encode.go 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "runtime"
  11. "sort"
  12. "strconv"
  13. "time"
  14. )
  15. // defEncByteBufSize is the default size of []byte used
  16. // for bufio buffer or []byte (when nil passed)
  17. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  18. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  19. /*
  20. // encWriter abstracts writing to a byte array or to an io.Writer.
  21. //
  22. //
  23. // Deprecated: Use encWriterSwitch instead.
  24. type encWriter interface {
  25. writeb([]byte)
  26. writestr(string)
  27. writen1(byte)
  28. writen2(byte, byte)
  29. end()
  30. }
  31. */
  32. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  33. type encDriver interface {
  34. EncodeNil()
  35. EncodeInt(i int64)
  36. EncodeUint(i uint64)
  37. EncodeBool(b bool)
  38. EncodeFloat32(f float32)
  39. EncodeFloat64(f float64)
  40. // encodeExtPreamble(xtag byte, length int)
  41. EncodeRawExt(re *RawExt, e *Encoder)
  42. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  43. // Deprecated: try to use EncodeStringEnc instead
  44. EncodeString(c charEncoding, v string)
  45. // c cannot be cRAW
  46. EncodeStringEnc(c charEncoding, v string)
  47. // EncodeSymbol(v string)
  48. // Deprecated: try to use EncodeStringBytesRaw instead
  49. EncodeStringBytes(c charEncoding, v []byte)
  50. EncodeStringBytesRaw(v []byte)
  51. EncodeTime(time.Time)
  52. //encBignum(f *big.Int)
  53. //encStringRunes(c charEncoding, v []rune)
  54. WriteArrayStart(length int)
  55. WriteArrayElem()
  56. WriteArrayEnd()
  57. WriteMapStart(length int)
  58. WriteMapElemKey()
  59. WriteMapElemValue()
  60. WriteMapEnd()
  61. reset()
  62. atEndOfEncode()
  63. }
  64. type encDriverAsis interface {
  65. EncodeAsis(v []byte)
  66. }
  67. type encodeError struct {
  68. codecError
  69. }
  70. func (e encodeError) Error() string {
  71. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  72. }
  73. type encDriverNoopContainerWriter struct{}
  74. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  75. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  76. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  77. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  78. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  79. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  80. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  81. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  82. type encDriverTrackContainerWriter struct {
  83. c containerState
  84. }
  85. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  86. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  87. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  88. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  89. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  90. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  91. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  92. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  93. // type ioEncWriterWriter interface {
  94. // WriteByte(c byte) error
  95. // WriteString(s string) (n int, err error)
  96. // Write(p []byte) (n int, err error)
  97. // }
  98. // EncodeOptions captures configuration options during encode.
  99. type EncodeOptions struct {
  100. // WriterBufferSize is the size of the buffer used when writing.
  101. //
  102. // if > 0, we use a smart buffer internally for performance purposes.
  103. WriterBufferSize int
  104. // ChanRecvTimeout is the timeout used when selecting from a chan.
  105. //
  106. // Configuring this controls how we receive from a chan during the encoding process.
  107. // - If ==0, we only consume the elements currently available in the chan.
  108. // - if <0, we consume until the chan is closed.
  109. // - If >0, we consume until this timeout.
  110. ChanRecvTimeout time.Duration
  111. // StructToArray specifies to encode a struct as an array, and not as a map
  112. StructToArray bool
  113. // Canonical representation means that encoding a value will always result in the same
  114. // sequence of bytes.
  115. //
  116. // This only affects maps, as the iteration order for maps is random.
  117. //
  118. // The implementation MAY use the natural sort order for the map keys if possible:
  119. //
  120. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  121. // then the map keys are first sorted in natural order and then written
  122. // with corresponding map values to the strema.
  123. // - If there is no natural sort order, then the map keys will first be
  124. // encoded into []byte, and then sorted,
  125. // before writing the sorted keys and the corresponding map values to the stream.
  126. //
  127. Canonical bool
  128. // CheckCircularRef controls whether we check for circular references
  129. // and error fast during an encode.
  130. //
  131. // If enabled, an error is received if a pointer to a struct
  132. // references itself either directly or through one of its fields (iteratively).
  133. //
  134. // This is opt-in, as there may be a performance hit to checking circular references.
  135. CheckCircularRef bool
  136. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  137. // when checking if a value is empty.
  138. //
  139. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  140. RecursiveEmptyCheck bool
  141. // Raw controls whether we encode Raw values.
  142. // This is a "dangerous" option and must be explicitly set.
  143. // If set, we blindly encode Raw values as-is, without checking
  144. // if they are a correct representation of a value in that format.
  145. // If unset, we error out.
  146. Raw bool
  147. // // AsSymbols defines what should be encoded as symbols.
  148. // //
  149. // // Encoding as symbols can reduce the encoded size significantly.
  150. // //
  151. // // However, during decoding, each string to be encoded as a symbol must
  152. // // be checked to see if it has been seen before. Consequently, encoding time
  153. // // will increase if using symbols, because string comparisons has a clear cost.
  154. // //
  155. // // Sample values:
  156. // // AsSymbolNone
  157. // // AsSymbolAll
  158. // // AsSymbolMapStringKeys
  159. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  160. // AsSymbols AsSymbolFlag
  161. }
  162. // ---------------------------------------------
  163. /*
  164. type ioEncStringWriter interface {
  165. WriteString(s string) (n int, err error)
  166. }
  167. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  168. type ioEncWriter struct {
  169. w io.Writer
  170. ww io.Writer
  171. bw io.ByteWriter
  172. sw ioEncStringWriter
  173. fw ioFlusher
  174. b [8]byte
  175. }
  176. func (z *ioEncWriter) reset(w io.Writer) {
  177. z.w = w
  178. var ok bool
  179. if z.bw, ok = w.(io.ByteWriter); !ok {
  180. z.bw = z
  181. }
  182. if z.sw, ok = w.(ioEncStringWriter); !ok {
  183. z.sw = z
  184. }
  185. z.fw, _ = w.(ioFlusher)
  186. z.ww = w
  187. }
  188. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  189. z.b[0] = b
  190. _, err = z.w.Write(z.b[:1])
  191. return
  192. }
  193. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  194. return z.w.Write(bytesView(s))
  195. }
  196. func (z *ioEncWriter) writeb(bs []byte) {
  197. if _, err := z.ww.Write(bs); err != nil {
  198. panic(err)
  199. }
  200. }
  201. func (z *ioEncWriter) writestr(s string) {
  202. if _, err := z.sw.WriteString(s); err != nil {
  203. panic(err)
  204. }
  205. }
  206. func (z *ioEncWriter) writen1(b byte) {
  207. if err := z.bw.WriteByte(b); err != nil {
  208. panic(err)
  209. }
  210. }
  211. func (z *ioEncWriter) writen2(b1, b2 byte) {
  212. var err error
  213. if err = z.bw.WriteByte(b1); err == nil {
  214. if err = z.bw.WriteByte(b2); err == nil {
  215. return
  216. }
  217. }
  218. panic(err)
  219. }
  220. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  221. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  222. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  223. // panic(err)
  224. // }
  225. // }
  226. //go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
  227. func (z *ioEncWriter) end() {
  228. if z.fw != nil {
  229. if err := z.fw.Flush(); err != nil {
  230. panic(err)
  231. }
  232. }
  233. }
  234. */
  235. // ---------------------------------------------
  236. // bufioEncWriter
  237. type bufioEncWriter struct {
  238. buf []byte
  239. w io.Writer
  240. n int
  241. bytesBufPooler
  242. _ [3]uint64 // padding
  243. // a int
  244. // b [4]byte
  245. // err
  246. }
  247. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  248. z.w = w
  249. z.n = 0
  250. if bufsize <= 0 {
  251. bufsize = defEncByteBufSize
  252. }
  253. if cap(z.buf) >= bufsize {
  254. z.buf = z.buf[:cap(z.buf)]
  255. } else {
  256. z.bytesBufPooler.end() // potentially return old one to pool
  257. z.buf = z.bytesBufPooler.get(bufsize)
  258. // z.buf = make([]byte, bufsize)
  259. }
  260. }
  261. //go:noinline - flush only called intermittently
  262. func (z *bufioEncWriter) flush() {
  263. n, err := z.w.Write(z.buf[:z.n])
  264. z.n -= n
  265. if z.n > 0 && err == nil {
  266. err = io.ErrShortWrite
  267. }
  268. if err != nil {
  269. if n > 0 && z.n > 0 {
  270. copy(z.buf, z.buf[n:z.n+n])
  271. }
  272. panic(err)
  273. }
  274. }
  275. func (z *bufioEncWriter) writeb(s []byte) {
  276. LOOP:
  277. a := len(z.buf) - z.n
  278. if len(s) > a {
  279. z.n += copy(z.buf[z.n:], s[:a])
  280. s = s[a:]
  281. z.flush()
  282. goto LOOP
  283. }
  284. z.n += copy(z.buf[z.n:], s)
  285. }
  286. func (z *bufioEncWriter) writestr(s string) {
  287. // z.writeb(bytesView(s)) // inlined below
  288. LOOP:
  289. a := len(z.buf) - z.n
  290. if len(s) > a {
  291. z.n += copy(z.buf[z.n:], s[:a])
  292. s = s[a:]
  293. z.flush()
  294. goto LOOP
  295. }
  296. z.n += copy(z.buf[z.n:], s)
  297. }
  298. func (z *bufioEncWriter) writen1(b1 byte) {
  299. if 1 > len(z.buf)-z.n {
  300. z.flush()
  301. }
  302. z.buf[z.n] = b1
  303. z.n++
  304. }
  305. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  306. if 2 > len(z.buf)-z.n {
  307. z.flush()
  308. }
  309. z.buf[z.n+1] = b2
  310. z.buf[z.n] = b1
  311. z.n += 2
  312. }
  313. func (z *bufioEncWriter) end() {
  314. if z.n > 0 {
  315. z.flush()
  316. }
  317. }
  318. // ---------------------------------------------
  319. // bytesEncAppender implements encWriter and can write to an byte slice.
  320. type bytesEncAppender struct {
  321. b []byte
  322. out *[]byte
  323. }
  324. func (z *bytesEncAppender) writeb(s []byte) {
  325. z.b = append(z.b, s...)
  326. }
  327. func (z *bytesEncAppender) writestr(s string) {
  328. z.b = append(z.b, s...)
  329. }
  330. func (z *bytesEncAppender) writen1(b1 byte) {
  331. z.b = append(z.b, b1)
  332. }
  333. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  334. z.b = append(z.b, b1, b2)
  335. }
  336. func (z *bytesEncAppender) end() {
  337. *(z.out) = z.b
  338. }
  339. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  340. z.b = in[:0]
  341. z.out = out
  342. }
  343. // ---------------------------------------------
  344. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  345. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  346. }
  347. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  348. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  349. }
  350. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  351. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  352. }
  353. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  354. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  355. e.marshalRaw(bs, fnerr)
  356. }
  357. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  358. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  359. e.marshalUtf8(bs, fnerr)
  360. }
  361. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  362. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  363. e.marshalAsis(bs, fnerr)
  364. }
  365. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  366. e.rawBytes(rv2i(rv).(Raw))
  367. }
  368. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  369. e.e.EncodeNil()
  370. }
  371. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  372. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  373. }
  374. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  375. ti := f.ti
  376. ee := e.e
  377. // array may be non-addressable, so we have to manage with care
  378. // (don't call rv.Bytes, rv.Slice, etc).
  379. // E.g. type struct S{B [2]byte};
  380. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  381. if f.seq != seqTypeArray {
  382. if rv.IsNil() {
  383. ee.EncodeNil()
  384. return
  385. }
  386. // If in this method, then there was no extension function defined.
  387. // So it's okay to treat as []byte.
  388. if ti.rtid == uint8SliceTypId {
  389. ee.EncodeStringBytesRaw(rv.Bytes())
  390. return
  391. }
  392. }
  393. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  394. e.errorf("send-only channel cannot be encoded")
  395. }
  396. elemsep := e.esep
  397. rtelem := ti.elem
  398. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  399. var l int
  400. // if a slice, array or chan of bytes, treat specially
  401. if rtelemIsByte {
  402. switch f.seq {
  403. case seqTypeSlice:
  404. ee.EncodeStringBytesRaw(rv.Bytes())
  405. case seqTypeArray:
  406. l = rv.Len()
  407. if rv.CanAddr() {
  408. ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  409. } else {
  410. var bs []byte
  411. if l <= cap(e.b) {
  412. bs = e.b[:l]
  413. } else {
  414. bs = make([]byte, l)
  415. }
  416. reflect.Copy(reflect.ValueOf(bs), rv)
  417. ee.EncodeStringBytesRaw(bs)
  418. }
  419. case seqTypeChan:
  420. // do not use range, so that the number of elements encoded
  421. // does not change, and encoding does not hang waiting on someone to close chan.
  422. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  423. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  424. if rv.IsNil() {
  425. ee.EncodeNil()
  426. break
  427. }
  428. bs := e.b[:0]
  429. irv := rv2i(rv)
  430. ch, ok := irv.(<-chan byte)
  431. if !ok {
  432. ch = irv.(chan byte)
  433. }
  434. L1:
  435. switch timeout := e.h.ChanRecvTimeout; {
  436. case timeout == 0: // only consume available
  437. for {
  438. select {
  439. case b := <-ch:
  440. bs = append(bs, b)
  441. default:
  442. break L1
  443. }
  444. }
  445. case timeout > 0: // consume until timeout
  446. tt := time.NewTimer(timeout)
  447. for {
  448. select {
  449. case b := <-ch:
  450. bs = append(bs, b)
  451. case <-tt.C:
  452. // close(tt.C)
  453. break L1
  454. }
  455. }
  456. default: // consume until close
  457. for b := range ch {
  458. bs = append(bs, b)
  459. }
  460. }
  461. ee.EncodeStringBytesRaw(bs)
  462. }
  463. return
  464. }
  465. // if chan, consume chan into a slice, and work off that slice.
  466. if f.seq == seqTypeChan {
  467. rvcs := reflect.Zero(reflect.SliceOf(rtelem))
  468. timeout := e.h.ChanRecvTimeout
  469. if timeout < 0 { // consume until close
  470. for {
  471. recv, recvOk := rv.Recv()
  472. if !recvOk {
  473. break
  474. }
  475. rvcs = reflect.Append(rvcs, recv)
  476. }
  477. } else {
  478. cases := make([]reflect.SelectCase, 2)
  479. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  480. if timeout == 0 {
  481. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  482. } else {
  483. tt := time.NewTimer(timeout)
  484. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  485. }
  486. for {
  487. chosen, recv, recvOk := reflect.Select(cases)
  488. if chosen == 1 || !recvOk {
  489. break
  490. }
  491. rvcs = reflect.Append(rvcs, recv)
  492. }
  493. }
  494. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  495. }
  496. l = rv.Len()
  497. if ti.mbs {
  498. if l%2 == 1 {
  499. e.errorf("mapBySlice requires even slice length, but got %v", l)
  500. return
  501. }
  502. ee.WriteMapStart(l / 2)
  503. } else {
  504. ee.WriteArrayStart(l)
  505. }
  506. if l > 0 {
  507. var fn *codecFn
  508. for rtelem.Kind() == reflect.Ptr {
  509. rtelem = rtelem.Elem()
  510. }
  511. // if kind is reflect.Interface, do not pre-determine the
  512. // encoding type, because preEncodeValue may break it down to
  513. // a concrete type and kInterface will bomb.
  514. if rtelem.Kind() != reflect.Interface {
  515. fn = e.h.fn(rtelem, true, true)
  516. }
  517. for j := 0; j < l; j++ {
  518. if elemsep {
  519. if ti.mbs {
  520. if j%2 == 0 {
  521. ee.WriteMapElemKey()
  522. } else {
  523. ee.WriteMapElemValue()
  524. }
  525. } else {
  526. ee.WriteArrayElem()
  527. }
  528. }
  529. e.encodeValue(rv.Index(j), fn, true)
  530. }
  531. }
  532. if ti.mbs {
  533. ee.WriteMapEnd()
  534. } else {
  535. ee.WriteArrayEnd()
  536. }
  537. }
  538. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  539. fti := f.ti
  540. tisfi := fti.sfiSrc
  541. toMap := !(fti.toArray || e.h.StructToArray)
  542. if toMap {
  543. tisfi = fti.sfiSort
  544. }
  545. ee := e.e
  546. sfn := structFieldNode{v: rv, update: false}
  547. if toMap {
  548. ee.WriteMapStart(len(tisfi))
  549. if e.esep {
  550. for _, si := range tisfi {
  551. ee.WriteMapElemKey()
  552. // ee.EncodeStringEnc(cUTF8, si.encName)
  553. e.kStructFieldKey(fti.keyType, si)
  554. ee.WriteMapElemValue()
  555. e.encodeValue(sfn.field(si), nil, true)
  556. }
  557. } else {
  558. for _, si := range tisfi {
  559. // ee.EncodeStringEnc(cUTF8, si.encName)
  560. e.kStructFieldKey(fti.keyType, si)
  561. e.encodeValue(sfn.field(si), nil, true)
  562. }
  563. }
  564. ee.WriteMapEnd()
  565. } else {
  566. ee.WriteArrayStart(len(tisfi))
  567. if e.esep {
  568. for _, si := range tisfi {
  569. ee.WriteArrayElem()
  570. e.encodeValue(sfn.field(si), nil, true)
  571. }
  572. } else {
  573. for _, si := range tisfi {
  574. e.encodeValue(sfn.field(si), nil, true)
  575. }
  576. }
  577. ee.WriteArrayEnd()
  578. }
  579. }
  580. func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
  581. var m must
  582. // use if-else-if, not switch (which compiles to binary-search)
  583. // since keyType is typically valueTypeString, branch prediction is pretty good.
  584. if keyType == valueTypeString {
  585. if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
  586. e.w.writen1('"')
  587. e.w.writestr(s.encName)
  588. e.w.writen1('"')
  589. } else { // keyType == valueTypeString
  590. e.e.EncodeStringEnc(cUTF8, s.encName)
  591. }
  592. } else if keyType == valueTypeInt {
  593. e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
  594. } else if keyType == valueTypeUint {
  595. e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
  596. } else if keyType == valueTypeFloat {
  597. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
  598. }
  599. }
  600. func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
  601. var m must
  602. // use if-else-if, not switch (which compiles to binary-search)
  603. // since keyType is typically valueTypeString, branch prediction is pretty good.
  604. if keyType == valueTypeString {
  605. e.e.EncodeStringEnc(cUTF8, encName)
  606. } else if keyType == valueTypeInt {
  607. e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  608. } else if keyType == valueTypeUint {
  609. e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  610. } else if keyType == valueTypeFloat {
  611. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  612. }
  613. }
  614. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  615. fti := f.ti
  616. elemsep := e.esep
  617. tisfi := fti.sfiSrc
  618. var newlen int
  619. toMap := !(fti.toArray || e.h.StructToArray)
  620. var mf map[string]interface{}
  621. if f.ti.mf {
  622. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  623. toMap = true
  624. newlen += len(mf)
  625. } else if f.ti.mfp {
  626. if rv.CanAddr() {
  627. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  628. } else {
  629. // make a new addressable value of same one, and use it
  630. rv2 := reflect.New(rv.Type())
  631. rv2.Elem().Set(rv)
  632. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  633. }
  634. toMap = true
  635. newlen += len(mf)
  636. }
  637. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  638. if toMap {
  639. tisfi = fti.sfiSort
  640. }
  641. newlen += len(tisfi)
  642. ee := e.e
  643. // Use sync.Pool to reduce allocating slices unnecessarily.
  644. // The cost of sync.Pool is less than the cost of new allocation.
  645. //
  646. // Each element of the array pools one of encStructPool(8|16|32|64).
  647. // It allows the re-use of slices up to 64 in length.
  648. // A performance cost of encoding structs was collecting
  649. // which values were empty and should be omitted.
  650. // We needed slices of reflect.Value and string to collect them.
  651. // This shared pool reduces the amount of unnecessary creation we do.
  652. // The cost is that of locking sometimes, but sync.Pool is efficient
  653. // enough to reduce thread contention.
  654. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  655. var spool sfiRvPooler
  656. var fkvs = spool.get(newlen)
  657. var kv sfiRv
  658. recur := e.h.RecursiveEmptyCheck
  659. sfn := structFieldNode{v: rv, update: false}
  660. newlen = 0
  661. for _, si := range tisfi {
  662. // kv.r = si.field(rv, false)
  663. kv.r = sfn.field(si)
  664. if toMap {
  665. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  666. continue
  667. }
  668. kv.v = si // si.encName
  669. } else {
  670. // use the zero value.
  671. // if a reference or struct, set to nil (so you do not output too much)
  672. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  673. switch kv.r.Kind() {
  674. case reflect.Struct, reflect.Interface, reflect.Ptr,
  675. reflect.Array, reflect.Map, reflect.Slice:
  676. kv.r = reflect.Value{} //encode as nil
  677. }
  678. }
  679. }
  680. fkvs[newlen] = kv
  681. newlen++
  682. }
  683. fkvs = fkvs[:newlen]
  684. var mflen int
  685. for k, v := range mf {
  686. if k == "" {
  687. delete(mf, k)
  688. continue
  689. }
  690. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  691. delete(mf, k)
  692. continue
  693. }
  694. mflen++
  695. }
  696. var j int
  697. if toMap {
  698. ee.WriteMapStart(newlen + mflen)
  699. if elemsep {
  700. for j = 0; j < len(fkvs); j++ {
  701. kv = fkvs[j]
  702. ee.WriteMapElemKey()
  703. // ee.EncodeStringEnc(cUTF8, kv.v)
  704. e.kStructFieldKey(fti.keyType, kv.v)
  705. ee.WriteMapElemValue()
  706. e.encodeValue(kv.r, nil, true)
  707. }
  708. } else {
  709. for j = 0; j < len(fkvs); j++ {
  710. kv = fkvs[j]
  711. // ee.EncodeStringEnc(cUTF8, kv.v)
  712. e.kStructFieldKey(fti.keyType, kv.v)
  713. e.encodeValue(kv.r, nil, true)
  714. }
  715. }
  716. // now, add the others
  717. for k, v := range mf {
  718. ee.WriteMapElemKey()
  719. e.kStructFieldKeyName(fti.keyType, k)
  720. ee.WriteMapElemValue()
  721. e.encode(v)
  722. }
  723. ee.WriteMapEnd()
  724. } else {
  725. ee.WriteArrayStart(newlen)
  726. if elemsep {
  727. for j = 0; j < len(fkvs); j++ {
  728. ee.WriteArrayElem()
  729. e.encodeValue(fkvs[j].r, nil, true)
  730. }
  731. } else {
  732. for j = 0; j < len(fkvs); j++ {
  733. e.encodeValue(fkvs[j].r, nil, true)
  734. }
  735. }
  736. ee.WriteArrayEnd()
  737. }
  738. // do not use defer. Instead, use explicit pool return at end of function.
  739. // defer has a cost we are trying to avoid.
  740. // If there is a panic and these slices are not returned, it is ok.
  741. spool.end()
  742. }
  743. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  744. ee := e.e
  745. if rv.IsNil() {
  746. ee.EncodeNil()
  747. return
  748. }
  749. l := rv.Len()
  750. ee.WriteMapStart(l)
  751. if l == 0 {
  752. ee.WriteMapEnd()
  753. return
  754. }
  755. // var asSymbols bool
  756. // determine the underlying key and val encFn's for the map.
  757. // This eliminates some work which is done for each loop iteration i.e.
  758. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  759. //
  760. // However, if kind is reflect.Interface, do not pre-determine the
  761. // encoding type, because preEncodeValue may break it down to
  762. // a concrete type and kInterface will bomb.
  763. var keyFn, valFn *codecFn
  764. ti := f.ti
  765. rtkey0 := ti.key
  766. rtkey := rtkey0
  767. rtval0 := ti.elem
  768. rtval := rtval0
  769. // rtkeyid := rt2id(rtkey0)
  770. for rtval.Kind() == reflect.Ptr {
  771. rtval = rtval.Elem()
  772. }
  773. if rtval.Kind() != reflect.Interface {
  774. valFn = e.h.fn(rtval, true, true)
  775. }
  776. mks := rv.MapKeys()
  777. if e.h.Canonical {
  778. e.kMapCanonical(rtkey, rv, mks, valFn)
  779. ee.WriteMapEnd()
  780. return
  781. }
  782. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  783. if !keyTypeIsString {
  784. for rtkey.Kind() == reflect.Ptr {
  785. rtkey = rtkey.Elem()
  786. }
  787. if rtkey.Kind() != reflect.Interface {
  788. // rtkeyid = rt2id(rtkey)
  789. keyFn = e.h.fn(rtkey, true, true)
  790. }
  791. }
  792. // for j, lmks := 0, len(mks); j < lmks; j++ {
  793. for j := range mks {
  794. if e.esep {
  795. ee.WriteMapElemKey()
  796. }
  797. if keyTypeIsString {
  798. ee.EncodeStringEnc(cUTF8, mks[j].String())
  799. } else {
  800. e.encodeValue(mks[j], keyFn, true)
  801. }
  802. if e.esep {
  803. ee.WriteMapElemValue()
  804. }
  805. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  806. }
  807. ee.WriteMapEnd()
  808. }
  809. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  810. ee := e.e
  811. elemsep := e.esep
  812. // we previously did out-of-band if an extension was registered.
  813. // This is not necessary, as the natural kind is sufficient for ordering.
  814. switch rtkey.Kind() {
  815. case reflect.Bool:
  816. mksv := make([]boolRv, len(mks))
  817. for i, k := range mks {
  818. v := &mksv[i]
  819. v.r = k
  820. v.v = k.Bool()
  821. }
  822. sort.Sort(boolRvSlice(mksv))
  823. for i := range mksv {
  824. if elemsep {
  825. ee.WriteMapElemKey()
  826. }
  827. ee.EncodeBool(mksv[i].v)
  828. if elemsep {
  829. ee.WriteMapElemValue()
  830. }
  831. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  832. }
  833. case reflect.String:
  834. mksv := make([]stringRv, len(mks))
  835. for i, k := range mks {
  836. v := &mksv[i]
  837. v.r = k
  838. v.v = k.String()
  839. }
  840. sort.Sort(stringRvSlice(mksv))
  841. for i := range mksv {
  842. if elemsep {
  843. ee.WriteMapElemKey()
  844. }
  845. ee.EncodeStringEnc(cUTF8, mksv[i].v)
  846. if elemsep {
  847. ee.WriteMapElemValue()
  848. }
  849. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  850. }
  851. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  852. mksv := make([]uintRv, len(mks))
  853. for i, k := range mks {
  854. v := &mksv[i]
  855. v.r = k
  856. v.v = k.Uint()
  857. }
  858. sort.Sort(uintRvSlice(mksv))
  859. for i := range mksv {
  860. if elemsep {
  861. ee.WriteMapElemKey()
  862. }
  863. ee.EncodeUint(mksv[i].v)
  864. if elemsep {
  865. ee.WriteMapElemValue()
  866. }
  867. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  868. }
  869. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  870. mksv := make([]intRv, len(mks))
  871. for i, k := range mks {
  872. v := &mksv[i]
  873. v.r = k
  874. v.v = k.Int()
  875. }
  876. sort.Sort(intRvSlice(mksv))
  877. for i := range mksv {
  878. if elemsep {
  879. ee.WriteMapElemKey()
  880. }
  881. ee.EncodeInt(mksv[i].v)
  882. if elemsep {
  883. ee.WriteMapElemValue()
  884. }
  885. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  886. }
  887. case reflect.Float32:
  888. mksv := make([]floatRv, len(mks))
  889. for i, k := range mks {
  890. v := &mksv[i]
  891. v.r = k
  892. v.v = k.Float()
  893. }
  894. sort.Sort(floatRvSlice(mksv))
  895. for i := range mksv {
  896. if elemsep {
  897. ee.WriteMapElemKey()
  898. }
  899. ee.EncodeFloat32(float32(mksv[i].v))
  900. if elemsep {
  901. ee.WriteMapElemValue()
  902. }
  903. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  904. }
  905. case reflect.Float64:
  906. mksv := make([]floatRv, len(mks))
  907. for i, k := range mks {
  908. v := &mksv[i]
  909. v.r = k
  910. v.v = k.Float()
  911. }
  912. sort.Sort(floatRvSlice(mksv))
  913. for i := range mksv {
  914. if elemsep {
  915. ee.WriteMapElemKey()
  916. }
  917. ee.EncodeFloat64(mksv[i].v)
  918. if elemsep {
  919. ee.WriteMapElemValue()
  920. }
  921. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  922. }
  923. case reflect.Struct:
  924. if rv.Type() == timeTyp {
  925. mksv := make([]timeRv, len(mks))
  926. for i, k := range mks {
  927. v := &mksv[i]
  928. v.r = k
  929. v.v = rv2i(k).(time.Time)
  930. }
  931. sort.Sort(timeRvSlice(mksv))
  932. for i := range mksv {
  933. if elemsep {
  934. ee.WriteMapElemKey()
  935. }
  936. ee.EncodeTime(mksv[i].v)
  937. if elemsep {
  938. ee.WriteMapElemValue()
  939. }
  940. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  941. }
  942. break
  943. }
  944. fallthrough
  945. default:
  946. // out-of-band
  947. // first encode each key to a []byte first, then sort them, then record
  948. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  949. e2 := NewEncoderBytes(&mksv, e.hh)
  950. mksbv := make([]bytesRv, len(mks))
  951. for i, k := range mks {
  952. v := &mksbv[i]
  953. l := len(mksv)
  954. e2.MustEncode(k)
  955. v.r = k
  956. v.v = mksv[l:]
  957. }
  958. sort.Sort(bytesRvSlice(mksbv))
  959. for j := range mksbv {
  960. if elemsep {
  961. ee.WriteMapElemKey()
  962. }
  963. e.asis(mksbv[j].v)
  964. if elemsep {
  965. ee.WriteMapElemValue()
  966. }
  967. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  968. }
  969. }
  970. }
  971. // // --------------------------------------------------
  972. type encWriterSwitch struct {
  973. // wi *ioEncWriter
  974. wb bytesEncAppender
  975. wf *bufioEncWriter
  976. // typ entryType
  977. bytes bool // encoding to []byte
  978. esep bool // whether it has elem separators
  979. isas bool // whether e.as != nil
  980. js bool // is json encoder?
  981. be bool // is binary encoder?
  982. _ [2]byte // padding
  983. // _ [2]uint64 // padding
  984. // _ uint64 // padding
  985. }
  986. func (z *encWriterSwitch) writeb(s []byte) {
  987. if z.bytes {
  988. z.wb.writeb(s)
  989. } else {
  990. z.wf.writeb(s)
  991. }
  992. }
  993. func (z *encWriterSwitch) writestr(s string) {
  994. if z.bytes {
  995. z.wb.writestr(s)
  996. } else {
  997. z.wf.writestr(s)
  998. }
  999. }
  1000. func (z *encWriterSwitch) writen1(b1 byte) {
  1001. if z.bytes {
  1002. z.wb.writen1(b1)
  1003. } else {
  1004. z.wf.writen1(b1)
  1005. }
  1006. }
  1007. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1008. if z.bytes {
  1009. z.wb.writen2(b1, b2)
  1010. } else {
  1011. z.wf.writen2(b1, b2)
  1012. }
  1013. }
  1014. func (z *encWriterSwitch) end() {
  1015. if z.bytes {
  1016. z.wb.end()
  1017. } else {
  1018. z.wf.end()
  1019. }
  1020. }
  1021. /*
  1022. // ------------------------------------------
  1023. func (z *encWriterSwitch) writeb(s []byte) {
  1024. switch z.typ {
  1025. case entryTypeBytes:
  1026. z.wb.writeb(s)
  1027. case entryTypeIo:
  1028. z.wi.writeb(s)
  1029. default:
  1030. z.wf.writeb(s)
  1031. }
  1032. }
  1033. func (z *encWriterSwitch) writestr(s string) {
  1034. switch z.typ {
  1035. case entryTypeBytes:
  1036. z.wb.writestr(s)
  1037. case entryTypeIo:
  1038. z.wi.writestr(s)
  1039. default:
  1040. z.wf.writestr(s)
  1041. }
  1042. }
  1043. func (z *encWriterSwitch) writen1(b1 byte) {
  1044. switch z.typ {
  1045. case entryTypeBytes:
  1046. z.wb.writen1(b1)
  1047. case entryTypeIo:
  1048. z.wi.writen1(b1)
  1049. default:
  1050. z.wf.writen1(b1)
  1051. }
  1052. }
  1053. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1054. switch z.typ {
  1055. case entryTypeBytes:
  1056. z.wb.writen2(b1, b2)
  1057. case entryTypeIo:
  1058. z.wi.writen2(b1, b2)
  1059. default:
  1060. z.wf.writen2(b1, b2)
  1061. }
  1062. }
  1063. func (z *encWriterSwitch) end() {
  1064. switch z.typ {
  1065. case entryTypeBytes:
  1066. z.wb.end()
  1067. case entryTypeIo:
  1068. z.wi.end()
  1069. default:
  1070. z.wf.end()
  1071. }
  1072. }
  1073. // ------------------------------------------
  1074. func (z *encWriterSwitch) writeb(s []byte) {
  1075. if z.bytes {
  1076. z.wb.writeb(s)
  1077. } else {
  1078. z.wi.writeb(s)
  1079. }
  1080. }
  1081. func (z *encWriterSwitch) writestr(s string) {
  1082. if z.bytes {
  1083. z.wb.writestr(s)
  1084. } else {
  1085. z.wi.writestr(s)
  1086. }
  1087. }
  1088. func (z *encWriterSwitch) writen1(b1 byte) {
  1089. if z.bytes {
  1090. z.wb.writen1(b1)
  1091. } else {
  1092. z.wi.writen1(b1)
  1093. }
  1094. }
  1095. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1096. if z.bytes {
  1097. z.wb.writen2(b1, b2)
  1098. } else {
  1099. z.wi.writen2(b1, b2)
  1100. }
  1101. }
  1102. func (z *encWriterSwitch) end() {
  1103. if z.bytes {
  1104. z.wb.end()
  1105. } else {
  1106. z.wi.end()
  1107. }
  1108. }
  1109. */
  1110. // Encoder writes an object to an output stream in a supported format.
  1111. //
  1112. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1113. // concurrently in multiple goroutines.
  1114. //
  1115. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1116. // so its state can be reused to decode new input streams repeatedly.
  1117. // This is the idiomatic way to use.
  1118. type Encoder struct {
  1119. panicHdl
  1120. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1121. e encDriver
  1122. // NOTE: Encoder shouldn't call it's write methods,
  1123. // as the handler MAY need to do some coordination.
  1124. w *encWriterSwitch
  1125. // bw *bufio.Writer
  1126. as encDriverAsis
  1127. err error
  1128. h *BasicHandle
  1129. hh Handle
  1130. // ---- cpu cache line boundary? + 3
  1131. encWriterSwitch
  1132. ci set
  1133. // Extensions can call Encode() within a current Encode() call.
  1134. // We need to know when the top level Encode() call returns,
  1135. // so we can decide whether to Release() or not.
  1136. calls uint16 // what depth in mustEncode are we in now.
  1137. b [(5 * 8) - 2]byte // for encoding chan or (non-addressable) [N]byte
  1138. // ---- writable fields during execution --- *try* to keep in sep cache line
  1139. // ---- cpu cache line boundary?
  1140. // b [scratchByteArrayLen]byte
  1141. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1142. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  1143. }
  1144. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1145. //
  1146. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  1147. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  1148. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1149. e := newEncoder(h)
  1150. e.Reset(w)
  1151. return e
  1152. }
  1153. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1154. // into a byte slice, using zero-copying to temporary slices.
  1155. //
  1156. // It will potentially replace the output byte slice pointed to.
  1157. // After encoding, the out parameter contains the encoded contents.
  1158. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1159. e := newEncoder(h)
  1160. e.ResetBytes(out)
  1161. return e
  1162. }
  1163. func newEncoder(h Handle) *Encoder {
  1164. e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
  1165. e.bytes = true
  1166. if useFinalizers {
  1167. runtime.SetFinalizer(e, (*Encoder).finalize)
  1168. // xdebugf(">>>> new(Encoder) with finalizer")
  1169. }
  1170. e.w = &e.encWriterSwitch
  1171. e.hh = h
  1172. e.esep = h.hasElemSeparators()
  1173. return e
  1174. }
  1175. func (e *Encoder) resetCommon() {
  1176. // e.w = &e.encWriterSwitch
  1177. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1178. e.e = e.hh.newEncDriver(e)
  1179. e.as, e.isas = e.e.(encDriverAsis)
  1180. // e.cr, _ = e.e.(containerStateRecv)
  1181. }
  1182. e.be = e.hh.isBinary()
  1183. _, e.js = e.hh.(*JsonHandle)
  1184. e.e.reset()
  1185. e.err = nil
  1186. e.calls = 0
  1187. }
  1188. // Reset resets the Encoder with a new output stream.
  1189. //
  1190. // This accommodates using the state of the Encoder,
  1191. // where it has "cached" information about sub-engines.
  1192. func (e *Encoder) Reset(w io.Writer) {
  1193. if w == nil {
  1194. return
  1195. }
  1196. // var ok bool
  1197. e.bytes = false
  1198. if e.wf == nil {
  1199. e.wf = new(bufioEncWriter)
  1200. }
  1201. // e.typ = entryTypeUnset
  1202. // if e.h.WriterBufferSize > 0 {
  1203. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1204. // // e.wi.bw = bw
  1205. // // e.wi.sw = bw
  1206. // // e.wi.fw = bw
  1207. // // e.wi.ww = bw
  1208. // if e.wf == nil {
  1209. // e.wf = new(bufioEncWriter)
  1210. // }
  1211. // e.wf.reset(w, e.h.WriterBufferSize)
  1212. // e.typ = entryTypeBufio
  1213. // } else {
  1214. // if e.wi == nil {
  1215. // e.wi = new(ioEncWriter)
  1216. // }
  1217. // e.wi.reset(w)
  1218. // e.typ = entryTypeIo
  1219. // }
  1220. e.wf.reset(w, e.h.WriterBufferSize)
  1221. // e.typ = entryTypeBufio
  1222. // e.w = e.wi
  1223. e.resetCommon()
  1224. }
  1225. // ResetBytes resets the Encoder with a new destination output []byte.
  1226. func (e *Encoder) ResetBytes(out *[]byte) {
  1227. if out == nil {
  1228. return
  1229. }
  1230. var in []byte = *out
  1231. if in == nil {
  1232. in = make([]byte, defEncByteBufSize)
  1233. }
  1234. e.bytes = true
  1235. // e.typ = entryTypeBytes
  1236. e.wb.reset(in, out)
  1237. // e.w = &e.wb
  1238. e.resetCommon()
  1239. }
  1240. // Encode writes an object into a stream.
  1241. //
  1242. // Encoding can be configured via the struct tag for the fields.
  1243. // The key (in the struct tags) that we look at is configurable.
  1244. //
  1245. // By default, we look up the "codec" key in the struct field's tags,
  1246. // and fall bak to the "json" key if "codec" is absent.
  1247. // That key in struct field's tag value is the key name,
  1248. // followed by an optional comma and options.
  1249. //
  1250. // To set an option on all fields (e.g. omitempty on all fields), you
  1251. // can create a field called _struct, and set flags on it. The options
  1252. // which can be set on _struct are:
  1253. // - omitempty: so all fields are omitted if empty
  1254. // - toarray: so struct is encoded as an array
  1255. // - int: so struct key names are encoded as signed integers (instead of strings)
  1256. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1257. // - float: so struct key names are encoded as floats (instead of strings)
  1258. // More details on these below.
  1259. //
  1260. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1261. // - the field's tag is "-", OR
  1262. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1263. //
  1264. // When encoding as a map, the first string in the tag (before the comma)
  1265. // is the map key string to use when encoding.
  1266. // ...
  1267. // This key is typically encoded as a string.
  1268. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1269. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1270. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1271. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1272. // This is done with the int,uint or float option on the _struct field (see above).
  1273. //
  1274. // However, struct values may encode as arrays. This happens when:
  1275. // - StructToArray Encode option is set, OR
  1276. // - the tag on the _struct field sets the "toarray" option
  1277. // Note that omitempty is ignored when encoding struct values as arrays,
  1278. // as an entry must be encoded for each field, to maintain its position.
  1279. //
  1280. // Values with types that implement MapBySlice are encoded as stream maps.
  1281. //
  1282. // The empty values (for omitempty option) are false, 0, any nil pointer
  1283. // or interface value, and any array, slice, map, or string of length zero.
  1284. //
  1285. // Anonymous fields are encoded inline except:
  1286. // - the struct tag specifies a replacement name (first value)
  1287. // - the field is of an interface type
  1288. //
  1289. // Examples:
  1290. //
  1291. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1292. // type MyStruct struct {
  1293. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1294. // Field1 string `codec:"-"` //skip this field
  1295. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1296. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1297. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1298. // io.Reader //use key "Reader".
  1299. // MyStruct `codec:"my1" //use key "my1".
  1300. // MyStruct //inline it
  1301. // ...
  1302. // }
  1303. //
  1304. // type MyStruct struct {
  1305. // _struct bool `codec:",toarray"` //encode struct as an array
  1306. // }
  1307. //
  1308. // type MyStruct struct {
  1309. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1310. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1311. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1312. // }
  1313. //
  1314. // The mode of encoding is based on the type of the value. When a value is seen:
  1315. // - If a Selfer, call its CodecEncodeSelf method
  1316. // - If an extension is registered for it, call that extension function
  1317. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1318. // - Else encode it based on its reflect.Kind
  1319. //
  1320. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1321. // Some formats support symbols (e.g. binc) and will properly encode the string
  1322. // only once in the stream, and use a tag to refer to it thereafter.
  1323. func (e *Encoder) Encode(v interface{}) (err error) {
  1324. // tried to use closure, as runtime optimizes defer with no params.
  1325. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1326. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1327. // defer func() { e.deferred(&err) }() }
  1328. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1329. if e.err != nil {
  1330. return e.err
  1331. }
  1332. if recoverPanicToErr {
  1333. defer func() {
  1334. e.w.end()
  1335. if x := recover(); x != nil {
  1336. panicValToErr(e, x, &e.err)
  1337. err = e.err
  1338. }
  1339. }()
  1340. }
  1341. // defer e.deferred(&err)
  1342. e.mustEncode(v)
  1343. return
  1344. }
  1345. // MustEncode is like Encode, but panics if unable to Encode.
  1346. // This provides insight to the code location that triggered the error.
  1347. func (e *Encoder) MustEncode(v interface{}) {
  1348. if e.err != nil {
  1349. panic(e.err)
  1350. }
  1351. e.mustEncode(v)
  1352. }
  1353. func (e *Encoder) mustEncode(v interface{}) {
  1354. e.calls++
  1355. e.encode(v)
  1356. e.e.atEndOfEncode()
  1357. e.w.end()
  1358. e.calls--
  1359. if !e.h.ExplicitRelease && e.calls == 0 {
  1360. e.Release()
  1361. }
  1362. }
  1363. // func (e *Encoder) deferred(err1 *error) {
  1364. // e.w.end()
  1365. // if recoverPanicToErr {
  1366. // if x := recover(); x != nil {
  1367. // panicValToErr(e, x, err1)
  1368. // panicValToErr(e, x, &e.err)
  1369. // }
  1370. // }
  1371. // }
  1372. //go:noinline -- as it is run by finalizer
  1373. func (e *Encoder) finalize() {
  1374. // xdebugf("finalizing Encoder")
  1375. e.Release()
  1376. }
  1377. // Release releases shared (pooled) resources.
  1378. //
  1379. // It is important to call Release() when done with an Encoder, so those resources
  1380. // are released instantly for use by subsequently created Encoders.
  1381. func (e *Encoder) Release() {
  1382. if useFinalizers && removeFinalizerOnRelease {
  1383. runtime.SetFinalizer(e, nil)
  1384. }
  1385. if e.wf != nil {
  1386. e.wf.buf = nil
  1387. e.wf.bytesBufPooler.end()
  1388. }
  1389. }
  1390. func (e *Encoder) encode(iv interface{}) {
  1391. // a switch with only concrete types can be optimized.
  1392. // consequently, we deal with nil and interfaces outside the switch.
  1393. if iv == nil || definitelyNil(iv) {
  1394. e.e.EncodeNil()
  1395. return
  1396. }
  1397. switch v := iv.(type) {
  1398. // case nil:
  1399. // case Selfer:
  1400. case Raw:
  1401. e.rawBytes(v)
  1402. case reflect.Value:
  1403. e.encodeValue(v, nil, true)
  1404. case string:
  1405. e.e.EncodeStringEnc(cUTF8, v)
  1406. case bool:
  1407. e.e.EncodeBool(v)
  1408. case int:
  1409. e.e.EncodeInt(int64(v))
  1410. case int8:
  1411. e.e.EncodeInt(int64(v))
  1412. case int16:
  1413. e.e.EncodeInt(int64(v))
  1414. case int32:
  1415. e.e.EncodeInt(int64(v))
  1416. case int64:
  1417. e.e.EncodeInt(v)
  1418. case uint:
  1419. e.e.EncodeUint(uint64(v))
  1420. case uint8:
  1421. e.e.EncodeUint(uint64(v))
  1422. case uint16:
  1423. e.e.EncodeUint(uint64(v))
  1424. case uint32:
  1425. e.e.EncodeUint(uint64(v))
  1426. case uint64:
  1427. e.e.EncodeUint(v)
  1428. case uintptr:
  1429. e.e.EncodeUint(uint64(v))
  1430. case float32:
  1431. e.e.EncodeFloat32(v)
  1432. case float64:
  1433. e.e.EncodeFloat64(v)
  1434. case time.Time:
  1435. e.e.EncodeTime(v)
  1436. case []uint8:
  1437. e.e.EncodeStringBytesRaw(v)
  1438. case *Raw:
  1439. e.rawBytes(*v)
  1440. case *string:
  1441. e.e.EncodeStringEnc(cUTF8, *v)
  1442. case *bool:
  1443. e.e.EncodeBool(*v)
  1444. case *int:
  1445. e.e.EncodeInt(int64(*v))
  1446. case *int8:
  1447. e.e.EncodeInt(int64(*v))
  1448. case *int16:
  1449. e.e.EncodeInt(int64(*v))
  1450. case *int32:
  1451. e.e.EncodeInt(int64(*v))
  1452. case *int64:
  1453. e.e.EncodeInt(*v)
  1454. case *uint:
  1455. e.e.EncodeUint(uint64(*v))
  1456. case *uint8:
  1457. e.e.EncodeUint(uint64(*v))
  1458. case *uint16:
  1459. e.e.EncodeUint(uint64(*v))
  1460. case *uint32:
  1461. e.e.EncodeUint(uint64(*v))
  1462. case *uint64:
  1463. e.e.EncodeUint(*v)
  1464. case *uintptr:
  1465. e.e.EncodeUint(uint64(*v))
  1466. case *float32:
  1467. e.e.EncodeFloat32(*v)
  1468. case *float64:
  1469. e.e.EncodeFloat64(*v)
  1470. case *time.Time:
  1471. e.e.EncodeTime(*v)
  1472. case *[]uint8:
  1473. e.e.EncodeStringBytesRaw(*v)
  1474. default:
  1475. if v, ok := iv.(Selfer); ok {
  1476. v.CodecEncodeSelf(e)
  1477. } else if !fastpathEncodeTypeSwitch(iv, e) {
  1478. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1479. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1480. }
  1481. }
  1482. }
  1483. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1484. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1485. var sptr uintptr
  1486. var rvp reflect.Value
  1487. var rvpValid bool
  1488. TOP:
  1489. switch rv.Kind() {
  1490. case reflect.Ptr:
  1491. if rv.IsNil() {
  1492. e.e.EncodeNil()
  1493. return
  1494. }
  1495. rvpValid = true
  1496. rvp = rv
  1497. rv = rv.Elem()
  1498. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1499. // TODO: Movable pointers will be an issue here. Future problem.
  1500. sptr = rv.UnsafeAddr()
  1501. break TOP
  1502. }
  1503. goto TOP
  1504. case reflect.Interface:
  1505. if rv.IsNil() {
  1506. e.e.EncodeNil()
  1507. return
  1508. }
  1509. rv = rv.Elem()
  1510. goto TOP
  1511. case reflect.Slice, reflect.Map:
  1512. if rv.IsNil() {
  1513. e.e.EncodeNil()
  1514. return
  1515. }
  1516. case reflect.Invalid, reflect.Func:
  1517. e.e.EncodeNil()
  1518. return
  1519. }
  1520. if sptr != 0 && (&e.ci).add(sptr) {
  1521. e.errorf("circular reference found: # %d", sptr)
  1522. }
  1523. if fn == nil {
  1524. rt := rv.Type()
  1525. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1526. fn = e.h.fn(rt, checkFastpath, true)
  1527. }
  1528. if fn.i.addrE {
  1529. if rvpValid {
  1530. fn.fe(e, &fn.i, rvp)
  1531. } else if rv.CanAddr() {
  1532. fn.fe(e, &fn.i, rv.Addr())
  1533. } else {
  1534. rv2 := reflect.New(rv.Type())
  1535. rv2.Elem().Set(rv)
  1536. fn.fe(e, &fn.i, rv2)
  1537. }
  1538. } else {
  1539. fn.fe(e, &fn.i, rv)
  1540. }
  1541. if sptr != 0 {
  1542. (&e.ci).remove(sptr)
  1543. }
  1544. }
  1545. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1546. // if fnerr != nil {
  1547. // panic(fnerr)
  1548. // }
  1549. // if bs == nil {
  1550. // e.e.EncodeNil()
  1551. // } else if asis {
  1552. // e.asis(bs)
  1553. // } else {
  1554. // e.e.EncodeStringBytes(c, bs)
  1555. // }
  1556. // }
  1557. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1558. if fnerr != nil {
  1559. panic(fnerr)
  1560. }
  1561. if bs == nil {
  1562. e.e.EncodeNil()
  1563. } else {
  1564. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1565. }
  1566. }
  1567. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1568. if fnerr != nil {
  1569. panic(fnerr)
  1570. }
  1571. if bs == nil {
  1572. e.e.EncodeNil()
  1573. } else {
  1574. e.asis(bs)
  1575. }
  1576. }
  1577. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1578. if fnerr != nil {
  1579. panic(fnerr)
  1580. }
  1581. if bs == nil {
  1582. e.e.EncodeNil()
  1583. } else {
  1584. e.e.EncodeStringBytesRaw(bs)
  1585. }
  1586. }
  1587. func (e *Encoder) asis(v []byte) {
  1588. if e.isas {
  1589. e.as.EncodeAsis(v)
  1590. } else {
  1591. e.w.writeb(v)
  1592. }
  1593. }
  1594. func (e *Encoder) rawBytes(vv Raw) {
  1595. v := []byte(vv)
  1596. if !e.h.Raw {
  1597. e.errorf("Raw values cannot be encoded: %v", v)
  1598. }
  1599. e.asis(v)
  1600. }
  1601. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1602. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1603. }