| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867 |
- // Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
- // this source code is governed by a BSD-style license that can be found in
- // the LICENSE file.
- //
- // Package excelize providing a set of functions that allow you to write to
- // and read from XLSX / XLSM / XLTM files. Supports reading and writing
- // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
- // complex components by high compatibility, and provided streaming API for
- // generating or reading data from a worksheet with huge amounts of data. This
- // library needs Go version 1.10 or later.
- package excelize
- import (
- "container/list"
- "errors"
- "fmt"
- "math"
- "reflect"
- "strconv"
- "strings"
- "github.com/xuri/efp"
- )
- // Excel formula errors
- const (
- formulaErrorDIV = "#DIV/0!"
- formulaErrorNAME = "#NAME?"
- formulaErrorNA = "#N/A"
- formulaErrorNUM = "#NUM!"
- formulaErrorVALUE = "#VALUE!"
- formulaErrorREF = "#REF!"
- formulaErrorNULL = "#NULL"
- formulaErrorSPILL = "#SPILL!"
- formulaErrorCALC = "#CALC!"
- formulaErrorGETTINGDATA = "#GETTING_DATA"
- )
- // cellRef defines the structure of a cell reference.
- type cellRef struct {
- Col int
- Row int
- Sheet string
- }
- // cellRef defines the structure of a cell range.
- type cellRange struct {
- From cellRef
- To cellRef
- }
- // formulaArg is the argument of a formula or function.
- type formulaArg struct {
- Value string
- Matrix []string
- }
- // formulaFuncs is the type of the formula functions.
- type formulaFuncs struct{}
- // CalcCellValue provides a function to get calculated cell value. This
- // feature is currently in beta. Array formula, table formula and some other
- // formulas are not supported currently.
- func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
- var (
- formula string
- token efp.Token
- )
- if formula, err = f.GetCellFormula(sheet, cell); err != nil {
- return
- }
- ps := efp.ExcelParser()
- tokens := ps.Parse(formula)
- if tokens == nil {
- return
- }
- if token, err = f.evalInfixExp(sheet, tokens); err != nil {
- return
- }
- result = token.TValue
- return
- }
- // getPriority calculate arithmetic operator priority.
- func getPriority(token efp.Token) (pri int) {
- var priority = map[string]int{
- "*": 2,
- "/": 2,
- "+": 1,
- "-": 1,
- }
- pri, _ = priority[token.TValue]
- if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
- pri = 3
- }
- if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
- pri = 0
- }
- return
- }
- // evalInfixExp evaluate syntax analysis by given infix expression after
- // lexical analysis. Evaluate an infix expression containing formulas by
- // stacks:
- //
- // opd - Operand
- // opt - Operator
- // opf - Operation formula
- // opfd - Operand of the operation formula
- // opft - Operator of the operation formula
- //
- // Evaluate arguments of the operation formula by list:
- //
- // args - Arguments of the operation formula
- //
- // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
- //
- func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
- var err error
- opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
- argsList := list.New()
- for i := 0; i < len(tokens); i++ {
- token := tokens[i]
- // out of function stack
- if opfStack.Len() == 0 {
- if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
- return efp.Token{}, err
- }
- }
- // function start
- if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
- opfStack.Push(token)
- continue
- }
- // in function stack, walk 2 token at once
- if opfStack.Len() > 0 {
- var nextToken efp.Token
- if i+1 < len(tokens) {
- nextToken = tokens[i+1]
- }
- // current token is args or range, skip next token, order required: parse reference first
- if token.TSubType == efp.TokenSubTypeRange {
- if !opftStack.Empty() {
- // parse reference: must reference at here
- result, _, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return efp.Token{TValue: formulaErrorNAME}, err
- }
- if len(result) != 1 {
- return efp.Token{}, errors.New(formulaErrorVALUE)
- }
- opfdStack.Push(efp.Token{
- TType: efp.TokenTypeOperand,
- TSubType: efp.TokenSubTypeNumber,
- TValue: result[0],
- })
- continue
- }
- if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
- // parse reference: reference or range at here
- result, matrix, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return efp.Token{TValue: formulaErrorNAME}, err
- }
- for idx, val := range result {
- arg := formulaArg{Value: val}
- if idx < len(matrix) {
- arg.Matrix = matrix[idx]
- }
- argsList.PushBack(arg)
- }
- if len(result) == 0 {
- return efp.Token{}, errors.New(formulaErrorVALUE)
- }
- continue
- }
- }
- // check current token is opft
- if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
- return efp.Token{}, err
- }
- // current token is arg
- if token.TType == efp.TokenTypeArgument {
- for !opftStack.Empty() {
- // calculate trigger
- topOpt := opftStack.Peek().(efp.Token)
- if err := calculate(opfdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- opftStack.Pop()
- }
- if !opfdStack.Empty() {
- argsList.PushBack(formulaArg{
- Value: opfdStack.Pop().(efp.Token).TValue,
- })
- }
- continue
- }
- // current token is logical
- if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
- }
- // current token is text
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
- argsList.PushBack(formulaArg{
- Value: token.TValue,
- })
- }
- // current token is function stop
- if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
- for !opftStack.Empty() {
- // calculate trigger
- topOpt := opftStack.Peek().(efp.Token)
- if err := calculate(opfdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- opftStack.Pop()
- }
- // push opfd to args
- if opfdStack.Len() > 0 {
- argsList.PushBack(formulaArg{
- Value: opfdStack.Pop().(efp.Token).TValue,
- })
- }
- // call formula function to evaluate
- result, err := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
- "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
- []reflect.Value{reflect.ValueOf(argsList)})
- if err != nil {
- return efp.Token{}, err
- }
- argsList.Init()
- opfStack.Pop()
- if opfStack.Len() > 0 { // still in function stack
- opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- } else {
- opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- }
- }
- }
- for optStack.Len() != 0 {
- topOpt := optStack.Peek().(efp.Token)
- if err = calculate(opdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- optStack.Pop()
- }
- return opdStack.Peek().(efp.Token), err
- }
- // calculate evaluate basic arithmetic operations.
- func calculate(opdStack *Stack, opt efp.Token) error {
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
- opd := opdStack.Pop().(efp.Token)
- opdVal, err := strconv.ParseFloat(opd.TValue, 64)
- if err != nil {
- return err
- }
- result := 0 - opdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- if opt.TValue == "+" {
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal + rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal - rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- if opt.TValue == "*" {
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal * rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- if opt.TValue == "/" {
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal / rOpdVal
- if rOpdVal == 0 {
- return errors.New(formulaErrorDIV)
- }
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- return nil
- }
- // parseToken parse basic arithmetic operator priority and evaluate based on
- // operators and operands.
- func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
- // parse reference: must reference at here
- if token.TSubType == efp.TokenSubTypeRange {
- result, _, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return errors.New(formulaErrorNAME)
- }
- if len(result) != 1 {
- return errors.New(formulaErrorVALUE)
- }
- token.TValue = result[0]
- token.TType = efp.TokenTypeOperand
- token.TSubType = efp.TokenSubTypeNumber
- }
- if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
- if optStack.Len() == 0 {
- optStack.Push(token)
- } else {
- tokenPriority := getPriority(token)
- topOpt := optStack.Peek().(efp.Token)
- topOptPriority := getPriority(topOpt)
- if tokenPriority > topOptPriority {
- optStack.Push(token)
- } else {
- for tokenPriority <= topOptPriority {
- optStack.Pop()
- if err := calculate(opdStack, topOpt); err != nil {
- return err
- }
- if optStack.Len() > 0 {
- topOpt = optStack.Peek().(efp.Token)
- topOptPriority = getPriority(topOpt)
- continue
- }
- break
- }
- optStack.Push(token)
- }
- }
- }
- if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
- optStack.Push(token)
- }
- if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
- for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
- topOpt := optStack.Peek().(efp.Token)
- if err := calculate(opdStack, topOpt); err != nil {
- return err
- }
- optStack.Pop()
- }
- optStack.Pop()
- }
- // opd
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
- opdStack.Push(token)
- }
- return nil
- }
- // parseReference parse reference and extract values by given reference
- // characters and default sheet name.
- func (f *File) parseReference(sheet, reference string) (result []string, matrix [][]string, err error) {
- reference = strings.Replace(reference, "$", "", -1)
- refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
- for _, ref := range strings.Split(reference, ":") {
- tokens := strings.Split(ref, "!")
- cr := cellRef{}
- if len(tokens) == 2 { // have a worksheet name
- cr.Sheet = tokens[0]
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
- return
- }
- if refs.Len() > 0 {
- e := refs.Back()
- cellRefs.PushBack(e.Value.(cellRef))
- refs.Remove(e)
- }
- refs.PushBack(cr)
- continue
- }
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
- return
- }
- e := refs.Back()
- if e == nil {
- cr.Sheet = sheet
- refs.PushBack(cr)
- continue
- }
- cellRanges.PushBack(cellRange{
- From: e.Value.(cellRef),
- To: cr,
- })
- refs.Remove(e)
- }
- if refs.Len() > 0 {
- e := refs.Back()
- cellRefs.PushBack(e.Value.(cellRef))
- refs.Remove(e)
- }
- result, matrix, err = f.rangeResolver(cellRefs, cellRanges)
- return
- }
- // rangeResolver extract value as string from given reference and range list.
- // This function will not ignore the empty cell. Note that the result of 3D
- // range references may be different from Excel in some cases, for example,
- // A1:A2:A2:B3 in Excel will include B1, but we wont.
- func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (result []string, matrix [][]string, err error) {
- filter := map[string]string{}
- // extract value from ranges
- for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRange)
- if cr.From.Sheet != cr.To.Sheet {
- err = errors.New(formulaErrorVALUE)
- }
- rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
- sortCoordinates(rng)
- matrix = [][]string{}
- for row := rng[1]; row <= rng[3]; row++ {
- var matrixRow = []string{}
- for col := rng[0]; col <= rng[2]; col++ {
- var cell, value string
- if cell, err = CoordinatesToCellName(col, row); err != nil {
- return
- }
- if value, err = f.GetCellValue(cr.From.Sheet, cell); err != nil {
- return
- }
- filter[cell] = value
- matrixRow = append(matrixRow, value)
- }
- matrix = append(matrix, matrixRow)
- }
- }
- // extract value from references
- for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRef)
- var cell string
- if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
- return
- }
- if filter[cell], err = f.GetCellValue(cr.Sheet, cell); err != nil {
- return
- }
- }
- for _, val := range filter {
- result = append(result, val)
- }
- return
- }
- // callFuncByName calls the no error or only error return function with
- // reflect by given receiver, name and parameters.
- func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
- function := reflect.ValueOf(receiver).MethodByName(name)
- if function.IsValid() {
- rt := function.Call(params)
- if len(rt) == 0 {
- return
- }
- if !rt[1].IsNil() {
- err = rt[1].Interface().(error)
- return
- }
- result = rt[0].Interface().(string)
- return
- }
- err = fmt.Errorf("not support %s function", name)
- return
- }
- // Math and Trigonometric functions
- // ABS function returns the absolute value of any supplied number. The syntax
- // of the function is:
- //
- // ABS(number)
- //
- func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ABS requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Abs(val))
- return
- }
- // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
- // number, and returns an angle, in radians, between 0 and π. The syntax of
- // the function is:
- //
- // ACOS(number)
- //
- func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ACOS requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Acos(val))
- return
- }
- // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
- // of the function is:
- //
- // ACOSH(number)
- //
- func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ACOSH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Acosh(val))
- return
- }
- // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
- // given number, and returns an angle, in radians, between 0 and π. The syntax
- // of the function is:
- //
- // ACOT(number)
- //
- func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ACOT requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
- return
- }
- // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
- // value. The syntax of the function is:
- //
- // ACOTH(number)
- //
- func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ACOTH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Atanh(1/val))
- return
- }
- // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
- // of the function is:
- //
- // ARABIC(text)
- //
- func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ARABIC requires 1 numeric argument")
- return
- }
- val, last, prefix := 0.0, 0.0, 1.0
- for _, char := range argsList.Front().Value.(formulaArg).Value {
- digit := 0.0
- switch char {
- case '-':
- prefix = -1
- continue
- case 'I':
- digit = 1
- case 'V':
- digit = 5
- case 'X':
- digit = 10
- case 'L':
- digit = 50
- case 'C':
- digit = 100
- case 'D':
- digit = 500
- case 'M':
- digit = 1000
- }
- val += digit
- switch {
- case last == digit && (last == 5 || last == 50 || last == 500):
- result = formulaErrorVALUE
- return
- case 2*last == digit:
- result = formulaErrorVALUE
- return
- }
- if last < digit {
- val -= 2 * last
- }
- last = digit
- }
- result = fmt.Sprintf("%g", prefix*val)
- return
- }
- // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
- // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
- // of the function is:
- //
- // ASIN(number)
- //
- func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ASIN requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Asin(val))
- return
- }
- // ASINH function calculates the inverse hyperbolic sine of a supplied number.
- // The syntax of the function is:
- //
- // ASINH(number)
- //
- func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ASINH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Asinh(val))
- return
- }
- // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
- // given number, and returns an angle, in radians, between -π/2 and +π/2. The
- // syntax of the function is:
- //
- // ATAN(number)
- //
- func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ATAN requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Atan(val))
- return
- }
- // ATANH function calculates the inverse hyperbolic tangent of a supplied
- // number. The syntax of the function is:
- //
- // ATANH(number)
- //
- func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ATANH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Atanh(val))
- return
- }
- // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
- // given set of x and y coordinates, and returns an angle, in radians, between
- // -π/2 and +π/2. The syntax of the function is:
- //
- // ATAN2(x_num,y_num)
- //
- func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("ATAN2 requires 2 numeric arguments")
- return
- }
- var x, y float64
- if x, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if y, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Atan2(x, y))
- return
- }
- // gcd returns the greatest common divisor of two supplied integers.
- func gcd(x, y float64) float64 {
- x, y = math.Trunc(x), math.Trunc(y)
- if x == 0 {
- return y
- }
- if y == 0 {
- return x
- }
- for x != y {
- if x > y {
- x = x - y
- } else {
- y = y - x
- }
- }
- return x
- }
- // BASE function converts a number into a supplied base (radix), and returns a
- // text representation of the calculated value. The syntax of the function is:
- //
- // BASE(number,radix,[min_length])
- //
- func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
- if argsList.Len() < 2 {
- err = errors.New("BASE requires at least 2 arguments")
- return
- }
- if argsList.Len() > 3 {
- err = errors.New("BASE allows at most 3 arguments")
- return
- }
- var number float64
- var radix, minLength int
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).Value); err != nil {
- return
- }
- if radix < 2 || radix > 36 {
- err = errors.New("radix must be an integer ≥ 2 and ≤ 36")
- return
- }
- if argsList.Len() > 2 {
- if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
- return
- }
- }
- result = strconv.FormatInt(int64(number), radix)
- if len(result) < minLength {
- result = strings.Repeat("0", minLength-len(result)) + result
- }
- result = strings.ToUpper(result)
- return
- }
- // CEILING function rounds a supplied number away from zero, to the nearest
- // multiple of a given number. The syntax of the function is:
- //
- // CEILING(number,significance)
- //
- func (fn *formulaFuncs) CEILING(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("CEILING requires at least 1 argument")
- return
- }
- if argsList.Len() > 2 {
- err = errors.New("CEILING allows at most 2 arguments")
- return
- }
- var number, significance float64 = 0, 1
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- }
- if significance < 0 && number > 0 {
- err = errors.New("negative sig to CEILING invalid")
- return
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Ceil(number))
- return
- }
- number, res := math.Modf(number / significance)
- if res > 0 {
- number++
- }
- result = fmt.Sprintf("%g", number*significance)
- return
- }
- // CEILINGMATH function rounds a supplied number up to a supplied multiple of
- // significance. The syntax of the function is:
- //
- // CEILING.MATH(number,[significance],[mode])
- //
- func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("CEILING.MATH requires at least 1 argument")
- return
- }
- if argsList.Len() > 3 {
- err = errors.New("CEILING.MATH allows at most 3 arguments")
- return
- }
- var number, significance, mode float64 = 0, 1, 1
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Ceil(number))
- return
- }
- if argsList.Len() > 2 {
- if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number > 0 {
- val++
- } else if mode < 0 {
- val--
- }
- }
- result = fmt.Sprintf("%g", val*significance)
- return
- }
- // CEILINGPRECISE function rounds a supplied number up (regardless of the
- // number's sign), to the nearest multiple of a given number. The syntax of
- // the function is:
- //
- // CEILING.PRECISE(number,[significance])
- //
- func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("CEILING.PRECISE requires at least 1 argument")
- return
- }
- if argsList.Len() > 2 {
- err = errors.New("CEILING.PRECISE allows at most 2 arguments")
- return
- }
- var number, significance float64 = 0, 1
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Ceil(number))
- return
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- significance = math.Abs(significance)
- if significance == 0 {
- result = "0"
- return
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number > 0 {
- val++
- }
- }
- result = fmt.Sprintf("%g", val*significance)
- return
- }
- // COMBIN function calculates the number of combinations (in any order) of a
- // given number objects from a set. The syntax of the function is:
- //
- // COMBIN(number,number_chosen)
- //
- func (fn *formulaFuncs) COMBIN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("COMBIN requires 2 argument")
- return
- }
- var number, chosen, val float64 = 0, 0, 1
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- number, chosen = math.Trunc(number), math.Trunc(chosen)
- if chosen > number {
- err = errors.New("COMBIN requires number >= number_chosen")
- return
- }
- if chosen == number || chosen == 0 {
- result = "1"
- return
- }
- for c := float64(1); c <= chosen; c++ {
- val *= (number + 1 - c) / c
- }
- result = fmt.Sprintf("%g", math.Ceil(val))
- return
- }
- // COMBINA function calculates the number of combinations, with repetitions,
- // of a given number objects from a set. The syntax of the function is:
- //
- // COMBINA(number,number_chosen)
- //
- func (fn *formulaFuncs) COMBINA(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("COMBINA requires 2 argument")
- return
- }
- var number, chosen float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- number, chosen = math.Trunc(number), math.Trunc(chosen)
- if number < chosen {
- err = errors.New("COMBINA requires number > number_chosen")
- return
- }
- if number == 0 {
- result = "0"
- return
- }
- args := list.New()
- args.PushBack(formulaArg{
- Value: fmt.Sprintf("%g", number+chosen-1),
- })
- args.PushBack(formulaArg{
- Value: fmt.Sprintf("%g", number-1),
- })
- return fn.COMBIN(args)
- }
- // COS function calculates the cosine of a given angle. The syntax of the
- // function is:
- //
- // COS(number)
- //
- func (fn *formulaFuncs) COS(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("COS requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Cos(val))
- return
- }
- // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
- // The syntax of the function is:
- //
- // COSH(number)
- //
- func (fn *formulaFuncs) COSH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("COSH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Cosh(val))
- return
- }
- // COT function calculates the cotangent of a given angle. The syntax of the
- // function is:
- //
- // COT(number)
- //
- func (fn *formulaFuncs) COT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("COT requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if val == 0 {
- err = errors.New(formulaErrorNAME)
- return
- }
- result = fmt.Sprintf("%g", math.Tan(val))
- return
- }
- // COTH function calculates the hyperbolic cotangent (coth) of a supplied
- // angle. The syntax of the function is:
- //
- // COTH(number)
- //
- func (fn *formulaFuncs) COTH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("COTH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if val == 0 {
- err = errors.New(formulaErrorNAME)
- return
- }
- result = fmt.Sprintf("%g", math.Tanh(val))
- return
- }
- // CSC function calculates the cosecant of a given angle. The syntax of the
- // function is:
- //
- // CSC(number)
- //
- func (fn *formulaFuncs) CSC(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("CSC requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if val == 0 {
- err = errors.New(formulaErrorNAME)
- return
- }
- result = fmt.Sprintf("%g", 1/math.Sin(val))
- return
- }
- // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
- // angle. The syntax of the function is:
- //
- // CSCH(number)
- //
- func (fn *formulaFuncs) CSCH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("CSCH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if val == 0 {
- err = errors.New(formulaErrorNAME)
- return
- }
- result = fmt.Sprintf("%g", 1/math.Sinh(val))
- return
- }
- // DECIMAL function converts a text representation of a number in a specified
- // base, into a decimal value. The syntax of the function is:
- //
- // DECIMAL(text,radix)
- //
- func (fn *formulaFuncs) DECIMAL(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("DECIMAL requires 2 numeric arguments")
- return
- }
- var text = argsList.Front().Value.(formulaArg).Value
- var radix int
- if radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
- return
- }
- if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
- text = text[2:]
- }
- val, err := strconv.ParseInt(text, radix, 64)
- if err != nil {
- err = errors.New(formulaErrorNUM)
- return
- }
- result = fmt.Sprintf("%g", float64(val))
- return
- }
- // DEGREES function converts radians into degrees. The syntax of the function
- // is:
- //
- // DEGREES(angle)
- //
- func (fn *formulaFuncs) DEGREES(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("DEGREES requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if val == 0 {
- err = errors.New(formulaErrorNAME)
- return
- }
- result = fmt.Sprintf("%g", 180.0/math.Pi*val)
- return
- }
- // EVEN function rounds a supplied number away from zero (i.e. rounds a
- // positive number up and a negative number down), to the next even number.
- // The syntax of the function is:
- //
- // EVEN(number)
- //
- func (fn *formulaFuncs) EVEN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("EVEN requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- sign := math.Signbit(number)
- m, frac := math.Modf(number / 2)
- val := m * 2
- if frac != 0 {
- if !sign {
- val += 2
- } else {
- val -= 2
- }
- }
- result = fmt.Sprintf("%g", val)
- return
- }
- // EXP function calculates the value of the mathematical constant e, raised to
- // the power of a given number. The syntax of the function is:
- //
- // EXP(number)
- //
- func (fn *formulaFuncs) EXP(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("EXP requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = strings.ToUpper(fmt.Sprintf("%g", math.Exp(number)))
- return
- }
- // fact returns the factorial of a supplied number.
- func fact(number float64) float64 {
- val := float64(1)
- for i := float64(2); i <= number; i++ {
- val *= i
- }
- return val
- }
- // FACT function returns the factorial of a supplied number. The syntax of the
- // function is:
- //
- // FACT(number)
- //
- func (fn *formulaFuncs) FACT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("FACT requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if number < 0 {
- err = errors.New(formulaErrorNUM)
- }
- result = strings.ToUpper(fmt.Sprintf("%g", fact(number)))
- return
- }
- // FACTDOUBLE function returns the double factorial of a supplied number. The
- // syntax of the function is:
- //
- // FACTDOUBLE(number)
- //
- func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("FACTDOUBLE requires 1 numeric argument")
- return
- }
- var number, val float64 = 0, 1
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if number < 0 {
- err = errors.New(formulaErrorNUM)
- }
- for i := math.Trunc(number); i > 1; i -= 2 {
- val *= i
- }
- result = strings.ToUpper(fmt.Sprintf("%g", val))
- return
- }
- // FLOOR function rounds a supplied number towards zero to the nearest
- // multiple of a specified significance. The syntax of the function is:
- //
- // FLOOR(number,significance)
- //
- func (fn *formulaFuncs) FLOOR(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("FLOOR requires 2 numeric arguments")
- return
- }
- var number, significance float64 = 0, 1
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if significance < 0 && number >= 0 {
- err = errors.New(formulaErrorNUM)
- }
- val := number
- val, res := math.Modf(val / significance)
- if res != 0 {
- if number < 0 && res < 0 {
- val--
- }
- }
- result = strings.ToUpper(fmt.Sprintf("%g", val*significance))
- return
- }
- // FLOORMATH function rounds a supplied number down to a supplied multiple of
- // significance. The syntax of the function is:
- //
- // FLOOR.MATH(number,[significance],[mode])
- //
- func (fn *formulaFuncs) FLOORMATH(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("FLOOR.MATH requires at least 1 argument")
- return
- }
- if argsList.Len() > 3 {
- err = errors.New("FLOOR.MATH allows at most 3 arguments")
- return
- }
- var number, significance, mode float64 = 0, 1, 1
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Floor(number))
- return
- }
- if argsList.Len() > 2 {
- if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 && number < 0 && mode > 0 {
- val--
- }
- result = fmt.Sprintf("%g", val*significance)
- return
- }
- // FLOORPRECISE function rounds a supplied number down to a supplied multiple
- // of significance. The syntax of the function is:
- //
- // FLOOR.PRECISE(number,[significance])
- //
- func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("FLOOR.PRECISE requires at least 1 argument")
- return
- }
- if argsList.Len() > 2 {
- err = errors.New("FLOOR.PRECISE allows at most 2 arguments")
- return
- }
- var number, significance float64 = 0, 1
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Floor(number))
- return
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- significance = math.Abs(significance)
- if significance == 0 {
- result = "0"
- return
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number < 0 {
- val--
- }
- }
- result = fmt.Sprintf("%g", val*significance)
- return
- }
- // GCD function returns the greatest common divisor of two or more supplied
- // integers. The syntax of the function is:
- //
- // GCD(number1,[number2],...)
- //
- func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("GCD requires at least 1 argument")
- return
- }
- var (
- val float64
- nums = []float64{}
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg).Value
- if token == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token, 64); err != nil {
- return
- }
- nums = append(nums, val)
- }
- if nums[0] < 0 {
- err = errors.New("GCD only accepts positive arguments")
- return
- }
- if len(nums) == 1 {
- result = fmt.Sprintf("%g", nums[0])
- return
- }
- cd := nums[0]
- for i := 1; i < len(nums); i++ {
- if nums[i] < 0 {
- err = errors.New("GCD only accepts positive arguments")
- return
- }
- cd = gcd(cd, nums[i])
- }
- result = fmt.Sprintf("%g", cd)
- return
- }
- // INT function truncates a supplied number down to the closest integer. The
- // syntax of the function is:
- //
- // INT(number)
- //
- func (fn *formulaFuncs) INT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("INT requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- val, frac := math.Modf(number)
- if frac < 0 {
- val--
- }
- result = fmt.Sprintf("%g", val)
- return
- }
- // ISOCEILING function rounds a supplied number up (regardless of the number's
- // sign), to the nearest multiple of a supplied significance. The syntax of
- // the function is:
- //
- // ISO.CEILING(number,[significance])
- //
- func (fn *formulaFuncs) ISOCEILING(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("ISO.CEILING requires at least 1 argument")
- return
- }
- if argsList.Len() > 2 {
- err = errors.New("ISO.CEILING allows at most 2 arguments")
- return
- }
- var number, significance float64 = 0, 1
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Ceil(number))
- return
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- significance = math.Abs(significance)
- if significance == 0 {
- result = "0"
- return
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number > 0 {
- val++
- }
- }
- result = fmt.Sprintf("%g", val*significance)
- return
- }
- // lcm returns the least common multiple of two supplied integers.
- func lcm(a, b float64) float64 {
- a = math.Trunc(a)
- b = math.Trunc(b)
- if a == 0 && b == 0 {
- return 0
- }
- return a * b / gcd(a, b)
- }
- // LCM function returns the least common multiple of two or more supplied
- // integers. The syntax of the function is:
- //
- // LCM(number1,[number2],...)
- //
- func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("LCM requires at least 1 argument")
- return
- }
- var (
- val float64
- nums = []float64{}
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg).Value
- if token == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token, 64); err != nil {
- return
- }
- nums = append(nums, val)
- }
- if nums[0] < 0 {
- err = errors.New("LCM only accepts positive arguments")
- return
- }
- if len(nums) == 1 {
- result = fmt.Sprintf("%g", nums[0])
- return
- }
- cm := nums[0]
- for i := 1; i < len(nums); i++ {
- if nums[i] < 0 {
- err = errors.New("LCM only accepts positive arguments")
- return
- }
- cm = lcm(cm, nums[i])
- }
- result = fmt.Sprintf("%g", cm)
- return
- }
- // LN function calculates the natural logarithm of a given number. The syntax
- // of the function is:
- //
- // LN(number)
- //
- func (fn *formulaFuncs) LN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("LN requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Log(number))
- return
- }
- // LOG function calculates the logarithm of a given number, to a supplied
- // base. The syntax of the function is:
- //
- // LOG(number,[base])
- //
- func (fn *formulaFuncs) LOG(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("LOG requires at least 1 argument")
- return
- }
- if argsList.Len() > 2 {
- err = errors.New("LOG allows at most 2 arguments")
- return
- }
- var number, base float64 = 0, 10
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if argsList.Len() > 1 {
- if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- }
- if number == 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- if base == 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- if base == 1 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", math.Log(number)/math.Log(base))
- return
- }
- // LOG10 function calculates the base 10 logarithm of a given number. The
- // syntax of the function is:
- //
- // LOG10(number)
- //
- func (fn *formulaFuncs) LOG10(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("LOG10 requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- result = fmt.Sprintf("%g", math.Log10(number))
- return
- }
- func minor(sqMtx [][]float64, idx int) [][]float64 {
- ret := [][]float64{}
- for i := range sqMtx {
- if i == 0 {
- continue
- }
- row := []float64{}
- for j := range sqMtx {
- if j == idx {
- continue
- }
- row = append(row, sqMtx[i][j])
- }
- ret = append(ret, row)
- }
- return ret
- }
- // det determinant of the 2x2 matrix.
- func det(sqMtx [][]float64) float64 {
- if len(sqMtx) == 2 {
- m00 := sqMtx[0][0]
- m01 := sqMtx[0][1]
- m10 := sqMtx[1][0]
- m11 := sqMtx[1][1]
- return m00*m11 - m10*m01
- }
- var res, sgn float64 = 0, 1
- for j := range sqMtx {
- res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
- sgn *= -1
- }
- return res
- }
- // MDETERM calculates the determinant of a square matrix. The
- // syntax of the function is:
- //
- // MDETERM(array)
- //
- func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error) {
- var num float64
- var rows int
- var numMtx = [][]float64{}
- var strMtx = [][]string{}
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- if len(arg.Value.(formulaArg).Matrix) == 0 {
- break
- }
- strMtx = append(strMtx, arg.Value.(formulaArg).Matrix)
- rows++
- }
- for _, row := range strMtx {
- if len(row) != rows {
- err = errors.New(formulaErrorVALUE)
- return
- }
- numRow := []float64{}
- for _, ele := range row {
- if num, err = strconv.ParseFloat(ele, 64); err != nil {
- return
- }
- numRow = append(numRow, num)
- }
- numMtx = append(numMtx, numRow)
- }
- result = fmt.Sprintf("%g", det(numMtx))
- return
- }
- // POWER function calculates a given number, raised to a supplied power.
- // The syntax of the function is:
- //
- // POWER(number,power)
- //
- func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("POWER requires 2 numeric arguments")
- return
- }
- var x, y float64
- if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if x == 0 && y == 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- if x == 0 && y < 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", math.Pow(x, y))
- return
- }
- // PRODUCT function returns the product (multiplication) of a supplied set of
- // numerical values. The syntax of the function is:
- //
- // PRODUCT(number1,[number2],...)
- //
- func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
- var val, product float64 = 0, 1
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- if token.Value == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
- return
- }
- product = product * val
- }
- result = fmt.Sprintf("%g", product)
- return
- }
- // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
- // number. I.e. if the number is positive, the Sign function returns +1, if
- // the number is negative, the function returns -1 and if the number is 0
- // (zero), the function returns 0. The syntax of the function is:
- //
- // SIGN(number)
- //
- func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("SIGN requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if val < 0 {
- result = "-1"
- return
- }
- if val > 0 {
- result = "1"
- return
- }
- result = "0"
- return
- }
- // SQRT function calculates the positive square root of a supplied number. The
- // syntax of the function is:
- //
- // SQRT(number)
- //
- func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("SQRT requires 1 numeric argument")
- return
- }
- var res float64
- var value = argsList.Front().Value.(formulaArg).Value
- if value == "" {
- result = "0"
- return
- }
- if res, err = strconv.ParseFloat(value, 64); err != nil {
- return
- }
- if res < 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- result = fmt.Sprintf("%g", math.Sqrt(res))
- return
- }
- // SUM function adds together a supplied set of numbers and returns the sum of
- // these values. The syntax of the function is:
- //
- // SUM(number1,[number2],...)
- //
- func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
- var val, sum float64
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- if token.Value == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
- return
- }
- sum += val
- }
- result = fmt.Sprintf("%g", sum)
- return
- }
- // QUOTIENT function returns the integer portion of a division between two
- // supplied numbers. The syntax of the function is:
- //
- // QUOTIENT(numerator,denominator)
- //
- func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("QUOTIENT requires 2 numeric arguments")
- return
- }
- var x, y float64
- if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
- return
- }
- if y == 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", math.Trunc(x/y))
- return
- }
|