123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668 |
- // Copyright 2011 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package fastprinter
- // An extFloat represents an extended floating-point number, with more
- // precision than a float64. It does not try to save bits: the
- // number represented by the structure is mant*(2^exp), with a negative
- // sign if neg is true.
- type extFloat struct {
- mant uint64
- exp int
- neg bool
- }
- // Powers of ten taken from double-conversion library.
- // http://code.google.com/p/double-conversion/
- const (
- firstPowerOfTen = -348
- stepPowerOfTen = 8
- )
- var smallPowersOfTen = [...]extFloat{
- {1 << 63, -63, false}, // 1
- {0xa << 60, -60, false}, // 1e1
- {0x64 << 57, -57, false}, // 1e2
- {0x3e8 << 54, -54, false}, // 1e3
- {0x2710 << 50, -50, false}, // 1e4
- {0x186a0 << 47, -47, false}, // 1e5
- {0xf4240 << 44, -44, false}, // 1e6
- {0x989680 << 40, -40, false}, // 1e7
- }
- var powersOfTen = [...]extFloat{
- {0xfa8fd5a0081c0288, -1220, false}, // 10^-348
- {0xbaaee17fa23ebf76, -1193, false}, // 10^-340
- {0x8b16fb203055ac76, -1166, false}, // 10^-332
- {0xcf42894a5dce35ea, -1140, false}, // 10^-324
- {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
- {0xe61acf033d1a45df, -1087, false}, // 10^-308
- {0xab70fe17c79ac6ca, -1060, false}, // 10^-300
- {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
- {0xbe5691ef416bd60c, -1007, false}, // 10^-284
- {0x8dd01fad907ffc3c, -980, false}, // 10^-276
- {0xd3515c2831559a83, -954, false}, // 10^-268
- {0x9d71ac8fada6c9b5, -927, false}, // 10^-260
- {0xea9c227723ee8bcb, -901, false}, // 10^-252
- {0xaecc49914078536d, -874, false}, // 10^-244
- {0x823c12795db6ce57, -847, false}, // 10^-236
- {0xc21094364dfb5637, -821, false}, // 10^-228
- {0x9096ea6f3848984f, -794, false}, // 10^-220
- {0xd77485cb25823ac7, -768, false}, // 10^-212
- {0xa086cfcd97bf97f4, -741, false}, // 10^-204
- {0xef340a98172aace5, -715, false}, // 10^-196
- {0xb23867fb2a35b28e, -688, false}, // 10^-188
- {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180
- {0xc5dd44271ad3cdba, -635, false}, // 10^-172
- {0x936b9fcebb25c996, -608, false}, // 10^-164
- {0xdbac6c247d62a584, -582, false}, // 10^-156
- {0xa3ab66580d5fdaf6, -555, false}, // 10^-148
- {0xf3e2f893dec3f126, -529, false}, // 10^-140
- {0xb5b5ada8aaff80b8, -502, false}, // 10^-132
- {0x87625f056c7c4a8b, -475, false}, // 10^-124
- {0xc9bcff6034c13053, -449, false}, // 10^-116
- {0x964e858c91ba2655, -422, false}, // 10^-108
- {0xdff9772470297ebd, -396, false}, // 10^-100
- {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92
- {0xf8a95fcf88747d94, -343, false}, // 10^-84
- {0xb94470938fa89bcf, -316, false}, // 10^-76
- {0x8a08f0f8bf0f156b, -289, false}, // 10^-68
- {0xcdb02555653131b6, -263, false}, // 10^-60
- {0x993fe2c6d07b7fac, -236, false}, // 10^-52
- {0xe45c10c42a2b3b06, -210, false}, // 10^-44
- {0xaa242499697392d3, -183, false}, // 10^-36
- {0xfd87b5f28300ca0e, -157, false}, // 10^-28
- {0xbce5086492111aeb, -130, false}, // 10^-20
- {0x8cbccc096f5088cc, -103, false}, // 10^-12
- {0xd1b71758e219652c, -77, false}, // 10^-4
- {0x9c40000000000000, -50, false}, // 10^4
- {0xe8d4a51000000000, -24, false}, // 10^12
- {0xad78ebc5ac620000, 3, false}, // 10^20
- {0x813f3978f8940984, 30, false}, // 10^28
- {0xc097ce7bc90715b3, 56, false}, // 10^36
- {0x8f7e32ce7bea5c70, 83, false}, // 10^44
- {0xd5d238a4abe98068, 109, false}, // 10^52
- {0x9f4f2726179a2245, 136, false}, // 10^60
- {0xed63a231d4c4fb27, 162, false}, // 10^68
- {0xb0de65388cc8ada8, 189, false}, // 10^76
- {0x83c7088e1aab65db, 216, false}, // 10^84
- {0xc45d1df942711d9a, 242, false}, // 10^92
- {0x924d692ca61be758, 269, false}, // 10^100
- {0xda01ee641a708dea, 295, false}, // 10^108
- {0xa26da3999aef774a, 322, false}, // 10^116
- {0xf209787bb47d6b85, 348, false}, // 10^124
- {0xb454e4a179dd1877, 375, false}, // 10^132
- {0x865b86925b9bc5c2, 402, false}, // 10^140
- {0xc83553c5c8965d3d, 428, false}, // 10^148
- {0x952ab45cfa97a0b3, 455, false}, // 10^156
- {0xde469fbd99a05fe3, 481, false}, // 10^164
- {0xa59bc234db398c25, 508, false}, // 10^172
- {0xf6c69a72a3989f5c, 534, false}, // 10^180
- {0xb7dcbf5354e9bece, 561, false}, // 10^188
- {0x88fcf317f22241e2, 588, false}, // 10^196
- {0xcc20ce9bd35c78a5, 614, false}, // 10^204
- {0x98165af37b2153df, 641, false}, // 10^212
- {0xe2a0b5dc971f303a, 667, false}, // 10^220
- {0xa8d9d1535ce3b396, 694, false}, // 10^228
- {0xfb9b7cd9a4a7443c, 720, false}, // 10^236
- {0xbb764c4ca7a44410, 747, false}, // 10^244
- {0x8bab8eefb6409c1a, 774, false}, // 10^252
- {0xd01fef10a657842c, 800, false}, // 10^260
- {0x9b10a4e5e9913129, 827, false}, // 10^268
- {0xe7109bfba19c0c9d, 853, false}, // 10^276
- {0xac2820d9623bf429, 880, false}, // 10^284
- {0x80444b5e7aa7cf85, 907, false}, // 10^292
- {0xbf21e44003acdd2d, 933, false}, // 10^300
- {0x8e679c2f5e44ff8f, 960, false}, // 10^308
- {0xd433179d9c8cb841, 986, false}, // 10^316
- {0x9e19db92b4e31ba9, 1013, false}, // 10^324
- {0xeb96bf6ebadf77d9, 1039, false}, // 10^332
- {0xaf87023b9bf0ee6b, 1066, false}, // 10^340
- }
- // floatBits returns the bits of the float64 that best approximates
- // the extFloat passed as receiver. Overflow is set to true if
- // the resulting float64 is ±Inf.
- func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) {
- f.Normalize()
- exp := f.exp + 63
- // Exponent too small.
- if exp < flt.bias+1 {
- n := flt.bias + 1 - exp
- f.mant >>= uint(n)
- exp += n
- }
- // Extract 1+flt.mantbits bits from the 64-bit mantissa.
- mant := f.mant >> (63 - flt.mantbits)
- if f.mant&(1<<(62-flt.mantbits)) != 0 {
- // Round up.
- mant += 1
- }
- // Rounding might have added a bit; shift down.
- if mant == 2<<flt.mantbits {
- mant >>= 1
- exp++
- }
- // Infinities.
- if exp-flt.bias >= 1<<flt.expbits-1 {
- // ±Inf
- mant = 0
- exp = 1<<flt.expbits - 1 + flt.bias
- overflow = true
- } else if mant&(1<<flt.mantbits) == 0 {
- // Denormalized?
- exp = flt.bias
- }
- // Assemble bits.
- bits = mant & (uint64(1)<<flt.mantbits - 1)
- bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
- if f.neg {
- bits |= 1 << (flt.mantbits + flt.expbits)
- }
- return
- }
- // AssignComputeBounds sets f to the floating point value
- // defined by mant, exp and precision given by flt. It returns
- // lower, upper such that any number in the closed interval
- // [lower, upper] is converted back to the same floating point number.
- func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
- f.mant = mant
- f.exp = exp - int(flt.mantbits)
- f.neg = neg
- if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
- // An exact integer
- f.mant >>= uint(-f.exp)
- f.exp = 0
- return *f, *f
- }
- expBiased := exp - flt.bias
- upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
- if mant != 1<<flt.mantbits || expBiased == 1 {
- lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
- } else {
- lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
- }
- return
- }
- // Normalize normalizes f so that the highest bit of the mantissa is
- // set, and returns the number by which the mantissa was left-shifted.
- func (f *extFloat) Normalize() (shift uint) {
- mant, exp := f.mant, f.exp
- if mant == 0 {
- return 0
- }
- if mant>>(64-32) == 0 {
- mant <<= 32
- exp -= 32
- }
- if mant>>(64-16) == 0 {
- mant <<= 16
- exp -= 16
- }
- if mant>>(64-8) == 0 {
- mant <<= 8
- exp -= 8
- }
- if mant>>(64-4) == 0 {
- mant <<= 4
- exp -= 4
- }
- if mant>>(64-2) == 0 {
- mant <<= 2
- exp -= 2
- }
- if mant>>(64-1) == 0 {
- mant <<= 1
- exp -= 1
- }
- shift = uint(f.exp - exp)
- f.mant, f.exp = mant, exp
- return
- }
- // Multiply sets f to the product f*g: the result is correctly rounded,
- // but not normalized.
- func (f *extFloat) Multiply(g extFloat) {
- fhi, flo := f.mant>>32, uint64(uint32(f.mant))
- ghi, glo := g.mant>>32, uint64(uint32(g.mant))
- // Cross products.
- cross1 := fhi * glo
- cross2 := flo * ghi
- // f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
- f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
- rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
- // Round up.
- rem += (1 << 31)
- f.mant += (rem >> 32)
- f.exp = f.exp + g.exp + 64
- }
- var uint64pow10 = [...]uint64{
- 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
- 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
- }
- // AssignDecimal sets f to an approximate value mantissa*10^exp. It
- // reports whether the value represented by f is guaranteed to be the
- // best approximation of d after being rounded to a float64 or
- // float32 depending on flt.
- func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) {
- const uint64digits = 19
- const errorscale = 8
- errors := 0 // An upper bound for error, computed in errorscale*ulp.
- if trunc {
- // the decimal number was truncated.
- errors += errorscale / 2
- }
- f.mant = mantissa
- f.exp = 0
- f.neg = neg
- // Multiply by powers of ten.
- i := (exp10 - firstPowerOfTen) / stepPowerOfTen
- if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
- return false
- }
- adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
- // We multiply by exp%step
- if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
- // We can multiply the mantissa exactly.
- f.mant *= uint64pow10[adjExp]
- f.Normalize()
- } else {
- f.Normalize()
- f.Multiply(smallPowersOfTen[adjExp])
- errors += errorscale / 2
- }
- // We multiply by 10 to the exp - exp%step.
- f.Multiply(powersOfTen[i])
- if errors > 0 {
- errors += 1
- }
- errors += errorscale / 2
- // Normalize
- shift := f.Normalize()
- errors <<= shift
- // Now f is a good approximation of the decimal.
- // Check whether the error is too large: that is, if the mantissa
- // is perturbated by the error, the resulting float64 will change.
- // The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
- //
- // In many cases the approximation will be good enough.
- denormalExp := flt.bias - 63
- var extrabits uint
- if f.exp <= denormalExp {
- // f.mant * 2^f.exp is smaller than 2^(flt.bias+1).
- extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
- } else {
- extrabits = uint(63 - flt.mantbits)
- }
- halfway := uint64(1) << (extrabits - 1)
- mant_extra := f.mant & (1<<extrabits - 1)
- // Do a signed comparison here! If the error estimate could make
- // the mantissa round differently for the conversion to double,
- // then we can't give a definite answer.
- if int64(halfway)-int64(errors) < int64(mant_extra) &&
- int64(mant_extra) < int64(halfway)+int64(errors) {
- return false
- }
- return true
- }
- // Frexp10 is an analogue of math.Frexp for decimal powers. It scales
- // f by an approximate power of ten 10^-exp, and returns exp10, so
- // that f*10^exp10 has the same value as the old f, up to an ulp,
- // as well as the index of 10^-exp in the powersOfTen table.
- func (f *extFloat) frexp10() (exp10, index int) {
- // The constants expMin and expMax constrain the final value of the
- // binary exponent of f. We want a small integral part in the result
- // because finding digits of an integer requires divisions, whereas
- // digits of the fractional part can be found by repeatedly multiplying
- // by 10.
- const expMin = -60
- const expMax = -32
- // Find power of ten such that x * 10^n has a binary exponent
- // between expMin and expMax.
- approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
- i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
- Loop:
- for {
- exp := f.exp + powersOfTen[i].exp + 64
- switch {
- case exp < expMin:
- i++
- case exp > expMax:
- i--
- default:
- break Loop
- }
- }
- // Apply the desired decimal shift on f. It will have exponent
- // in the desired range. This is multiplication by 10^-exp10.
- f.Multiply(powersOfTen[i])
- return -(firstPowerOfTen + i*stepPowerOfTen), i
- }
- // frexp10Many applies a common shift by a power of ten to a, b, c.
- func frexp10Many(a, b, c *extFloat) (exp10 int) {
- exp10, i := c.frexp10()
- a.Multiply(powersOfTen[i])
- b.Multiply(powersOfTen[i])
- return
- }
- // FixedDecimal stores in d the first n significant digits
- // of the decimal representation of f. It returns false
- // if it cannot be sure of the answer.
- func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
- if f.mant == 0 {
- d.nd = 0
- d.dp = 0
- d.neg = f.neg
- return true
- }
- if n == 0 {
- panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
- }
- // Multiply by an appropriate power of ten to have a reasonable
- // number to process.
- f.Normalize()
- exp10, _ := f.frexp10()
- shift := uint(-f.exp)
- integer := uint32(f.mant >> shift)
- fraction := f.mant - (uint64(integer) << shift)
- ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.
- // Write exactly n digits to d.
- needed := n // how many digits are left to write.
- integerDigits := 0 // the number of decimal digits of integer.
- pow10 := uint64(1) // the power of ten by which f was scaled.
- for i, pow := 0, uint64(1); i < 20; i++ {
- if pow > uint64(integer) {
- integerDigits = i
- break
- }
- pow *= 10
- }
- rest := integer
- if integerDigits > needed {
- // the integral part is already large, trim the last digits.
- pow10 = uint64pow10[integerDigits-needed]
- integer /= uint32(pow10)
- rest -= integer * uint32(pow10)
- } else {
- rest = 0
- }
- // Write the digits of integer: the digits of rest are omitted.
- var buf [32]byte
- pos := len(buf)
- for v := integer; v > 0; {
- v1 := v / 10
- v -= 10 * v1
- pos--
- buf[pos] = byte(v + '0')
- v = v1
- }
- for i := pos; i < len(buf); i++ {
- d.d[i-pos] = buf[i]
- }
- nd := len(buf) - pos
- d.nd = nd
- d.dp = integerDigits + exp10
- needed -= nd
- if needed > 0 {
- if rest != 0 || pow10 != 1 {
- panic("strconv: internal error, rest != 0 but needed > 0")
- }
- // Emit digits for the fractional part. Each time, 10*fraction
- // fits in a uint64 without overflow.
- for needed > 0 {
- fraction *= 10
- ε *= 10 // the uncertainty scales as we multiply by ten.
- if 2*ε > 1<<shift {
- // the error is so large it could modify which digit to write, abort.
- return false
- }
- digit := fraction >> shift
- d.d[nd] = byte(digit + '0')
- fraction -= digit << shift
- nd++
- needed--
- }
- d.nd = nd
- }
- // We have written a truncation of f (a numerator / 10^d.dp). The remaining part
- // can be interpreted as a small number (< 1) to be added to the last digit of the
- // numerator.
- //
- // If rest > 0, the amount is:
- // (rest<<shift | fraction) / (pow10 << shift)
- // fraction being known with a ±ε uncertainty.
- // The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
- //
- // If rest = 0, pow10 == 1 and the amount is
- // fraction / (1 << shift)
- // fraction being known with a ±ε uncertainty.
- //
- // We pass this information to the rounding routine for adjustment.
- ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
- if !ok {
- return false
- }
- // Trim trailing zeros.
- for i := d.nd - 1; i >= 0; i-- {
- if d.d[i] != '0' {
- d.nd = i + 1
- break
- }
- }
- return true
- }
- // adjustLastDigitFixed assumes d contains the representation of the integral part
- // of some number, whose fractional part is num / (den << shift). The numerator
- // num is only known up to an uncertainty of size ε, assumed to be less than
- // (den << shift)/2.
- //
- // It will increase the last digit by one to account for correct rounding, typically
- // when the fractional part is greater than 1/2, and will return false if ε is such
- // that no correct answer can be given.
- func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
- if num > den<<shift {
- panic("strconv: num > den<<shift in adjustLastDigitFixed")
- }
- if 2*ε > den<<shift {
- panic("strconv: ε > (den<<shift)/2")
- }
- if 2*(num+ε) < den<<shift {
- return true
- }
- if 2*(num-ε) > den<<shift {
- // increment d by 1.
- i := d.nd - 1
- for ; i >= 0; i-- {
- if d.d[i] == '9' {
- d.nd--
- } else {
- break
- }
- }
- if i < 0 {
- d.d[0] = '1'
- d.nd = 1
- d.dp++
- } else {
- d.d[i]++
- }
- return true
- }
- return false
- }
- // ShortestDecimal stores in d the shortest decimal representation of f
- // which belongs to the open interval (lower, upper), where f is supposed
- // to lie. It returns false whenever the result is unsure. The implementation
- // uses the Grisu3 algorithm.
- func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
- if f.mant == 0 {
- d.nd = 0
- d.dp = 0
- d.neg = f.neg
- return true
- }
- if f.exp == 0 && *lower == *f && *lower == *upper {
- // an exact integer.
- var buf [24]byte
- n := len(buf) - 1
- for v := f.mant; v > 0; {
- v1 := v / 10
- v -= 10 * v1
- buf[n] = byte(v + '0')
- n--
- v = v1
- }
- nd := len(buf) - n - 1
- for i := 0; i < nd; i++ {
- d.d[i] = buf[n+1+i]
- }
- d.nd, d.dp = nd, nd
- for d.nd > 0 && d.d[d.nd-1] == '0' {
- d.nd--
- }
- if d.nd == 0 {
- d.dp = 0
- }
- d.neg = f.neg
- return true
- }
- upper.Normalize()
- // Uniformize exponents.
- if f.exp > upper.exp {
- f.mant <<= uint(f.exp - upper.exp)
- f.exp = upper.exp
- }
- if lower.exp > upper.exp {
- lower.mant <<= uint(lower.exp - upper.exp)
- lower.exp = upper.exp
- }
- exp10 := frexp10Many(lower, f, upper)
- // Take a safety margin due to rounding in frexp10Many, but we lose precision.
- upper.mant++
- lower.mant--
- // The shortest representation of f is either rounded up or down, but
- // in any case, it is a truncation of upper.
- shift := uint(-upper.exp)
- integer := uint32(upper.mant >> shift)
- fraction := upper.mant - (uint64(integer) << shift)
- // How far we can go down from upper until the result is wrong.
- allowance := upper.mant - lower.mant
- // How far we should go to get a very precise result.
- targetDiff := upper.mant - f.mant
- // Count integral digits: there are at most 10.
- var integerDigits int
- for i, pow := 0, uint64(1); i < 20; i++ {
- if pow > uint64(integer) {
- integerDigits = i
- break
- }
- pow *= 10
- }
- for i := 0; i < integerDigits; i++ {
- pow := uint64pow10[integerDigits-i-1]
- digit := integer / uint32(pow)
- d.d[i] = byte(digit + '0')
- integer -= digit * uint32(pow)
- // evaluate whether we should stop.
- if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
- d.nd = i + 1
- d.dp = integerDigits + exp10
- d.neg = f.neg
- // Sometimes allowance is so large the last digit might need to be
- // decremented to get closer to f.
- return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
- }
- }
- d.nd = integerDigits
- d.dp = d.nd + exp10
- d.neg = f.neg
- // Compute digits of the fractional part. At each step fraction does not
- // overflow. The choice of minExp implies that fraction is less than 2^60.
- var digit int
- multiplier := uint64(1)
- for {
- fraction *= 10
- multiplier *= 10
- digit = int(fraction >> shift)
- d.d[d.nd] = byte(digit + '0')
- d.nd++
- fraction -= uint64(digit) << shift
- if fraction < allowance*multiplier {
- // We are in the admissible range. Note that if allowance is about to
- // overflow, that is, allowance > 2^64/10, the condition is automatically
- // true due to the limited range of fraction.
- return adjustLastDigit(d,
- fraction, targetDiff*multiplier, allowance*multiplier,
- 1<<shift, multiplier*2)
- }
- }
- }
- // adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
- // d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
- // It assumes that a decimal digit is worth ulpDecimal*ε, and that
- // all data is known with a error estimate of ulpBinary*ε.
- func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
- if ulpDecimal < 2*ulpBinary {
- // Approximation is too wide.
- return false
- }
- for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
- d.d[d.nd-1]--
- currentDiff += ulpDecimal
- }
- if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
- // we have two choices, and don't know what to do.
- return false
- }
- if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
- // we went too far
- return false
- }
- if d.nd == 1 && d.d[0] == '0' {
- // the number has actually reached zero.
- d.nd = 0
- d.dp = 0
- }
- return true
- }
|