Browse Source

1.update govender
2.add latest revision "github.com/CloudyKit/fastprinter"

xormplus 8 years ago
parent
commit
c972d01d0b

+ 21 - 0
vendor/github.com/CloudyKit/fastprinter/LICENSE

@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2017 CloudyKit
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.

+ 2 - 0
vendor/github.com/CloudyKit/fastprinter/README.md

@@ -0,0 +1,2 @@
+# fastprinter
+FastPrinter supports write values in io.Writer without allocation

+ 369 - 0
vendor/github.com/CloudyKit/fastprinter/decimal.go

@@ -0,0 +1,369 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Multiprecision decimal numbers.
+// For floating-point formatting only; not general purpose.
+// Only operations are assign and (binary) left/right shift.
+// Can do binary floating point in multiprecision decimal precisely
+// because 2 divides 10; cannot do decimal floating point
+// in multiprecision binary precisely.
+
+package fastprinter
+
+type decimal struct {
+	d     [800]byte // digits, big-endian representation
+	nd    int       // number of digits used
+	dp    int       // decimal point
+	neg   bool
+	trunc bool // discarded nonzero digits beyond d[:nd]
+}
+
+// trim trailing zeros from number.
+// (They are meaningless; the decimal point is tracked
+// independent of the number of digits.)
+func trim(a *decimal) {
+	for a.nd > 0 && a.d[a.nd-1] == '0' {
+		a.nd--
+	}
+	if a.nd == 0 {
+		a.dp = 0
+	}
+}
+
+// Assign v to a.
+func (a *decimal) Assign(v uint64) {
+	var buf [24]byte
+
+	// Write reversed decimal in buf.
+	n := 0
+	for v > 0 {
+		v1 := v / 10
+		v -= 10 * v1
+		buf[n] = byte(v + '0')
+		n++
+		v = v1
+	}
+
+	// Reverse again to produce forward decimal in a.d.
+	a.nd = 0
+	for n--; n >= 0; n-- {
+		a.d[a.nd] = buf[n]
+		a.nd++
+	}
+	a.dp = a.nd
+	trim(a)
+}
+
+// Maximum shift that we can do in one pass without overflow.
+// A uint has 32 or 64 bits, and we have to be able to accommodate 9<<k.
+const uintSize = 32 << (^uint(0) >> 63)
+const maxShift = uintSize - 4
+
+// Binary shift right (/ 2) by k bits.  k <= maxShift to avoid overflow.
+func rightShift(a *decimal, k uint) {
+	r := 0 // read pointer
+	w := 0 // write pointer
+
+	// Pick up enough leading digits to cover first shift.
+	var n uint
+	for ; n>>k == 0; r++ {
+		if r >= a.nd {
+			if n == 0 {
+				// a == 0; shouldn't get here, but handle anyway.
+				a.nd = 0
+				return
+			}
+			for n>>k == 0 {
+				n = n * 10
+				r++
+			}
+			break
+		}
+		c := uint(a.d[r])
+		n = n*10 + c - '0'
+	}
+	a.dp -= r - 1
+
+	// Pick up a digit, put down a digit.
+	for ; r < a.nd; r++ {
+		c := uint(a.d[r])
+		dig := n >> k
+		n -= dig << k
+		a.d[w] = byte(dig + '0')
+		w++
+		n = n*10 + c - '0'
+	}
+
+	// Put down extra digits.
+	for n > 0 {
+		dig := n >> k
+		n -= dig << k
+		if w < len(a.d) {
+			a.d[w] = byte(dig + '0')
+			w++
+		} else if dig > 0 {
+			a.trunc = true
+		}
+		n = n * 10
+	}
+
+	a.nd = w
+	trim(a)
+}
+
+// Cheat sheet for left shift: table indexed by shift count giving
+// number of new digits that will be introduced by that shift.
+//
+// For example, leftcheats[4] = {2, "625"}.  That means that
+// if we are shifting by 4 (multiplying by 16), it will add 2 digits
+// when the string prefix is "625" through "999", and one fewer digit
+// if the string prefix is "000" through "624".
+//
+// Credit for this trick goes to Ken.
+
+type leftCheat struct {
+	delta  int    // number of new digits
+	cutoff string // minus one digit if original < a.
+}
+
+var leftcheats = []leftCheat{
+	// Leading digits of 1/2^i = 5^i.
+	// 5^23 is not an exact 64-bit floating point number,
+	// so have to use bc for the math.
+	// Go up to 60 to be large enough for 32bit and 64bit platforms.
+	/*
+		seq 60 | sed 's/^/5^/' | bc |
+		awk 'BEGIN{ print "\t{ 0, \"\" }," }
+		{
+			log2 = log(2)/log(10)
+			printf("\t{ %d, \"%s\" },\t// * %d\n",
+				int(log2*NR+1), $0, 2**NR)
+		}'
+	*/
+	{0, ""},
+	{1, "5"},                                           // * 2
+	{1, "25"},                                          // * 4
+	{1, "125"},                                         // * 8
+	{2, "625"},                                         // * 16
+	{2, "3125"},                                        // * 32
+	{2, "15625"},                                       // * 64
+	{3, "78125"},                                       // * 128
+	{3, "390625"},                                      // * 256
+	{3, "1953125"},                                     // * 512
+	{4, "9765625"},                                     // * 1024
+	{4, "48828125"},                                    // * 2048
+	{4, "244140625"},                                   // * 4096
+	{4, "1220703125"},                                  // * 8192
+	{5, "6103515625"},                                  // * 16384
+	{5, "30517578125"},                                 // * 32768
+	{5, "152587890625"},                                // * 65536
+	{6, "762939453125"},                                // * 131072
+	{6, "3814697265625"},                               // * 262144
+	{6, "19073486328125"},                              // * 524288
+	{7, "95367431640625"},                              // * 1048576
+	{7, "476837158203125"},                             // * 2097152
+	{7, "2384185791015625"},                            // * 4194304
+	{7, "11920928955078125"},                           // * 8388608
+	{8, "59604644775390625"},                           // * 16777216
+	{8, "298023223876953125"},                          // * 33554432
+	{8, "1490116119384765625"},                         // * 67108864
+	{9, "7450580596923828125"},                         // * 134217728
+	{9, "37252902984619140625"},                        // * 268435456
+	{9, "186264514923095703125"},                       // * 536870912
+	{10, "931322574615478515625"},                      // * 1073741824
+	{10, "4656612873077392578125"},                     // * 2147483648
+	{10, "23283064365386962890625"},                    // * 4294967296
+	{10, "116415321826934814453125"},                   // * 8589934592
+	{11, "582076609134674072265625"},                   // * 17179869184
+	{11, "2910383045673370361328125"},                  // * 34359738368
+	{11, "14551915228366851806640625"},                 // * 68719476736
+	{12, "72759576141834259033203125"},                 // * 137438953472
+	{12, "363797880709171295166015625"},                // * 274877906944
+	{12, "1818989403545856475830078125"},               // * 549755813888
+	{13, "9094947017729282379150390625"},               // * 1099511627776
+	{13, "45474735088646411895751953125"},              // * 2199023255552
+	{13, "227373675443232059478759765625"},             // * 4398046511104
+	{13, "1136868377216160297393798828125"},            // * 8796093022208
+	{14, "5684341886080801486968994140625"},            // * 17592186044416
+	{14, "28421709430404007434844970703125"},           // * 35184372088832
+	{14, "142108547152020037174224853515625"},          // * 70368744177664
+	{15, "710542735760100185871124267578125"},          // * 140737488355328
+	{15, "3552713678800500929355621337890625"},         // * 281474976710656
+	{15, "17763568394002504646778106689453125"},        // * 562949953421312
+	{16, "88817841970012523233890533447265625"},        // * 1125899906842624
+	{16, "444089209850062616169452667236328125"},       // * 2251799813685248
+	{16, "2220446049250313080847263336181640625"},      // * 4503599627370496
+	{16, "11102230246251565404236316680908203125"},     // * 9007199254740992
+	{17, "55511151231257827021181583404541015625"},     // * 18014398509481984
+	{17, "277555756156289135105907917022705078125"},    // * 36028797018963968
+	{17, "1387778780781445675529539585113525390625"},   // * 72057594037927936
+	{18, "6938893903907228377647697925567626953125"},   // * 144115188075855872
+	{18, "34694469519536141888238489627838134765625"},  // * 288230376151711744
+	{18, "173472347597680709441192448139190673828125"}, // * 576460752303423488
+	{19, "867361737988403547205962240695953369140625"}, // * 1152921504606846976
+}
+
+// Is the leading prefix of b lexicographically less than s?
+func prefixIsLessThan(b []byte, s string) bool {
+	for i := 0; i < len(s); i++ {
+		if i >= len(b) {
+			return true
+		}
+		if b[i] != s[i] {
+			return b[i] < s[i]
+		}
+	}
+	return false
+}
+
+// Binary shift left (* 2) by k bits.  k <= maxShift to avoid overflow.
+func leftShift(a *decimal, k uint) {
+	delta := leftcheats[k].delta
+	if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) {
+		delta--
+	}
+
+	r := a.nd         // read index
+	w := a.nd + delta // write index
+
+	// Pick up a digit, put down a digit.
+	var n uint
+	for r--; r >= 0; r-- {
+		n += (uint(a.d[r]) - '0') << k
+		quo := n / 10
+		rem := n - 10*quo
+		w--
+		if w < len(a.d) {
+			a.d[w] = byte(rem + '0')
+		} else if rem != 0 {
+			a.trunc = true
+		}
+		n = quo
+	}
+
+	// Put down extra digits.
+	for n > 0 {
+		quo := n / 10
+		rem := n - 10*quo
+		w--
+		if w < len(a.d) {
+			a.d[w] = byte(rem + '0')
+		} else if rem != 0 {
+			a.trunc = true
+		}
+		n = quo
+	}
+
+	a.nd += delta
+	if a.nd >= len(a.d) {
+		a.nd = len(a.d)
+	}
+	a.dp += delta
+	trim(a)
+}
+
+// Binary shift left (k > 0) or right (k < 0).
+func (a *decimal) Shift(k int) {
+	switch {
+	case a.nd == 0:
+	// nothing to do: a == 0
+	case k > 0:
+		for k > maxShift {
+			leftShift(a, maxShift)
+			k -= maxShift
+		}
+		leftShift(a, uint(k))
+	case k < 0:
+		for k < -maxShift {
+			rightShift(a, maxShift)
+			k += maxShift
+		}
+		rightShift(a, uint(-k))
+	}
+}
+
+// If we chop a at nd digits, should we round up?
+func shouldRoundUp(a *decimal, nd int) bool {
+	if nd < 0 || nd >= a.nd {
+		return false
+	}
+	if a.d[nd] == '5' && nd+1 == a.nd {
+		// exactly halfway - round to even
+		// if we truncated, a little higher than what's recorded - always round up
+		if a.trunc {
+			return true
+		}
+		return nd > 0 && (a.d[nd-1]-'0')%2 != 0
+	}
+	// not halfway - digit tells all
+	return a.d[nd] >= '5'
+}
+
+// Round a to nd digits (or fewer).
+// If nd is zero, it means we're rounding
+// just to the left of the digits, as in
+// 0.09 -> 0.1.
+func (a *decimal) Round(nd int) {
+	if nd < 0 || nd >= a.nd {
+		return
+	}
+	if shouldRoundUp(a, nd) {
+		a.RoundUp(nd)
+	} else {
+		a.RoundDown(nd)
+	}
+}
+
+// Round a down to nd digits (or fewer).
+func (a *decimal) RoundDown(nd int) {
+	if nd < 0 || nd >= a.nd {
+		return
+	}
+	a.nd = nd
+	trim(a)
+}
+
+// Round a up to nd digits (or fewer).
+func (a *decimal) RoundUp(nd int) {
+	if nd < 0 || nd >= a.nd {
+		return
+	}
+
+	// round up
+	for i := nd - 1; i >= 0; i-- {
+		c := a.d[i]
+		if c < '9' {
+			// can stop after this digit
+			a.d[i]++
+			a.nd = i + 1
+			return
+		}
+	}
+
+	// Number is all 9s.
+	// Change to single 1 with adjusted decimal point.
+	a.d[0] = '1'
+	a.nd = 1
+	a.dp++
+}
+
+// Extract integer part, rounded appropriately.
+// No guarantees about overflow.
+func (a *decimal) RoundedInteger() uint64 {
+	if a.dp > 20 {
+		return 0xFFFFFFFFFFFFFFFF
+	}
+	var i int
+	n := uint64(0)
+	for i = 0; i < a.dp && i < a.nd; i++ {
+		n = n*10 + uint64(a.d[i]-'0')
+	}
+	for ; i < a.dp; i++ {
+		n *= 10
+	}
+	if shouldRoundUp(a, a.dp) {
+		n++
+	}
+	return n
+}

+ 668 - 0
vendor/github.com/CloudyKit/fastprinter/extfloat.go

@@ -0,0 +1,668 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package fastprinter
+
+// An extFloat represents an extended floating-point number, with more
+// precision than a float64. It does not try to save bits: the
+// number represented by the structure is mant*(2^exp), with a negative
+// sign if neg is true.
+type extFloat struct {
+	mant uint64
+	exp  int
+	neg  bool
+}
+
+// Powers of ten taken from double-conversion library.
+// http://code.google.com/p/double-conversion/
+const (
+	firstPowerOfTen = -348
+	stepPowerOfTen  = 8
+)
+
+var smallPowersOfTen = [...]extFloat{
+	{1 << 63, -63, false},        // 1
+	{0xa << 60, -60, false},      // 1e1
+	{0x64 << 57, -57, false},     // 1e2
+	{0x3e8 << 54, -54, false},    // 1e3
+	{0x2710 << 50, -50, false},   // 1e4
+	{0x186a0 << 47, -47, false},  // 1e5
+	{0xf4240 << 44, -44, false},  // 1e6
+	{0x989680 << 40, -40, false}, // 1e7
+}
+
+var powersOfTen = [...]extFloat{
+	{0xfa8fd5a0081c0288, -1220, false}, // 10^-348
+	{0xbaaee17fa23ebf76, -1193, false}, // 10^-340
+	{0x8b16fb203055ac76, -1166, false}, // 10^-332
+	{0xcf42894a5dce35ea, -1140, false}, // 10^-324
+	{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
+	{0xe61acf033d1a45df, -1087, false}, // 10^-308
+	{0xab70fe17c79ac6ca, -1060, false}, // 10^-300
+	{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
+	{0xbe5691ef416bd60c, -1007, false}, // 10^-284
+	{0x8dd01fad907ffc3c, -980, false},  // 10^-276
+	{0xd3515c2831559a83, -954, false},  // 10^-268
+	{0x9d71ac8fada6c9b5, -927, false},  // 10^-260
+	{0xea9c227723ee8bcb, -901, false},  // 10^-252
+	{0xaecc49914078536d, -874, false},  // 10^-244
+	{0x823c12795db6ce57, -847, false},  // 10^-236
+	{0xc21094364dfb5637, -821, false},  // 10^-228
+	{0x9096ea6f3848984f, -794, false},  // 10^-220
+	{0xd77485cb25823ac7, -768, false},  // 10^-212
+	{0xa086cfcd97bf97f4, -741, false},  // 10^-204
+	{0xef340a98172aace5, -715, false},  // 10^-196
+	{0xb23867fb2a35b28e, -688, false},  // 10^-188
+	{0x84c8d4dfd2c63f3b, -661, false},  // 10^-180
+	{0xc5dd44271ad3cdba, -635, false},  // 10^-172
+	{0x936b9fcebb25c996, -608, false},  // 10^-164
+	{0xdbac6c247d62a584, -582, false},  // 10^-156
+	{0xa3ab66580d5fdaf6, -555, false},  // 10^-148
+	{0xf3e2f893dec3f126, -529, false},  // 10^-140
+	{0xb5b5ada8aaff80b8, -502, false},  // 10^-132
+	{0x87625f056c7c4a8b, -475, false},  // 10^-124
+	{0xc9bcff6034c13053, -449, false},  // 10^-116
+	{0x964e858c91ba2655, -422, false},  // 10^-108
+	{0xdff9772470297ebd, -396, false},  // 10^-100
+	{0xa6dfbd9fb8e5b88f, -369, false},  // 10^-92
+	{0xf8a95fcf88747d94, -343, false},  // 10^-84
+	{0xb94470938fa89bcf, -316, false},  // 10^-76
+	{0x8a08f0f8bf0f156b, -289, false},  // 10^-68
+	{0xcdb02555653131b6, -263, false},  // 10^-60
+	{0x993fe2c6d07b7fac, -236, false},  // 10^-52
+	{0xe45c10c42a2b3b06, -210, false},  // 10^-44
+	{0xaa242499697392d3, -183, false},  // 10^-36
+	{0xfd87b5f28300ca0e, -157, false},  // 10^-28
+	{0xbce5086492111aeb, -130, false},  // 10^-20
+	{0x8cbccc096f5088cc, -103, false},  // 10^-12
+	{0xd1b71758e219652c, -77, false},   // 10^-4
+	{0x9c40000000000000, -50, false},   // 10^4
+	{0xe8d4a51000000000, -24, false},   // 10^12
+	{0xad78ebc5ac620000, 3, false},     // 10^20
+	{0x813f3978f8940984, 30, false},    // 10^28
+	{0xc097ce7bc90715b3, 56, false},    // 10^36
+	{0x8f7e32ce7bea5c70, 83, false},    // 10^44
+	{0xd5d238a4abe98068, 109, false},   // 10^52
+	{0x9f4f2726179a2245, 136, false},   // 10^60
+	{0xed63a231d4c4fb27, 162, false},   // 10^68
+	{0xb0de65388cc8ada8, 189, false},   // 10^76
+	{0x83c7088e1aab65db, 216, false},   // 10^84
+	{0xc45d1df942711d9a, 242, false},   // 10^92
+	{0x924d692ca61be758, 269, false},   // 10^100
+	{0xda01ee641a708dea, 295, false},   // 10^108
+	{0xa26da3999aef774a, 322, false},   // 10^116
+	{0xf209787bb47d6b85, 348, false},   // 10^124
+	{0xb454e4a179dd1877, 375, false},   // 10^132
+	{0x865b86925b9bc5c2, 402, false},   // 10^140
+	{0xc83553c5c8965d3d, 428, false},   // 10^148
+	{0x952ab45cfa97a0b3, 455, false},   // 10^156
+	{0xde469fbd99a05fe3, 481, false},   // 10^164
+	{0xa59bc234db398c25, 508, false},   // 10^172
+	{0xf6c69a72a3989f5c, 534, false},   // 10^180
+	{0xb7dcbf5354e9bece, 561, false},   // 10^188
+	{0x88fcf317f22241e2, 588, false},   // 10^196
+	{0xcc20ce9bd35c78a5, 614, false},   // 10^204
+	{0x98165af37b2153df, 641, false},   // 10^212
+	{0xe2a0b5dc971f303a, 667, false},   // 10^220
+	{0xa8d9d1535ce3b396, 694, false},   // 10^228
+	{0xfb9b7cd9a4a7443c, 720, false},   // 10^236
+	{0xbb764c4ca7a44410, 747, false},   // 10^244
+	{0x8bab8eefb6409c1a, 774, false},   // 10^252
+	{0xd01fef10a657842c, 800, false},   // 10^260
+	{0x9b10a4e5e9913129, 827, false},   // 10^268
+	{0xe7109bfba19c0c9d, 853, false},   // 10^276
+	{0xac2820d9623bf429, 880, false},   // 10^284
+	{0x80444b5e7aa7cf85, 907, false},   // 10^292
+	{0xbf21e44003acdd2d, 933, false},   // 10^300
+	{0x8e679c2f5e44ff8f, 960, false},   // 10^308
+	{0xd433179d9c8cb841, 986, false},   // 10^316
+	{0x9e19db92b4e31ba9, 1013, false},  // 10^324
+	{0xeb96bf6ebadf77d9, 1039, false},  // 10^332
+	{0xaf87023b9bf0ee6b, 1066, false},  // 10^340
+}
+
+// floatBits returns the bits of the float64 that best approximates
+// the extFloat passed as receiver. Overflow is set to true if
+// the resulting float64 is ±Inf.
+func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) {
+	f.Normalize()
+
+	exp := f.exp + 63
+
+	// Exponent too small.
+	if exp < flt.bias+1 {
+		n := flt.bias + 1 - exp
+		f.mant >>= uint(n)
+		exp += n
+	}
+
+	// Extract 1+flt.mantbits bits from the 64-bit mantissa.
+	mant := f.mant >> (63 - flt.mantbits)
+	if f.mant&(1<<(62-flt.mantbits)) != 0 {
+		// Round up.
+		mant += 1
+	}
+
+	// Rounding might have added a bit; shift down.
+	if mant == 2<<flt.mantbits {
+		mant >>= 1
+		exp++
+	}
+
+	// Infinities.
+	if exp-flt.bias >= 1<<flt.expbits-1 {
+		// ±Inf
+		mant = 0
+		exp = 1<<flt.expbits - 1 + flt.bias
+		overflow = true
+	} else if mant&(1<<flt.mantbits) == 0 {
+		// Denormalized?
+		exp = flt.bias
+	}
+	// Assemble bits.
+	bits = mant & (uint64(1)<<flt.mantbits - 1)
+	bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
+	if f.neg {
+		bits |= 1 << (flt.mantbits + flt.expbits)
+	}
+	return
+}
+
+// AssignComputeBounds sets f to the floating point value
+// defined by mant, exp and precision given by flt. It returns
+// lower, upper such that any number in the closed interval
+// [lower, upper] is converted back to the same floating point number.
+func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
+	f.mant = mant
+	f.exp = exp - int(flt.mantbits)
+	f.neg = neg
+	if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
+		// An exact integer
+		f.mant >>= uint(-f.exp)
+		f.exp = 0
+		return *f, *f
+	}
+	expBiased := exp - flt.bias
+
+	upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
+	if mant != 1<<flt.mantbits || expBiased == 1 {
+		lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
+	} else {
+		lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
+	}
+	return
+}
+
+// Normalize normalizes f so that the highest bit of the mantissa is
+// set, and returns the number by which the mantissa was left-shifted.
+func (f *extFloat) Normalize() (shift uint) {
+	mant, exp := f.mant, f.exp
+	if mant == 0 {
+		return 0
+	}
+	if mant>>(64-32) == 0 {
+		mant <<= 32
+		exp -= 32
+	}
+	if mant>>(64-16) == 0 {
+		mant <<= 16
+		exp -= 16
+	}
+	if mant>>(64-8) == 0 {
+		mant <<= 8
+		exp -= 8
+	}
+	if mant>>(64-4) == 0 {
+		mant <<= 4
+		exp -= 4
+	}
+	if mant>>(64-2) == 0 {
+		mant <<= 2
+		exp -= 2
+	}
+	if mant>>(64-1) == 0 {
+		mant <<= 1
+		exp -= 1
+	}
+	shift = uint(f.exp - exp)
+	f.mant, f.exp = mant, exp
+	return
+}
+
+// Multiply sets f to the product f*g: the result is correctly rounded,
+// but not normalized.
+func (f *extFloat) Multiply(g extFloat) {
+	fhi, flo := f.mant>>32, uint64(uint32(f.mant))
+	ghi, glo := g.mant>>32, uint64(uint32(g.mant))
+
+	// Cross products.
+	cross1 := fhi * glo
+	cross2 := flo * ghi
+
+	// f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
+	f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
+	rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
+	// Round up.
+	rem += (1 << 31)
+
+	f.mant += (rem >> 32)
+	f.exp = f.exp + g.exp + 64
+}
+
+var uint64pow10 = [...]uint64{
+	1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+	1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+}
+
+// AssignDecimal sets f to an approximate value mantissa*10^exp. It
+// reports whether the value represented by f is guaranteed to be the
+// best approximation of d after being rounded to a float64 or
+// float32 depending on flt.
+func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) {
+	const uint64digits = 19
+	const errorscale = 8
+	errors := 0 // An upper bound for error, computed in errorscale*ulp.
+	if trunc {
+		// the decimal number was truncated.
+		errors += errorscale / 2
+	}
+
+	f.mant = mantissa
+	f.exp = 0
+	f.neg = neg
+
+	// Multiply by powers of ten.
+	i := (exp10 - firstPowerOfTen) / stepPowerOfTen
+	if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
+		return false
+	}
+	adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
+
+	// We multiply by exp%step
+	if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
+		// We can multiply the mantissa exactly.
+		f.mant *= uint64pow10[adjExp]
+		f.Normalize()
+	} else {
+		f.Normalize()
+		f.Multiply(smallPowersOfTen[adjExp])
+		errors += errorscale / 2
+	}
+
+	// We multiply by 10 to the exp - exp%step.
+	f.Multiply(powersOfTen[i])
+	if errors > 0 {
+		errors += 1
+	}
+	errors += errorscale / 2
+
+	// Normalize
+	shift := f.Normalize()
+	errors <<= shift
+
+	// Now f is a good approximation of the decimal.
+	// Check whether the error is too large: that is, if the mantissa
+	// is perturbated by the error, the resulting float64 will change.
+	// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
+	//
+	// In many cases the approximation will be good enough.
+	denormalExp := flt.bias - 63
+	var extrabits uint
+	if f.exp <= denormalExp {
+		// f.mant * 2^f.exp is smaller than 2^(flt.bias+1).
+		extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
+	} else {
+		extrabits = uint(63 - flt.mantbits)
+	}
+
+	halfway := uint64(1) << (extrabits - 1)
+	mant_extra := f.mant & (1<<extrabits - 1)
+
+	// Do a signed comparison here! If the error estimate could make
+	// the mantissa round differently for the conversion to double,
+	// then we can't give a definite answer.
+	if int64(halfway)-int64(errors) < int64(mant_extra) &&
+		int64(mant_extra) < int64(halfway)+int64(errors) {
+		return false
+	}
+	return true
+}
+
+// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
+// f by an approximate power of ten 10^-exp, and returns exp10, so
+// that f*10^exp10 has the same value as the old f, up to an ulp,
+// as well as the index of 10^-exp in the powersOfTen table.
+func (f *extFloat) frexp10() (exp10, index int) {
+	// The constants expMin and expMax constrain the final value of the
+	// binary exponent of f. We want a small integral part in the result
+	// because finding digits of an integer requires divisions, whereas
+	// digits of the fractional part can be found by repeatedly multiplying
+	// by 10.
+	const expMin = -60
+	const expMax = -32
+	// Find power of ten such that x * 10^n has a binary exponent
+	// between expMin and expMax.
+	approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
+	i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
+Loop:
+	for {
+		exp := f.exp + powersOfTen[i].exp + 64
+		switch {
+		case exp < expMin:
+			i++
+		case exp > expMax:
+			i--
+		default:
+			break Loop
+		}
+	}
+	// Apply the desired decimal shift on f. It will have exponent
+	// in the desired range. This is multiplication by 10^-exp10.
+	f.Multiply(powersOfTen[i])
+
+	return -(firstPowerOfTen + i*stepPowerOfTen), i
+}
+
+// frexp10Many applies a common shift by a power of ten to a, b, c.
+func frexp10Many(a, b, c *extFloat) (exp10 int) {
+	exp10, i := c.frexp10()
+	a.Multiply(powersOfTen[i])
+	b.Multiply(powersOfTen[i])
+	return
+}
+
+// FixedDecimal stores in d the first n significant digits
+// of the decimal representation of f. It returns false
+// if it cannot be sure of the answer.
+func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
+	if f.mant == 0 {
+		d.nd = 0
+		d.dp = 0
+		d.neg = f.neg
+		return true
+	}
+	if n == 0 {
+		panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
+	}
+	// Multiply by an appropriate power of ten to have a reasonable
+	// number to process.
+	f.Normalize()
+	exp10, _ := f.frexp10()
+
+	shift := uint(-f.exp)
+	integer := uint32(f.mant >> shift)
+	fraction := f.mant - (uint64(integer) << shift)
+	ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.
+
+	// Write exactly n digits to d.
+	needed := n        // how many digits are left to write.
+	integerDigits := 0 // the number of decimal digits of integer.
+	pow10 := uint64(1) // the power of ten by which f was scaled.
+	for i, pow := 0, uint64(1); i < 20; i++ {
+		if pow > uint64(integer) {
+			integerDigits = i
+			break
+		}
+		pow *= 10
+	}
+	rest := integer
+	if integerDigits > needed {
+		// the integral part is already large, trim the last digits.
+		pow10 = uint64pow10[integerDigits-needed]
+		integer /= uint32(pow10)
+		rest -= integer * uint32(pow10)
+	} else {
+		rest = 0
+	}
+
+	// Write the digits of integer: the digits of rest are omitted.
+	var buf [32]byte
+	pos := len(buf)
+	for v := integer; v > 0; {
+		v1 := v / 10
+		v -= 10 * v1
+		pos--
+		buf[pos] = byte(v + '0')
+		v = v1
+	}
+	for i := pos; i < len(buf); i++ {
+		d.d[i-pos] = buf[i]
+	}
+	nd := len(buf) - pos
+	d.nd = nd
+	d.dp = integerDigits + exp10
+	needed -= nd
+
+	if needed > 0 {
+		if rest != 0 || pow10 != 1 {
+			panic("strconv: internal error, rest != 0 but needed > 0")
+		}
+		// Emit digits for the fractional part. Each time, 10*fraction
+		// fits in a uint64 without overflow.
+		for needed > 0 {
+			fraction *= 10
+			ε *= 10 // the uncertainty scales as we multiply by ten.
+			if 2*ε > 1<<shift {
+				// the error is so large it could modify which digit to write, abort.
+				return false
+			}
+			digit := fraction >> shift
+			d.d[nd] = byte(digit + '0')
+			fraction -= digit << shift
+			nd++
+			needed--
+		}
+		d.nd = nd
+	}
+
+	// We have written a truncation of f (a numerator / 10^d.dp). The remaining part
+	// can be interpreted as a small number (< 1) to be added to the last digit of the
+	// numerator.
+	//
+	// If rest > 0, the amount is:
+	//    (rest<<shift | fraction) / (pow10 << shift)
+	//    fraction being known with a ±ε uncertainty.
+	//    The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
+	//
+	// If rest = 0, pow10 == 1 and the amount is
+	//    fraction / (1 << shift)
+	//    fraction being known with a ±ε uncertainty.
+	//
+	// We pass this information to the rounding routine for adjustment.
+
+	ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
+	if !ok {
+		return false
+	}
+	// Trim trailing zeros.
+	for i := d.nd - 1; i >= 0; i-- {
+		if d.d[i] != '0' {
+			d.nd = i + 1
+			break
+		}
+	}
+	return true
+}
+
+// adjustLastDigitFixed assumes d contains the representation of the integral part
+// of some number, whose fractional part is num / (den << shift). The numerator
+// num is only known up to an uncertainty of size ε, assumed to be less than
+// (den << shift)/2.
+//
+// It will increase the last digit by one to account for correct rounding, typically
+// when the fractional part is greater than 1/2, and will return false if ε is such
+// that no correct answer can be given.
+func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
+	if num > den<<shift {
+		panic("strconv: num > den<<shift in adjustLastDigitFixed")
+	}
+	if 2*ε > den<<shift {
+		panic("strconv: ε > (den<<shift)/2")
+	}
+	if 2*(num+ε) < den<<shift {
+		return true
+	}
+	if 2*(num-ε) > den<<shift {
+		// increment d by 1.
+		i := d.nd - 1
+		for ; i >= 0; i-- {
+			if d.d[i] == '9' {
+				d.nd--
+			} else {
+				break
+			}
+		}
+		if i < 0 {
+			d.d[0] = '1'
+			d.nd = 1
+			d.dp++
+		} else {
+			d.d[i]++
+		}
+		return true
+	}
+	return false
+}
+
+// ShortestDecimal stores in d the shortest decimal representation of f
+// which belongs to the open interval (lower, upper), where f is supposed
+// to lie. It returns false whenever the result is unsure. The implementation
+// uses the Grisu3 algorithm.
+func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
+	if f.mant == 0 {
+		d.nd = 0
+		d.dp = 0
+		d.neg = f.neg
+		return true
+	}
+	if f.exp == 0 && *lower == *f && *lower == *upper {
+		// an exact integer.
+		var buf [24]byte
+		n := len(buf) - 1
+		for v := f.mant; v > 0; {
+			v1 := v / 10
+			v -= 10 * v1
+			buf[n] = byte(v + '0')
+			n--
+			v = v1
+		}
+		nd := len(buf) - n - 1
+		for i := 0; i < nd; i++ {
+			d.d[i] = buf[n+1+i]
+		}
+		d.nd, d.dp = nd, nd
+		for d.nd > 0 && d.d[d.nd-1] == '0' {
+			d.nd--
+		}
+		if d.nd == 0 {
+			d.dp = 0
+		}
+		d.neg = f.neg
+		return true
+	}
+	upper.Normalize()
+	// Uniformize exponents.
+	if f.exp > upper.exp {
+		f.mant <<= uint(f.exp - upper.exp)
+		f.exp = upper.exp
+	}
+	if lower.exp > upper.exp {
+		lower.mant <<= uint(lower.exp - upper.exp)
+		lower.exp = upper.exp
+	}
+
+	exp10 := frexp10Many(lower, f, upper)
+	// Take a safety margin due to rounding in frexp10Many, but we lose precision.
+	upper.mant++
+	lower.mant--
+
+	// The shortest representation of f is either rounded up or down, but
+	// in any case, it is a truncation of upper.
+	shift := uint(-upper.exp)
+	integer := uint32(upper.mant >> shift)
+	fraction := upper.mant - (uint64(integer) << shift)
+
+	// How far we can go down from upper until the result is wrong.
+	allowance := upper.mant - lower.mant
+	// How far we should go to get a very precise result.
+	targetDiff := upper.mant - f.mant
+
+	// Count integral digits: there are at most 10.
+	var integerDigits int
+	for i, pow := 0, uint64(1); i < 20; i++ {
+		if pow > uint64(integer) {
+			integerDigits = i
+			break
+		}
+		pow *= 10
+	}
+	for i := 0; i < integerDigits; i++ {
+		pow := uint64pow10[integerDigits-i-1]
+		digit := integer / uint32(pow)
+		d.d[i] = byte(digit + '0')
+		integer -= digit * uint32(pow)
+		// evaluate whether we should stop.
+		if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
+			d.nd = i + 1
+			d.dp = integerDigits + exp10
+			d.neg = f.neg
+			// Sometimes allowance is so large the last digit might need to be
+			// decremented to get closer to f.
+			return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
+		}
+	}
+	d.nd = integerDigits
+	d.dp = d.nd + exp10
+	d.neg = f.neg
+
+	// Compute digits of the fractional part. At each step fraction does not
+	// overflow. The choice of minExp implies that fraction is less than 2^60.
+	var digit int
+	multiplier := uint64(1)
+	for {
+		fraction *= 10
+		multiplier *= 10
+		digit = int(fraction >> shift)
+		d.d[d.nd] = byte(digit + '0')
+		d.nd++
+		fraction -= uint64(digit) << shift
+		if fraction < allowance*multiplier {
+			// We are in the admissible range. Note that if allowance is about to
+			// overflow, that is, allowance > 2^64/10, the condition is automatically
+			// true due to the limited range of fraction.
+			return adjustLastDigit(d,
+				fraction, targetDiff*multiplier, allowance*multiplier,
+				1<<shift, multiplier*2)
+		}
+	}
+}
+
+// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
+// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
+// It assumes that a decimal digit is worth ulpDecimal*ε, and that
+// all data is known with a error estimate of ulpBinary*ε.
+func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
+	if ulpDecimal < 2*ulpBinary {
+		// Approximation is too wide.
+		return false
+	}
+	for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
+		d.d[d.nd-1]--
+		currentDiff += ulpDecimal
+	}
+	if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
+		// we have two choices, and don't know what to do.
+		return false
+	}
+	if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
+		// we went too far
+		return false
+	}
+	if d.nd == 1 && d.d[0] == '0' {
+		// the number has actually reached zero.
+		d.nd = 0
+		d.dp = 0
+	}
+	return true
+}

+ 278 - 0
vendor/github.com/CloudyKit/fastprinter/float.go

@@ -0,0 +1,278 @@
+// MIT License
+//
+// Copyright (c) 2017 José Santos <henrique_1609@me.com>
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+package fastprinter
+
+import (
+	"io"
+	"math"
+)
+
+type floatInfo struct {
+	mantbits uint
+	expbits  uint
+	bias     int
+}
+
+var (
+	float64info      = floatInfo{52, 11, -1023}
+	floatNaN         = []byte("Nan")
+	floatNinf        = []byte("-Inf")
+	floatPinf        = []byte("+Inf")
+	pool_floatBuffer = newByteSliceBufferPool(800)
+)
+
+func PrintFloat(w io.Writer, f float64) (int, error) {
+	return PrintFloatPrecision(w, f, -1)
+}
+
+func PrintFloatPrecision(dst io.Writer, val float64, prec int) (int, error) {
+	var bits uint64
+	var flt *floatInfo
+
+	bits = math.Float64bits(val)
+	flt = &float64info
+
+	neg := bits>>(flt.expbits+flt.mantbits) != 0
+	exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
+	mant := bits & (uint64(1)<<flt.mantbits - 1)
+
+	switch exp {
+	case 1<<flt.expbits - 1:
+		switch {
+		case mant != 0:
+			return dst.Write(floatNaN)
+		case neg:
+			return dst.Write(floatNinf)
+		default:
+			return dst.Write(floatPinf)
+		}
+	case 0:
+		// denormalized
+		exp++
+	default:
+		// add implicit top bit
+		mant |= uint64(1) << flt.mantbits
+	}
+
+	exp += flt.bias
+	var digs decimalSlice
+	ok := false
+
+	// Negative precision means "only as much as needed to be exact."
+	shortest := prec < 0
+	if shortest {
+		// Try Grisu3 algorithm.
+		f := new(extFloat)
+		lower, upper := f.AssignComputeBounds(mant, exp, neg, flt)
+		var buf [32]byte
+		digs.d = buf[:]
+		ok = f.ShortestDecimal(&digs, &lower, &upper)
+		if !ok {
+			return bigFtoa(dst, prec, neg, mant, exp, flt)
+		}
+		// Precision for shortest representation mode.
+		prec = max(digs.nd-digs.dp, 0)
+	}
+	if !ok {
+		return bigFtoa(dst, prec, neg, mant, exp, flt)
+	}
+	return fmtF(dst, neg, digs, prec)
+}
+
+// bigFtoa uses multiprecision computations to format a float.
+func bigFtoa(dst io.Writer, prec int, neg bool, mant uint64, exp int, flt *floatInfo) (int, error) {
+	d := new(decimal)
+	d.Assign(mant)
+	d.Shift(exp - int(flt.mantbits))
+	var digs decimalSlice
+	shortest := prec < 0
+	if shortest {
+		roundShortest(d, mant, exp, flt)
+		digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
+		prec = max(digs.nd-digs.dp, 0)
+	} else {
+		d.Round(d.dp + prec)
+		digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
+	}
+	return fmtF(dst, neg, digs, prec)
+}
+
+// roundShortest rounds d (= mant * 2^exp) to the shortest number of digits
+// that will let the original floating point value be precisely reconstructed.
+func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
+	// If mantissa is zero, the number is zero; stop now.
+	if mant == 0 {
+		d.nd = 0
+		return
+	}
+
+	// Compute upper and lower such that any decimal number
+	// between upper and lower (possibly inclusive)
+	// will round to the original floating point number.
+
+	// We may see at once that the number is already shortest.
+	//
+	// Suppose d is not denormal, so that 2^exp <= d < 10^dp.
+	// The closest shorter number is at least 10^(dp-nd) away.
+	// The lower/upper bounds computed below are at distance
+	// at most 2^(exp-mantbits).
+	//
+	// So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits),
+	// or equivalently log2(10)*(dp-nd) > exp-mantbits.
+	// It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32).
+	minexp := flt.bias + 1 // minimum possible exponent
+	if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) {
+		// The number is already shortest.
+		return
+	}
+
+	// d = mant << (exp - mantbits)
+	// Next highest floating point number is mant+1 << exp-mantbits.
+	// Our upper bound is halfway between, mant*2+1 << exp-mantbits-1.
+	upper := new(decimal)
+	upper.Assign(mant*2 + 1)
+	upper.Shift(exp - int(flt.mantbits) - 1)
+
+	// d = mant << (exp - mantbits)
+	// Next lowest floating point number is mant-1 << exp-mantbits,
+	// unless mant-1 drops the significant bit and exp is not the minimum exp,
+	// in which case the next lowest is mant*2-1 << exp-mantbits-1.
+	// Either way, call it mantlo << explo-mantbits.
+	// Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1.
+	var mantlo uint64
+	var explo int
+	if mant > 1<<flt.mantbits || exp == minexp {
+		mantlo = mant - 1
+		explo = exp
+	} else {
+		mantlo = mant*2 - 1
+		explo = exp - 1
+	}
+	lower := new(decimal)
+	lower.Assign(mantlo*2 + 1)
+	lower.Shift(explo - int(flt.mantbits) - 1)
+
+	// The upper and lower bounds are possible outputs only if
+	// the original mantissa is even, so that IEEE round-to-even
+	// would round to the original mantissa and not the neighbors.
+	inclusive := mant%2 == 0
+
+	// Now we can figure out the minimum number of digits required.
+	// Walk along until d has distinguished itself from upper and lower.
+	for i := 0; i < d.nd; i++ {
+		l := byte('0') // lower digit
+		if i < lower.nd {
+			l = lower.d[i]
+		}
+		m := d.d[i]    // middle digit
+		u := byte('0') // upper digit
+		if i < upper.nd {
+			u = upper.d[i]
+		}
+
+		// Okay to round down (truncate) if lower has a different digit
+		// or if lower is inclusive and is exactly the result of rounding
+		// down (i.e., and we have reached the final digit of lower).
+		okdown := l != m || inclusive && i+1 == lower.nd
+
+		// Okay to round up if upper has a different digit and either upper
+		// is inclusive or upper is bigger than the result of rounding up.
+		okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd)
+
+		// If it's okay to do either, then round to the nearest one.
+		// If it's okay to do only one, do it.
+		switch {
+		case okdown && okup:
+			d.Round(i + 1)
+			return
+		case okdown:
+			d.RoundDown(i + 1)
+			return
+		case okup:
+			d.RoundUp(i + 1)
+			return
+		}
+	}
+}
+
+type decimalSlice struct {
+	d      []byte
+	nd, dp int
+	neg    bool
+}
+
+// %f: -ddddddd.ddddd
+func fmtF(dst io.Writer, neg bool, d decimalSlice, prec int) (n int, err error) {
+	a := pool_floatBuffer.Get().(*byteSliceBuffer)
+	i := 0
+
+	// sign
+	if neg {
+		a.bytes[i] = '-'
+		i++
+	}
+	// integer, padded with zeros as needed.
+	if d.dp > 0 {
+		m := min(d.nd, d.dp)
+		copy(a.bytes[i:], d.d[:m])
+		i += m
+		for ; m < d.dp; m++ {
+			a.bytes[i] = '0'
+			i++
+		}
+	} else {
+		a.bytes[i] = '0'
+		i++
+	}
+
+	// fraction
+	if prec > 0 {
+		a.bytes[i] = '.'
+		i++
+		for j := 0; j < prec; j++ {
+			ch := byte('0')
+			if j := d.dp + j; 0 <= j && j < d.nd {
+				ch = d.d[j]
+			}
+			a.bytes[i] = ch
+			i++
+		}
+	}
+	n, err = dst.Write(a.bytes[0:i])
+	pool_floatBuffer.Put(a)
+	return
+}
+
+func min(a, b int) int {
+	if a < b {
+		return a
+	}
+	return b
+}
+
+func max(a, b int) int {
+	if a > b {
+		return a
+	}
+	return b
+}

+ 203 - 0
vendor/github.com/CloudyKit/fastprinter/printers.go

@@ -0,0 +1,203 @@
+// MIT License
+//
+// Copyright (c) 2017 José Santos <henrique_1609@me.com>
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+package fastprinter
+
+import (
+	"fmt"
+	"io"
+	"reflect"
+	"sync"
+)
+
+const (
+	stringBufferSize  = 4096
+	integerBufferSize = 20
+)
+
+var (
+	_trueBytes  = ([]byte)("true")
+	_falseBytes = ([]byte)("false")
+
+	pool_integerBuffer = newByteSliceBufferPool(integerBufferSize)
+	pool_stringBuffer  = newByteSliceBufferPool(stringBufferSize)
+
+	errorType       = reflect.TypeOf((*error)(nil)).Elem()
+	fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
+)
+
+type byteSliceBuffer struct {
+	bytes []byte
+}
+
+func newByteSliceBufferPool(size int) sync.Pool {
+	return sync.Pool{
+		New: func() interface{} {
+			return &byteSliceBuffer{make([]byte, size, size)}
+		},
+	}
+}
+
+func Print(w io.Writer, i interface{}) (int, error) {
+	return PrintValue(w, reflect.ValueOf(i))
+}
+
+func PrintPtr(w io.Writer, i interface{}) (int, error) {
+	return PrintValue(w, reflect.ValueOf(i).Elem())
+}
+
+func PrintBool(w io.Writer, b bool) (int, error) {
+	if b {
+		return w.Write(_trueBytes)
+	}
+	return w.Write(_falseBytes)
+}
+
+func PrintString(ww io.Writer, st string) (c int, err error) {
+	if st == "" {
+		return 0, nil
+	}
+
+	numI := len(st) / stringBufferSize
+	nextBucket := 0
+	written := 0
+
+	a := pool_stringBuffer.Get().(*byteSliceBuffer)
+	for i := 0; i < numI; i++ {
+		copy(a.bytes[:], st[nextBucket:nextBucket+stringBufferSize])
+		nextBucket += stringBufferSize
+		written, err = ww.Write(a.bytes[:])
+		c += written
+		if err != nil {
+			return
+		}
+	}
+
+	smallBucket := len(st) % stringBufferSize
+	if smallBucket > 0 {
+		copy(a.bytes[:], st[nextBucket:])
+		written, err = ww.Write(a.bytes[:smallBucket])
+		c += written
+	}
+	pool_stringBuffer.Put(a)
+	return
+}
+
+func PrintUint(w io.Writer, i uint64) (int, error) {
+	return formatBits(w, i, false)
+}
+
+func PrintInt(w io.Writer, i int64) (int, error) {
+	return formatBits(w, uint64(i), i < 0)
+}
+
+// formatBits computes the string representation of u in the given base.
+// If neg is set, u is treated as negative int64 value.
+// Extracted from std package strconv
+func formatBits(dst io.Writer, u uint64, neg bool) (int, error) {
+
+	var a = pool_integerBuffer.Get().(*byteSliceBuffer)
+
+	i := integerBufferSize
+
+	if neg {
+		u = -u
+	}
+
+	// common case: use constants for / because
+	// the compiler can optimize it into a multiply+shift
+
+	if ^uintptr(0)>>32 == 0 {
+		for u > uint64(^uintptr(0)) {
+			q := u / 1e9
+			us := uintptr(u - q*1e9) // us % 1e9 fits into a uintptr
+			for j := 9; j > 0; j-- {
+				i--
+				qs := us / 10
+				a.bytes[i] = byte(us - qs*10 + '0')
+				us = qs
+			}
+			u = q
+		}
+	}
+
+	// u guaranteed to fit into a uintptr
+	us := uintptr(u)
+	for us >= 10 {
+		i--
+		q := us / 10
+		a.bytes[i] = byte(us - q*10 + '0')
+		us = q
+	}
+	// u < 10
+	i--
+	a.bytes[i] = byte(us + '0')
+
+	// add sign, if any
+	if neg {
+		i--
+		a.bytes[i] = '-'
+	}
+	counter, err := dst.Write(a.bytes[i:])
+	pool_integerBuffer.Put(a)
+	return counter, err
+}
+
+// PrintValue prints a reflect.Value
+func PrintValue(w io.Writer, v reflect.Value) (int, error) {
+	t := v.Type()
+	k := t.Kind()
+
+	if t.Implements(fmtStringerType) {
+		return PrintString(w, v.Interface().(fmt.Stringer).String())
+	}
+
+	if t.Implements(errorType) {
+		return PrintString(w, v.Interface().(error).Error())
+	}
+
+	if k == reflect.String {
+		return PrintString(w, v.String())
+	}
+
+	if k >= reflect.Int && k <= reflect.Int64 {
+		return PrintInt(w, v.Int())
+	}
+
+	if k >= reflect.Uint && k <= reflect.Uint64 {
+		return PrintUint(w, v.Uint())
+	}
+
+	if k == reflect.Float64 || k == reflect.Float64 {
+		return PrintFloat(w, v.Float())
+	}
+
+	if k == reflect.Bool {
+		return PrintBool(w, v.Bool())
+	}
+
+	if k == reflect.Slice && t.Elem().Kind() == reflect.Uint8 {
+		return w.Write(v.Bytes())
+	}
+
+	return fmt.Fprint(w, v.Interface())
+}

+ 6 - 0
vendor/vendor.json

@@ -8,6 +8,12 @@
 			"revision": "54457d8e98c60cb91f18947facfa991ce3ea2ba3",
 			"revisionTime": "2016-05-30T17:42:08Z"
 		},
+		{
+			"checksumSHA1": "DUlvp47EJfeG59Xx462SJ9MA7u0=",
+			"path": "github.com/CloudyKit/fastprinter",
+			"revision": "74b38d55f37af5d6c05ca11147d616b613a3420e",
+			"revisionTime": "2017-01-27T03:56:50Z"
+		},
 		{
 			"checksumSHA1": "SwujWL+oEHm5IKf0owxCTtNzFGQ=",
 			"path": "github.com/CloudyKit/jet",