  1610. // syntax of the function is:
  1611. //
  1612. // MDETERM(array)
  1613. //
  1614. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error) {
  1615. var num float64
  1616. var rows int
  1617. var numMtx = [][]float64{}
  1618. var strMtx = [][]string{}
  1619. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1620. if len(arg.Value.(formulaArg).Matrix) == 0 {
  1621. break
  1622. }
  1623. strMtx = append(strMtx, arg.Value.(formulaArg).Matrix)
  1624. rows++
  1625. }
  1626. for _, row := range strMtx {
  1627. if len(row) != rows {
  1628. err = errors.New(formulaErrorVALUE)
  1629. return
  1630. }
  1631. numRow := []float64{}
  1632. for _, ele := range row {
  1633. if num, err = strconv.ParseFloat(ele, 64); err != nil {
  1634. return
  1635. }
  1636. numRow = append(numRow, num)
  1637. }
  1638. numMtx = append(numMtx, numRow)
  1639. }
  1640. result = fmt.Sprintf("%g", det(numMtx))
  1641. return
  1642. }
  1643. // POWER function calculates a given number, raised to a supplied power.
  1644. // The syntax of the function is:
  1645. //
  1646. // POWER(number,power)
  1647. //
  1648. func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
  1649. if argsList.Len() != 2 {
  1650. err = errors.New("POWER requires 2 numeric arguments")
  1651. return
  1652. }
  1653. var x, y float64
  1654. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1655. return
  1656. }
  1657. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1658. return
  1659. }
  1660. if x == 0 && y == 0 {
  1661. err = errors.New(formulaErrorNUM)
  1662. return
  1663. }
  1664. if x == 0 && y < 0 {
  1665. err = errors.New(formulaErrorDIV)
  1666. return
  1667. }
  1668. result = fmt.Sprintf("%g", math.Pow(x, y))
  1669. return
  1670. }
  1671. // PRODUCT function returns the product (multiplication) of a supplied set of
  1672. // numerical values. The syntax of the function is:
  1673. //
  1674. // PRODUCT(number1,[number2],...)
  1675. //
  1676. func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
  1677. var val, product float64 = 0, 1
  1678. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1679. token := arg.Value.(formulaArg)
  1680. if token.Value == "" {
  1681. continue
  1682. }
  1683. if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
  1684. return
  1685. }
  1686. product = product * val
  1687. }
  1688. result = fmt.Sprintf("%g", product)
  1689. return
  1690. }
  1691. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  1692. // number. I.e. if the number is positive, the Sign function returns +1, if
  1693. // the number is negative, the function returns -1 and if the number is 0
  1694. // (zero), the function returns 0. The syntax of the function is:
  1695. //
  1696. // SIGN(number)
  1697. //
  1698. func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
  1699. if argsList.Len() != 1 {
  1700. err = errors.New("SIGN requires 1 numeric argument")
  1701. return
  1702. }
  1703. var val float64
  1704. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1705. return
  1706. }
  1707. if val < 0 {
  1708. result = "-1"
  1709. return
  1710. }
  1711. if val > 0 {
  1712. result = "1"
  1713. return
  1714. }
  1715. result = "0"
  1716. return
  1717. }
  1718. // SQRT function calculates the positive square root of a supplied number. The
  1719. // syntax of the function is:
  1720. //
  1721. // SQRT(number)
  1722. //
  1723. func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
  1724. if argsList.Len() != 1 {
  1725. err = errors.New("SQRT requires 1 numeric argument")
  1726. return
  1727. }
  1728. var res float64
  1729. var value = argsList.Front().Value.(formulaArg).Value
  1730. if value == "" {
  1731. result = "0"
  1732. return
  1733. }
  1734. if res, err = strconv.ParseFloat(value, 64); err != nil {
  1735. return
  1736. }
  1737. if res < 0 {
  1738. err = errors.New(formulaErrorNUM)
  1739. return
  1740. }
  1741. result = fmt.Sprintf("%g", math.Sqrt(res))
  1742. return
  1743. }
  1744. // SUM function adds together a supplied set of numbers and returns the sum of
  1745. // these values. The syntax of the function is:
  1746. //
  1747. // SUM(number1,[number2],...)
  1748. //
  1749. func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
  1750. var val, sum float64
  1751. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1752. token := arg.Value.(formulaArg)
  1753. if token.Value == "" {
  1754. continue
  1755. }
  1756. if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
  1757. return
  1758. }
  1759. sum += val
  1760. }
  1761. result = fmt.Sprintf("%g", sum)
  1762. return
  1763. }
  1764. // QUOTIENT function returns the integer portion of a division between two
  1765. // supplied numbers. The syntax of the function is:
  1766. //
  1767. // QUOTIENT(numerator,denominator)
  1768. //
  1769. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
  1770. if argsList.Len() != 2 {
  1771. err = errors.New("QUOTIENT requires 2 numeric arguments")
  1772. return
  1773. }
  1774. var x, y float64
  1775. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1776. return
  1777. }
  1778. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1779. return
  1780. }
  1781. if y == 0 {
  1782. err = errors.New(formulaErrorDIV)
  1783. return
  1784. }
  1785. result = fmt.Sprintf("%g", math.Trunc(x/y))
  1786. return
  1787. }