encode.go 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "sort"
  11. "strconv"
  12. "sync"
  13. "time"
  14. )
  15. // defEncByteBufSize is the default size of []byte used
  16. // for bufio buffer or []byte (when nil passed)
  17. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  18. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  19. /*
  20. // encWriter abstracts writing to a byte array or to an io.Writer.
  21. //
  22. //
  23. // Deprecated: Use encWriterSwitch instead.
  24. type encWriter interface {
  25. writeb([]byte)
  26. writestr(string)
  27. writen1(byte)
  28. writen2(byte, byte)
  29. atEndOfEncode()
  30. }
  31. */
  32. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  33. type encDriver interface {
  34. EncodeNil()
  35. EncodeInt(i int64)
  36. EncodeUint(i uint64)
  37. EncodeBool(b bool)
  38. EncodeFloat32(f float32)
  39. EncodeFloat64(f float64)
  40. // encodeExtPreamble(xtag byte, length int)
  41. EncodeRawExt(re *RawExt, e *Encoder)
  42. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  43. // Deprecated: try to use EncodeStringEnc instead
  44. EncodeString(c charEncoding, v string)
  45. // c cannot be cRAW
  46. EncodeStringEnc(c charEncoding, v string)
  47. // EncodeSymbol(v string)
  48. // Deprecated: try to use EncodeStringBytesRaw instead
  49. EncodeStringBytes(c charEncoding, v []byte)
  50. EncodeStringBytesRaw(v []byte)
  51. EncodeTime(time.Time)
  52. //encBignum(f *big.Int)
  53. //encStringRunes(c charEncoding, v []rune)
  54. WriteArrayStart(length int)
  55. WriteArrayElem()
  56. WriteArrayEnd()
  57. WriteMapStart(length int)
  58. WriteMapElemKey()
  59. WriteMapElemValue()
  60. WriteMapEnd()
  61. reset()
  62. atEndOfEncode()
  63. }
  64. type encDriverAsis interface {
  65. EncodeAsis(v []byte)
  66. }
  67. type encodeError struct {
  68. codecError
  69. }
  70. func (e encodeError) Error() string {
  71. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  72. }
  73. type encDriverNoopContainerWriter struct{}
  74. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  75. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  76. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  77. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  78. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  79. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  80. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  81. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  82. type encDriverTrackContainerWriter struct {
  83. c containerState
  84. }
  85. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  86. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  87. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  88. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  89. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  90. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  91. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  92. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  93. // type ioEncWriterWriter interface {
  94. // WriteByte(c byte) error
  95. // WriteString(s string) (n int, err error)
  96. // Write(p []byte) (n int, err error)
  97. // }
  98. // EncodeOptions captures configuration options during encode.
  99. type EncodeOptions struct {
  100. // WriterBufferSize is the size of the buffer used when writing.
  101. //
  102. // if > 0, we use a smart buffer internally for performance purposes.
  103. WriterBufferSize int
  104. // ChanRecvTimeout is the timeout used when selecting from a chan.
  105. //
  106. // Configuring this controls how we receive from a chan during the encoding process.
  107. // - If ==0, we only consume the elements currently available in the chan.
  108. // - if <0, we consume until the chan is closed.
  109. // - If >0, we consume until this timeout.
  110. ChanRecvTimeout time.Duration
  111. // StructToArray specifies to encode a struct as an array, and not as a map
  112. StructToArray bool
  113. // Canonical representation means that encoding a value will always result in the same
  114. // sequence of bytes.
  115. //
  116. // This only affects maps, as the iteration order for maps is random.
  117. //
  118. // The implementation MAY use the natural sort order for the map keys if possible:
  119. //
  120. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  121. // then the map keys are first sorted in natural order and then written
  122. // with corresponding map values to the strema.
  123. // - If there is no natural sort order, then the map keys will first be
  124. // encoded into []byte, and then sorted,
  125. // before writing the sorted keys and the corresponding map values to the stream.
  126. //
  127. Canonical bool
  128. // CheckCircularRef controls whether we check for circular references
  129. // and error fast during an encode.
  130. //
  131. // If enabled, an error is received if a pointer to a struct
  132. // references itself either directly or through one of its fields (iteratively).
  133. //
  134. // This is opt-in, as there may be a performance hit to checking circular references.
  135. CheckCircularRef bool
  136. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  137. // when checking if a value is empty.
  138. //
  139. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  140. RecursiveEmptyCheck bool
  141. // Raw controls whether we encode Raw values.
  142. // This is a "dangerous" option and must be explicitly set.
  143. // If set, we blindly encode Raw values as-is, without checking
  144. // if they are a correct representation of a value in that format.
  145. // If unset, we error out.
  146. Raw bool
  147. // // AsSymbols defines what should be encoded as symbols.
  148. // //
  149. // // Encoding as symbols can reduce the encoded size significantly.
  150. // //
  151. // // However, during decoding, each string to be encoded as a symbol must
  152. // // be checked to see if it has been seen before. Consequently, encoding time
  153. // // will increase if using symbols, because string comparisons has a clear cost.
  154. // //
  155. // // Sample values:
  156. // // AsSymbolNone
  157. // // AsSymbolAll
  158. // // AsSymbolMapStringKeys
  159. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  160. // AsSymbols AsSymbolFlag
  161. }
  162. // ---------------------------------------------
  163. /*
  164. type ioEncStringWriter interface {
  165. WriteString(s string) (n int, err error)
  166. }
  167. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  168. type ioEncWriter struct {
  169. w io.Writer
  170. ww io.Writer
  171. bw io.ByteWriter
  172. sw ioEncStringWriter
  173. fw ioFlusher
  174. b [8]byte
  175. }
  176. func (z *ioEncWriter) reset(w io.Writer) {
  177. z.w = w
  178. var ok bool
  179. if z.bw, ok = w.(io.ByteWriter); !ok {
  180. z.bw = z
  181. }
  182. if z.sw, ok = w.(ioEncStringWriter); !ok {
  183. z.sw = z
  184. }
  185. z.fw, _ = w.(ioFlusher)
  186. z.ww = w
  187. }
  188. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  189. z.b[0] = b
  190. _, err = z.w.Write(z.b[:1])
  191. return
  192. }
  193. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  194. return z.w.Write(bytesView(s))
  195. }
  196. func (z *ioEncWriter) writeb(bs []byte) {
  197. if _, err := z.ww.Write(bs); err != nil {
  198. panic(err)
  199. }
  200. }
  201. func (z *ioEncWriter) writestr(s string) {
  202. if _, err := z.sw.WriteString(s); err != nil {
  203. panic(err)
  204. }
  205. }
  206. func (z *ioEncWriter) writen1(b byte) {
  207. if err := z.bw.WriteByte(b); err != nil {
  208. panic(err)
  209. }
  210. }
  211. func (z *ioEncWriter) writen2(b1, b2 byte) {
  212. var err error
  213. if err = z.bw.WriteByte(b1); err == nil {
  214. if err = z.bw.WriteByte(b2); err == nil {
  215. return
  216. }
  217. }
  218. panic(err)
  219. }
  220. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  221. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  222. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  223. // panic(err)
  224. // }
  225. // }
  226. //go:noinline (so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined)
  227. func (z *ioEncWriter) atEndOfEncode() {
  228. if z.fw != nil {
  229. if err := z.fw.Flush(); err != nil {
  230. panic(err)
  231. }
  232. }
  233. }
  234. */
  235. // ---------------------------------------------
  236. // bufioEncWriter
  237. type bufioEncWriter struct {
  238. buf []byte
  239. w io.Writer
  240. n int
  241. // _ [2]uint64 // padding
  242. // a int
  243. // b [4]byte
  244. // err
  245. }
  246. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  247. z.w = w
  248. z.n = 0
  249. if bufsize == 0 {
  250. bufsize = defEncByteBufSize
  251. }
  252. if cap(z.buf) < bufsize {
  253. z.buf = make([]byte, bufsize)
  254. } else {
  255. z.buf = z.buf[:bufsize]
  256. }
  257. }
  258. //go:noinline
  259. func (z *bufioEncWriter) flush() {
  260. n, err := z.w.Write(z.buf[:z.n])
  261. z.n -= n
  262. if z.n > 0 && err == nil {
  263. err = io.ErrShortWrite
  264. }
  265. if err != nil {
  266. if n > 0 && z.n > 0 {
  267. copy(z.buf, z.buf[n:z.n+n])
  268. }
  269. panic(err)
  270. }
  271. }
  272. func (z *bufioEncWriter) writeb(s []byte) {
  273. LOOP:
  274. a := len(z.buf) - z.n
  275. if len(s) > a {
  276. z.n += copy(z.buf[z.n:], s[:a])
  277. s = s[a:]
  278. z.flush()
  279. goto LOOP
  280. }
  281. z.n += copy(z.buf[z.n:], s)
  282. }
  283. func (z *bufioEncWriter) writestr(s string) {
  284. // z.writeb(bytesView(s)) // inlined below
  285. LOOP:
  286. a := len(z.buf) - z.n
  287. if len(s) > a {
  288. z.n += copy(z.buf[z.n:], s[:a])
  289. s = s[a:]
  290. z.flush()
  291. goto LOOP
  292. }
  293. z.n += copy(z.buf[z.n:], s)
  294. }
  295. //go:noinline // TODO: allow this be inlined once mid-stack inlining done
  296. func (z *bufioEncWriter) writen1(b1 byte) {
  297. if 1 > len(z.buf)-z.n {
  298. z.flush()
  299. }
  300. z.buf[z.n] = b1
  301. z.n++
  302. }
  303. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  304. if 2 > len(z.buf)-z.n {
  305. z.flush()
  306. }
  307. z.buf[z.n+1] = b2
  308. z.buf[z.n] = b1
  309. z.n += 2
  310. }
  311. func (z *bufioEncWriter) atEndOfEncode() {
  312. if z.n > 0 {
  313. z.flush()
  314. }
  315. }
  316. // ---------------------------------------------
  317. // bytesEncAppender implements encWriter and can write to an byte slice.
  318. type bytesEncAppender struct {
  319. b []byte
  320. out *[]byte
  321. }
  322. func (z *bytesEncAppender) writeb(s []byte) {
  323. z.b = append(z.b, s...)
  324. }
  325. func (z *bytesEncAppender) writestr(s string) {
  326. z.b = append(z.b, s...)
  327. }
  328. func (z *bytesEncAppender) writen1(b1 byte) {
  329. z.b = append(z.b, b1)
  330. }
  331. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  332. z.b = append(z.b, b1, b2)
  333. }
  334. func (z *bytesEncAppender) atEndOfEncode() {
  335. *(z.out) = z.b
  336. }
  337. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  338. z.b = in[:0]
  339. z.out = out
  340. }
  341. // ---------------------------------------------
  342. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  343. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  344. }
  345. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  346. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  347. }
  348. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  349. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  350. }
  351. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  352. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  353. e.marshalRaw(bs, fnerr)
  354. }
  355. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  356. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  357. e.marshalUtf8(bs, fnerr)
  358. }
  359. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  360. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  361. e.marshalAsis(bs, fnerr)
  362. }
  363. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  364. e.rawBytes(rv2i(rv).(Raw))
  365. }
  366. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  367. e.e.EncodeNil()
  368. }
  369. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  370. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  371. }
  372. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  373. ti := f.ti
  374. ee := e.e
  375. // array may be non-addressable, so we have to manage with care
  376. // (don't call rv.Bytes, rv.Slice, etc).
  377. // E.g. type struct S{B [2]byte};
  378. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  379. if f.seq != seqTypeArray {
  380. if rv.IsNil() {
  381. ee.EncodeNil()
  382. return
  383. }
  384. // If in this method, then there was no extension function defined.
  385. // So it's okay to treat as []byte.
  386. if ti.rtid == uint8SliceTypId {
  387. ee.EncodeStringBytesRaw(rv.Bytes())
  388. return
  389. }
  390. }
  391. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  392. e.errorf("send-only channel cannot be encoded")
  393. }
  394. elemsep := e.esep
  395. rtelem := ti.elem
  396. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  397. var l int
  398. // if a slice, array or chan of bytes, treat specially
  399. if rtelemIsByte {
  400. switch f.seq {
  401. case seqTypeSlice:
  402. ee.EncodeStringBytesRaw(rv.Bytes())
  403. case seqTypeArray:
  404. l = rv.Len()
  405. if rv.CanAddr() {
  406. ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  407. } else {
  408. var bs []byte
  409. if l <= cap(e.b) {
  410. bs = e.b[:l]
  411. } else {
  412. bs = make([]byte, l)
  413. }
  414. reflect.Copy(reflect.ValueOf(bs), rv)
  415. ee.EncodeStringBytesRaw(bs)
  416. }
  417. case seqTypeChan:
  418. // do not use range, so that the number of elements encoded
  419. // does not change, and encoding does not hang waiting on someone to close chan.
  420. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  421. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  422. if rv.IsNil() {
  423. ee.EncodeNil()
  424. break
  425. }
  426. bs := e.b[:0]
  427. irv := rv2i(rv)
  428. ch, ok := irv.(<-chan byte)
  429. if !ok {
  430. ch = irv.(chan byte)
  431. }
  432. L1:
  433. switch timeout := e.h.ChanRecvTimeout; {
  434. case timeout == 0: // only consume available
  435. for {
  436. select {
  437. case b := <-ch:
  438. bs = append(bs, b)
  439. default:
  440. break L1
  441. }
  442. }
  443. case timeout > 0: // consume until timeout
  444. tt := time.NewTimer(timeout)
  445. for {
  446. select {
  447. case b := <-ch:
  448. bs = append(bs, b)
  449. case <-tt.C:
  450. // close(tt.C)
  451. break L1
  452. }
  453. }
  454. default: // consume until close
  455. for b := range ch {
  456. bs = append(bs, b)
  457. }
  458. }
  459. ee.EncodeStringBytesRaw(bs)
  460. }
  461. return
  462. }
  463. // if chan, consume chan into a slice, and work off that slice.
  464. var rvcs reflect.Value
  465. if f.seq == seqTypeChan {
  466. rvcs = reflect.Zero(reflect.SliceOf(rtelem))
  467. timeout := e.h.ChanRecvTimeout
  468. if timeout < 0 { // consume until close
  469. for {
  470. recv, recvOk := rv.Recv()
  471. if !recvOk {
  472. break
  473. }
  474. rvcs = reflect.Append(rvcs, recv)
  475. }
  476. } else {
  477. cases := make([]reflect.SelectCase, 2)
  478. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  479. if timeout == 0 {
  480. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  481. } else {
  482. tt := time.NewTimer(timeout)
  483. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  484. }
  485. for {
  486. chosen, recv, recvOk := reflect.Select(cases)
  487. if chosen == 1 || !recvOk {
  488. break
  489. }
  490. rvcs = reflect.Append(rvcs, recv)
  491. }
  492. }
  493. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  494. }
  495. l = rv.Len()
  496. if ti.mbs {
  497. if l%2 == 1 {
  498. e.errorf("mapBySlice requires even slice length, but got %v", l)
  499. return
  500. }
  501. ee.WriteMapStart(l / 2)
  502. } else {
  503. ee.WriteArrayStart(l)
  504. }
  505. if l > 0 {
  506. var fn *codecFn
  507. for rtelem.Kind() == reflect.Ptr {
  508. rtelem = rtelem.Elem()
  509. }
  510. // if kind is reflect.Interface, do not pre-determine the
  511. // encoding type, because preEncodeValue may break it down to
  512. // a concrete type and kInterface will bomb.
  513. if rtelem.Kind() != reflect.Interface {
  514. fn = e.cfer().get(rtelem, true, true)
  515. }
  516. for j := 0; j < l; j++ {
  517. if elemsep {
  518. if ti.mbs {
  519. if j%2 == 0 {
  520. ee.WriteMapElemKey()
  521. } else {
  522. ee.WriteMapElemValue()
  523. }
  524. } else {
  525. ee.WriteArrayElem()
  526. }
  527. }
  528. e.encodeValue(rv.Index(j), fn, true)
  529. }
  530. }
  531. if ti.mbs {
  532. ee.WriteMapEnd()
  533. } else {
  534. ee.WriteArrayEnd()
  535. }
  536. }
  537. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  538. fti := f.ti
  539. elemsep := e.esep
  540. tisfi := fti.sfiSrc
  541. toMap := !(fti.toArray || e.h.StructToArray)
  542. if toMap {
  543. tisfi = fti.sfiSort
  544. }
  545. ee := e.e
  546. sfn := structFieldNode{v: rv, update: false}
  547. if toMap {
  548. ee.WriteMapStart(len(tisfi))
  549. if elemsep {
  550. for _, si := range tisfi {
  551. ee.WriteMapElemKey()
  552. // ee.EncodeStringEnc(cUTF8, si.encName)
  553. e.kStructFieldKey(fti.keyType, si)
  554. ee.WriteMapElemValue()
  555. e.encodeValue(sfn.field(si), nil, true)
  556. }
  557. } else {
  558. for _, si := range tisfi {
  559. // ee.EncodeStringEnc(cUTF8, si.encName)
  560. e.kStructFieldKey(fti.keyType, si)
  561. e.encodeValue(sfn.field(si), nil, true)
  562. }
  563. }
  564. ee.WriteMapEnd()
  565. } else {
  566. ee.WriteArrayStart(len(tisfi))
  567. if elemsep {
  568. for _, si := range tisfi {
  569. ee.WriteArrayElem()
  570. e.encodeValue(sfn.field(si), nil, true)
  571. }
  572. } else {
  573. for _, si := range tisfi {
  574. e.encodeValue(sfn.field(si), nil, true)
  575. }
  576. }
  577. ee.WriteArrayEnd()
  578. }
  579. }
  580. func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
  581. var m must
  582. // use if-else-if, not switch (which compiles to binary-search)
  583. // since keyType is typically valueTypeString, branch prediction is pretty good.
  584. if keyType == valueTypeString {
  585. if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
  586. e.w.writen1('"')
  587. e.w.writestr(s.encName)
  588. e.w.writen1('"')
  589. } else { // keyType == valueTypeString
  590. e.e.EncodeStringEnc(cUTF8, s.encName)
  591. }
  592. } else if keyType == valueTypeInt {
  593. e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
  594. } else if keyType == valueTypeUint {
  595. e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
  596. } else if keyType == valueTypeFloat {
  597. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
  598. }
  599. }
  600. func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
  601. var m must
  602. // use if-else-if, not switch (which compiles to binary-search)
  603. // since keyType is typically valueTypeString, branch prediction is pretty good.
  604. if keyType == valueTypeString {
  605. e.e.EncodeStringEnc(cUTF8, encName)
  606. } else if keyType == valueTypeInt {
  607. e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  608. } else if keyType == valueTypeUint {
  609. e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  610. } else if keyType == valueTypeFloat {
  611. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  612. }
  613. }
  614. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  615. fti := f.ti
  616. elemsep := e.esep
  617. tisfi := fti.sfiSrc
  618. var newlen int
  619. toMap := !(fti.toArray || e.h.StructToArray)
  620. var mf map[string]interface{}
  621. if f.ti.mf {
  622. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  623. toMap = true
  624. newlen += len(mf)
  625. } else if f.ti.mfp {
  626. if rv.CanAddr() {
  627. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  628. } else {
  629. // make a new addressable value of same one, and use it
  630. rv2 := reflect.New(rv.Type())
  631. rv2.Elem().Set(rv)
  632. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  633. }
  634. toMap = true
  635. newlen += len(mf)
  636. }
  637. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  638. if toMap {
  639. tisfi = fti.sfiSort
  640. }
  641. newlen += len(tisfi)
  642. ee := e.e
  643. // Use sync.Pool to reduce allocating slices unnecessarily.
  644. // The cost of sync.Pool is less than the cost of new allocation.
  645. //
  646. // Each element of the array pools one of encStructPool(8|16|32|64).
  647. // It allows the re-use of slices up to 64 in length.
  648. // A performance cost of encoding structs was collecting
  649. // which values were empty and should be omitted.
  650. // We needed slices of reflect.Value and string to collect them.
  651. // This shared pool reduces the amount of unnecessary creation we do.
  652. // The cost is that of locking sometimes, but sync.Pool is efficient
  653. // enough to reduce thread contention.
  654. var spool *sync.Pool
  655. var poolv interface{}
  656. var fkvs []sfiRv
  657. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  658. if newlen <= 8 {
  659. spool, poolv = pool.sfiRv8()
  660. fkvs = poolv.(*[8]sfiRv)[:newlen]
  661. } else if newlen <= 16 {
  662. spool, poolv = pool.sfiRv16()
  663. fkvs = poolv.(*[16]sfiRv)[:newlen]
  664. } else if newlen <= 32 {
  665. spool, poolv = pool.sfiRv32()
  666. fkvs = poolv.(*[32]sfiRv)[:newlen]
  667. } else if newlen <= 64 {
  668. spool, poolv = pool.sfiRv64()
  669. fkvs = poolv.(*[64]sfiRv)[:newlen]
  670. } else if newlen <= 128 {
  671. spool, poolv = pool.sfiRv128()
  672. fkvs = poolv.(*[128]sfiRv)[:newlen]
  673. } else {
  674. fkvs = make([]sfiRv, newlen)
  675. }
  676. newlen = 0
  677. var kv sfiRv
  678. recur := e.h.RecursiveEmptyCheck
  679. sfn := structFieldNode{v: rv, update: false}
  680. for _, si := range tisfi {
  681. // kv.r = si.field(rv, false)
  682. kv.r = sfn.field(si)
  683. if toMap {
  684. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  685. continue
  686. }
  687. kv.v = si // si.encName
  688. } else {
  689. // use the zero value.
  690. // if a reference or struct, set to nil (so you do not output too much)
  691. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  692. switch kv.r.Kind() {
  693. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  694. kv.r = reflect.Value{} //encode as nil
  695. }
  696. }
  697. }
  698. fkvs[newlen] = kv
  699. newlen++
  700. }
  701. var mflen int
  702. for k, v := range mf {
  703. if k == "" {
  704. delete(mf, k)
  705. continue
  706. }
  707. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  708. delete(mf, k)
  709. continue
  710. }
  711. mflen++
  712. }
  713. if toMap {
  714. ee.WriteMapStart(newlen + mflen)
  715. if elemsep {
  716. for j := 0; j < newlen; j++ {
  717. kv = fkvs[j]
  718. ee.WriteMapElemKey()
  719. // ee.EncodeStringEnc(cUTF8, kv.v)
  720. e.kStructFieldKey(fti.keyType, kv.v)
  721. ee.WriteMapElemValue()
  722. e.encodeValue(kv.r, nil, true)
  723. }
  724. } else {
  725. for j := 0; j < newlen; j++ {
  726. kv = fkvs[j]
  727. // ee.EncodeStringEnc(cUTF8, kv.v)
  728. e.kStructFieldKey(fti.keyType, kv.v)
  729. e.encodeValue(kv.r, nil, true)
  730. }
  731. }
  732. // now, add the others
  733. for k, v := range mf {
  734. ee.WriteMapElemKey()
  735. e.kStructFieldKeyName(fti.keyType, k)
  736. ee.WriteMapElemValue()
  737. e.encode(v)
  738. }
  739. ee.WriteMapEnd()
  740. } else {
  741. ee.WriteArrayStart(newlen)
  742. if elemsep {
  743. for j := 0; j < newlen; j++ {
  744. ee.WriteArrayElem()
  745. e.encodeValue(fkvs[j].r, nil, true)
  746. }
  747. } else {
  748. for j := 0; j < newlen; j++ {
  749. e.encodeValue(fkvs[j].r, nil, true)
  750. }
  751. }
  752. ee.WriteArrayEnd()
  753. }
  754. // do not use defer. Instead, use explicit pool return at end of function.
  755. // defer has a cost we are trying to avoid.
  756. // If there is a panic and these slices are not returned, it is ok.
  757. if spool != nil {
  758. spool.Put(poolv)
  759. }
  760. }
  761. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  762. ee := e.e
  763. if rv.IsNil() {
  764. ee.EncodeNil()
  765. return
  766. }
  767. l := rv.Len()
  768. ee.WriteMapStart(l)
  769. elemsep := e.esep
  770. if l == 0 {
  771. ee.WriteMapEnd()
  772. return
  773. }
  774. // var asSymbols bool
  775. // determine the underlying key and val encFn's for the map.
  776. // This eliminates some work which is done for each loop iteration i.e.
  777. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  778. //
  779. // However, if kind is reflect.Interface, do not pre-determine the
  780. // encoding type, because preEncodeValue may break it down to
  781. // a concrete type and kInterface will bomb.
  782. var keyFn, valFn *codecFn
  783. ti := f.ti
  784. rtkey0 := ti.key
  785. rtkey := rtkey0
  786. rtval0 := ti.elem
  787. rtval := rtval0
  788. // rtkeyid := rt2id(rtkey0)
  789. for rtval.Kind() == reflect.Ptr {
  790. rtval = rtval.Elem()
  791. }
  792. if rtval.Kind() != reflect.Interface {
  793. valFn = e.cfer().get(rtval, true, true)
  794. }
  795. mks := rv.MapKeys()
  796. if e.h.Canonical {
  797. e.kMapCanonical(rtkey, rv, mks, valFn)
  798. ee.WriteMapEnd()
  799. return
  800. }
  801. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  802. if !keyTypeIsString {
  803. for rtkey.Kind() == reflect.Ptr {
  804. rtkey = rtkey.Elem()
  805. }
  806. if rtkey.Kind() != reflect.Interface {
  807. // rtkeyid = rt2id(rtkey)
  808. keyFn = e.cfer().get(rtkey, true, true)
  809. }
  810. }
  811. // for j, lmks := 0, len(mks); j < lmks; j++ {
  812. for j := range mks {
  813. if elemsep {
  814. ee.WriteMapElemKey()
  815. }
  816. if keyTypeIsString {
  817. ee.EncodeStringEnc(cUTF8, mks[j].String())
  818. } else {
  819. e.encodeValue(mks[j], keyFn, true)
  820. }
  821. if elemsep {
  822. ee.WriteMapElemValue()
  823. }
  824. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  825. }
  826. ee.WriteMapEnd()
  827. }
  828. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  829. ee := e.e
  830. elemsep := e.esep
  831. // we previously did out-of-band if an extension was registered.
  832. // This is not necessary, as the natural kind is sufficient for ordering.
  833. switch rtkey.Kind() {
  834. case reflect.Bool:
  835. mksv := make([]boolRv, len(mks))
  836. for i, k := range mks {
  837. v := &mksv[i]
  838. v.r = k
  839. v.v = k.Bool()
  840. }
  841. sort.Sort(boolRvSlice(mksv))
  842. for i := range mksv {
  843. if elemsep {
  844. ee.WriteMapElemKey()
  845. }
  846. ee.EncodeBool(mksv[i].v)
  847. if elemsep {
  848. ee.WriteMapElemValue()
  849. }
  850. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  851. }
  852. case reflect.String:
  853. mksv := make([]stringRv, len(mks))
  854. for i, k := range mks {
  855. v := &mksv[i]
  856. v.r = k
  857. v.v = k.String()
  858. }
  859. sort.Sort(stringRvSlice(mksv))
  860. for i := range mksv {
  861. if elemsep {
  862. ee.WriteMapElemKey()
  863. }
  864. ee.EncodeStringEnc(cUTF8, mksv[i].v)
  865. if elemsep {
  866. ee.WriteMapElemValue()
  867. }
  868. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  869. }
  870. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  871. mksv := make([]uintRv, len(mks))
  872. for i, k := range mks {
  873. v := &mksv[i]
  874. v.r = k
  875. v.v = k.Uint()
  876. }
  877. sort.Sort(uintRvSlice(mksv))
  878. for i := range mksv {
  879. if elemsep {
  880. ee.WriteMapElemKey()
  881. }
  882. ee.EncodeUint(mksv[i].v)
  883. if elemsep {
  884. ee.WriteMapElemValue()
  885. }
  886. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  887. }
  888. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  889. mksv := make([]intRv, len(mks))
  890. for i, k := range mks {
  891. v := &mksv[i]
  892. v.r = k
  893. v.v = k.Int()
  894. }
  895. sort.Sort(intRvSlice(mksv))
  896. for i := range mksv {
  897. if elemsep {
  898. ee.WriteMapElemKey()
  899. }
  900. ee.EncodeInt(mksv[i].v)
  901. if elemsep {
  902. ee.WriteMapElemValue()
  903. }
  904. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  905. }
  906. case reflect.Float32:
  907. mksv := make([]floatRv, len(mks))
  908. for i, k := range mks {
  909. v := &mksv[i]
  910. v.r = k
  911. v.v = k.Float()
  912. }
  913. sort.Sort(floatRvSlice(mksv))
  914. for i := range mksv {
  915. if elemsep {
  916. ee.WriteMapElemKey()
  917. }
  918. ee.EncodeFloat32(float32(mksv[i].v))
  919. if elemsep {
  920. ee.WriteMapElemValue()
  921. }
  922. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  923. }
  924. case reflect.Float64:
  925. mksv := make([]floatRv, len(mks))
  926. for i, k := range mks {
  927. v := &mksv[i]
  928. v.r = k
  929. v.v = k.Float()
  930. }
  931. sort.Sort(floatRvSlice(mksv))
  932. for i := range mksv {
  933. if elemsep {
  934. ee.WriteMapElemKey()
  935. }
  936. ee.EncodeFloat64(mksv[i].v)
  937. if elemsep {
  938. ee.WriteMapElemValue()
  939. }
  940. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  941. }
  942. case reflect.Struct:
  943. if rv.Type() == timeTyp {
  944. mksv := make([]timeRv, len(mks))
  945. for i, k := range mks {
  946. v := &mksv[i]
  947. v.r = k
  948. v.v = rv2i(k).(time.Time)
  949. }
  950. sort.Sort(timeRvSlice(mksv))
  951. for i := range mksv {
  952. if elemsep {
  953. ee.WriteMapElemKey()
  954. }
  955. ee.EncodeTime(mksv[i].v)
  956. if elemsep {
  957. ee.WriteMapElemValue()
  958. }
  959. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  960. }
  961. break
  962. }
  963. fallthrough
  964. default:
  965. // out-of-band
  966. // first encode each key to a []byte first, then sort them, then record
  967. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  968. e2 := NewEncoderBytes(&mksv, e.hh)
  969. mksbv := make([]bytesRv, len(mks))
  970. for i, k := range mks {
  971. v := &mksbv[i]
  972. l := len(mksv)
  973. e2.MustEncode(k)
  974. v.r = k
  975. v.v = mksv[l:]
  976. }
  977. sort.Sort(bytesRvSlice(mksbv))
  978. for j := range mksbv {
  979. if elemsep {
  980. ee.WriteMapElemKey()
  981. }
  982. e.asis(mksbv[j].v)
  983. if elemsep {
  984. ee.WriteMapElemValue()
  985. }
  986. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  987. }
  988. }
  989. }
  990. // // --------------------------------------------------
  991. type encWriterSwitch struct {
  992. // wi *ioEncWriter
  993. wf bufioEncWriter
  994. wb bytesEncAppender
  995. // typ entryType
  996. wx bool // if bytes, wx=true
  997. esep bool // whether it has elem separators
  998. isas bool // whether e.as != nil
  999. js bool // captured here, so that no need to piggy back on *codecFner for this
  1000. be bool // captured here, so that no need to piggy back on *codecFner for this
  1001. _ [2]byte // padding
  1002. // _ [2]uint64 // padding
  1003. // _ uint64 // padding
  1004. }
  1005. func (z *encWriterSwitch) writeb(s []byte) {
  1006. if z.wx {
  1007. z.wb.writeb(s)
  1008. } else {
  1009. z.wf.writeb(s)
  1010. }
  1011. }
  1012. func (z *encWriterSwitch) writestr(s string) {
  1013. if z.wx {
  1014. z.wb.writestr(s)
  1015. } else {
  1016. z.wf.writestr(s)
  1017. }
  1018. }
  1019. func (z *encWriterSwitch) writen1(b1 byte) {
  1020. if z.wx {
  1021. z.wb.writen1(b1)
  1022. } else {
  1023. z.wf.writen1(b1)
  1024. }
  1025. }
  1026. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1027. if z.wx {
  1028. z.wb.writen2(b1, b2)
  1029. } else {
  1030. z.wf.writen2(b1, b2)
  1031. }
  1032. }
  1033. func (z *encWriterSwitch) atEndOfEncode() {
  1034. if z.wx {
  1035. z.wb.atEndOfEncode()
  1036. } else {
  1037. z.wf.atEndOfEncode()
  1038. }
  1039. }
  1040. /*
  1041. // ------------------------------------------
  1042. func (z *encWriterSwitch) writeb(s []byte) {
  1043. switch z.typ {
  1044. case entryTypeBytes:
  1045. z.wb.writeb(s)
  1046. case entryTypeIo:
  1047. z.wi.writeb(s)
  1048. default:
  1049. z.wf.writeb(s)
  1050. }
  1051. }
  1052. func (z *encWriterSwitch) writestr(s string) {
  1053. switch z.typ {
  1054. case entryTypeBytes:
  1055. z.wb.writestr(s)
  1056. case entryTypeIo:
  1057. z.wi.writestr(s)
  1058. default:
  1059. z.wf.writestr(s)
  1060. }
  1061. }
  1062. func (z *encWriterSwitch) writen1(b1 byte) {
  1063. switch z.typ {
  1064. case entryTypeBytes:
  1065. z.wb.writen1(b1)
  1066. case entryTypeIo:
  1067. z.wi.writen1(b1)
  1068. default:
  1069. z.wf.writen1(b1)
  1070. }
  1071. }
  1072. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1073. switch z.typ {
  1074. case entryTypeBytes:
  1075. z.wb.writen2(b1, b2)
  1076. case entryTypeIo:
  1077. z.wi.writen2(b1, b2)
  1078. default:
  1079. z.wf.writen2(b1, b2)
  1080. }
  1081. }
  1082. func (z *encWriterSwitch) atEndOfEncode() {
  1083. switch z.typ {
  1084. case entryTypeBytes:
  1085. z.wb.atEndOfEncode()
  1086. case entryTypeIo:
  1087. z.wi.atEndOfEncode()
  1088. default:
  1089. z.wf.atEndOfEncode()
  1090. }
  1091. }
  1092. // ------------------------------------------
  1093. func (z *encWriterSwitch) writeb(s []byte) {
  1094. if z.wx {
  1095. z.wb.writeb(s)
  1096. } else {
  1097. z.wi.writeb(s)
  1098. }
  1099. }
  1100. func (z *encWriterSwitch) writestr(s string) {
  1101. if z.wx {
  1102. z.wb.writestr(s)
  1103. } else {
  1104. z.wi.writestr(s)
  1105. }
  1106. }
  1107. func (z *encWriterSwitch) writen1(b1 byte) {
  1108. if z.wx {
  1109. z.wb.writen1(b1)
  1110. } else {
  1111. z.wi.writen1(b1)
  1112. }
  1113. }
  1114. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1115. if z.wx {
  1116. z.wb.writen2(b1, b2)
  1117. } else {
  1118. z.wi.writen2(b1, b2)
  1119. }
  1120. }
  1121. func (z *encWriterSwitch) atEndOfEncode() {
  1122. if z.wx {
  1123. z.wb.atEndOfEncode()
  1124. } else {
  1125. z.wi.atEndOfEncode()
  1126. }
  1127. }
  1128. */
  1129. // Encoder writes an object to an output stream in a supported format.
  1130. //
  1131. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1132. // concurrently in multiple goroutines.
  1133. //
  1134. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1135. // so its state can be reused to decode new input streams repeatedly.
  1136. // This is the idiomatic way to use.
  1137. type Encoder struct {
  1138. panicHdl
  1139. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1140. e encDriver
  1141. // NOTE: Encoder shouldn't call it's write methods,
  1142. // as the handler MAY need to do some coordination.
  1143. w *encWriterSwitch
  1144. // bw *bufio.Writer
  1145. as encDriverAsis
  1146. err error
  1147. h *BasicHandle
  1148. // ---- cpu cache line boundary? + 3
  1149. encWriterSwitch
  1150. codecFnPooler
  1151. ci set
  1152. // ---- writable fields during execution --- *try* to keep in sep cache line
  1153. // ---- cpu cache line boundary?
  1154. // b [scratchByteArrayLen]byte
  1155. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1156. b [cacheLineSize - (8 * 2)]byte // used for encoding a chan or (non-addressable) array of bytes
  1157. }
  1158. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1159. //
  1160. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  1161. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  1162. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1163. e := newEncoder(h)
  1164. e.Reset(w)
  1165. return e
  1166. }
  1167. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1168. // into a byte slice, using zero-copying to temporary slices.
  1169. //
  1170. // It will potentially replace the output byte slice pointed to.
  1171. // After encoding, the out parameter contains the encoded contents.
  1172. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1173. e := newEncoder(h)
  1174. e.ResetBytes(out)
  1175. return e
  1176. }
  1177. func newEncoder(h Handle) *Encoder {
  1178. e := &Encoder{h: h.getBasicHandle(), err: errEncoderNotInitialized}
  1179. e.w = &e.encWriterSwitch
  1180. e.hh = h
  1181. e.esep = h.hasElemSeparators()
  1182. return e
  1183. }
  1184. func (e *Encoder) resetCommon() {
  1185. // e.w = &e.encWriterSwitch
  1186. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1187. e.e = e.hh.newEncDriver(e)
  1188. e.as, e.isas = e.e.(encDriverAsis)
  1189. // e.cr, _ = e.e.(containerStateRecv)
  1190. }
  1191. e.be = e.hh.isBinary()
  1192. _, e.js = e.hh.(*JsonHandle)
  1193. e.e.reset()
  1194. e.err = nil
  1195. }
  1196. // Reset resets the Encoder with a new output stream.
  1197. //
  1198. // This accommodates using the state of the Encoder,
  1199. // where it has "cached" information about sub-engines.
  1200. func (e *Encoder) Reset(w io.Writer) {
  1201. if w == nil {
  1202. return
  1203. }
  1204. // var ok bool
  1205. e.wx = false
  1206. // e.typ = entryTypeUnset
  1207. // if e.h.WriterBufferSize > 0 {
  1208. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1209. // // e.wi.bw = bw
  1210. // // e.wi.sw = bw
  1211. // // e.wi.fw = bw
  1212. // // e.wi.ww = bw
  1213. // if e.wf == nil {
  1214. // e.wf = new(bufioEncWriter)
  1215. // }
  1216. // e.wf.reset(w, e.h.WriterBufferSize)
  1217. // e.typ = entryTypeBufio
  1218. // } else {
  1219. // if e.wi == nil {
  1220. // e.wi = new(ioEncWriter)
  1221. // }
  1222. // e.wi.reset(w)
  1223. // e.typ = entryTypeIo
  1224. // }
  1225. e.wf.reset(w, e.h.WriterBufferSize)
  1226. // e.typ = entryTypeBufio
  1227. // e.w = e.wi
  1228. e.resetCommon()
  1229. }
  1230. // ResetBytes resets the Encoder with a new destination output []byte.
  1231. func (e *Encoder) ResetBytes(out *[]byte) {
  1232. if out == nil {
  1233. return
  1234. }
  1235. var in []byte
  1236. if out != nil {
  1237. in = *out
  1238. }
  1239. if in == nil {
  1240. in = make([]byte, defEncByteBufSize)
  1241. }
  1242. e.wx = true
  1243. // e.typ = entryTypeBytes
  1244. e.wb.reset(in, out)
  1245. // e.w = &e.wb
  1246. e.resetCommon()
  1247. }
  1248. // Encode writes an object into a stream.
  1249. //
  1250. // Encoding can be configured via the struct tag for the fields.
  1251. // The key (in the struct tags) that we look at is configurable.
  1252. //
  1253. // By default, we look up the "codec" key in the struct field's tags,
  1254. // and fall bak to the "json" key if "codec" is absent.
  1255. // That key in struct field's tag value is the key name,
  1256. // followed by an optional comma and options.
  1257. //
  1258. // To set an option on all fields (e.g. omitempty on all fields), you
  1259. // can create a field called _struct, and set flags on it. The options
  1260. // which can be set on _struct are:
  1261. // - omitempty: so all fields are omitted if empty
  1262. // - toarray: so struct is encoded as an array
  1263. // - int: so struct key names are encoded as signed integers (instead of strings)
  1264. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1265. // - float: so struct key names are encoded as floats (instead of strings)
  1266. // More details on these below.
  1267. //
  1268. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1269. // - the field's tag is "-", OR
  1270. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1271. //
  1272. // When encoding as a map, the first string in the tag (before the comma)
  1273. // is the map key string to use when encoding.
  1274. // ...
  1275. // This key is typically encoded as a string.
  1276. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1277. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1278. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1279. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1280. // This is done with the int,uint or float option on the _struct field (see above).
  1281. //
  1282. // However, struct values may encode as arrays. This happens when:
  1283. // - StructToArray Encode option is set, OR
  1284. // - the tag on the _struct field sets the "toarray" option
  1285. // Note that omitempty is ignored when encoding struct values as arrays,
  1286. // as an entry must be encoded for each field, to maintain its position.
  1287. //
  1288. // Values with types that implement MapBySlice are encoded as stream maps.
  1289. //
  1290. // The empty values (for omitempty option) are false, 0, any nil pointer
  1291. // or interface value, and any array, slice, map, or string of length zero.
  1292. //
  1293. // Anonymous fields are encoded inline except:
  1294. // - the struct tag specifies a replacement name (first value)
  1295. // - the field is of an interface type
  1296. //
  1297. // Examples:
  1298. //
  1299. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1300. // type MyStruct struct {
  1301. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1302. // Field1 string `codec:"-"` //skip this field
  1303. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1304. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1305. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1306. // io.Reader //use key "Reader".
  1307. // MyStruct `codec:"my1" //use key "my1".
  1308. // MyStruct //inline it
  1309. // ...
  1310. // }
  1311. //
  1312. // type MyStruct struct {
  1313. // _struct bool `codec:",toarray"` //encode struct as an array
  1314. // }
  1315. //
  1316. // type MyStruct struct {
  1317. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1318. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1319. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1320. // }
  1321. //
  1322. // The mode of encoding is based on the type of the value. When a value is seen:
  1323. // - If a Selfer, call its CodecEncodeSelf method
  1324. // - If an extension is registered for it, call that extension function
  1325. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1326. // - Else encode it based on its reflect.Kind
  1327. //
  1328. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1329. // Some formats support symbols (e.g. binc) and will properly encode the string
  1330. // only once in the stream, and use a tag to refer to it thereafter.
  1331. func (e *Encoder) Encode(v interface{}) (err error) {
  1332. // tried to use closure, as runtime optimizes defer with no params.
  1333. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1334. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1335. // defer func() { e.deferred(&err) }() }
  1336. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1337. defer e.deferred(&err)
  1338. e.MustEncode(v)
  1339. return
  1340. }
  1341. // MustEncode is like Encode, but panics if unable to Encode.
  1342. // This provides insight to the code location that triggered the error.
  1343. func (e *Encoder) MustEncode(v interface{}) {
  1344. if e.err != nil {
  1345. panic(e.err)
  1346. }
  1347. e.encode(v)
  1348. e.e.atEndOfEncode()
  1349. e.w.atEndOfEncode()
  1350. e.alwaysAtEnd()
  1351. }
  1352. func (e *Encoder) deferred(err1 *error) {
  1353. e.alwaysAtEnd()
  1354. if recoverPanicToErr {
  1355. if x := recover(); x != nil {
  1356. panicValToErr(e, x, err1)
  1357. panicValToErr(e, x, &e.err)
  1358. }
  1359. }
  1360. }
  1361. // func (e *Encoder) alwaysAtEnd() {
  1362. // e.codecFnPooler.alwaysAtEnd()
  1363. // }
  1364. func (e *Encoder) encode(iv interface{}) {
  1365. if iv == nil || definitelyNil(iv) {
  1366. e.e.EncodeNil()
  1367. return
  1368. }
  1369. if v, ok := iv.(Selfer); ok {
  1370. v.CodecEncodeSelf(e)
  1371. return
  1372. }
  1373. // a switch with only concrete types can be optimized.
  1374. // consequently, we deal with nil and interfaces outside.
  1375. switch v := iv.(type) {
  1376. case Raw:
  1377. e.rawBytes(v)
  1378. case reflect.Value:
  1379. e.encodeValue(v, nil, true)
  1380. case string:
  1381. e.e.EncodeStringEnc(cUTF8, v)
  1382. case bool:
  1383. e.e.EncodeBool(v)
  1384. case int:
  1385. e.e.EncodeInt(int64(v))
  1386. case int8:
  1387. e.e.EncodeInt(int64(v))
  1388. case int16:
  1389. e.e.EncodeInt(int64(v))
  1390. case int32:
  1391. e.e.EncodeInt(int64(v))
  1392. case int64:
  1393. e.e.EncodeInt(v)
  1394. case uint:
  1395. e.e.EncodeUint(uint64(v))
  1396. case uint8:
  1397. e.e.EncodeUint(uint64(v))
  1398. case uint16:
  1399. e.e.EncodeUint(uint64(v))
  1400. case uint32:
  1401. e.e.EncodeUint(uint64(v))
  1402. case uint64:
  1403. e.e.EncodeUint(v)
  1404. case uintptr:
  1405. e.e.EncodeUint(uint64(v))
  1406. case float32:
  1407. e.e.EncodeFloat32(v)
  1408. case float64:
  1409. e.e.EncodeFloat64(v)
  1410. case time.Time:
  1411. e.e.EncodeTime(v)
  1412. case []uint8:
  1413. e.e.EncodeStringBytesRaw(v)
  1414. case *Raw:
  1415. e.rawBytes(*v)
  1416. case *string:
  1417. e.e.EncodeStringEnc(cUTF8, *v)
  1418. case *bool:
  1419. e.e.EncodeBool(*v)
  1420. case *int:
  1421. e.e.EncodeInt(int64(*v))
  1422. case *int8:
  1423. e.e.EncodeInt(int64(*v))
  1424. case *int16:
  1425. e.e.EncodeInt(int64(*v))
  1426. case *int32:
  1427. e.e.EncodeInt(int64(*v))
  1428. case *int64:
  1429. e.e.EncodeInt(*v)
  1430. case *uint:
  1431. e.e.EncodeUint(uint64(*v))
  1432. case *uint8:
  1433. e.e.EncodeUint(uint64(*v))
  1434. case *uint16:
  1435. e.e.EncodeUint(uint64(*v))
  1436. case *uint32:
  1437. e.e.EncodeUint(uint64(*v))
  1438. case *uint64:
  1439. e.e.EncodeUint(*v)
  1440. case *uintptr:
  1441. e.e.EncodeUint(uint64(*v))
  1442. case *float32:
  1443. e.e.EncodeFloat32(*v)
  1444. case *float64:
  1445. e.e.EncodeFloat64(*v)
  1446. case *time.Time:
  1447. e.e.EncodeTime(*v)
  1448. case *[]uint8:
  1449. e.e.EncodeStringBytesRaw(*v)
  1450. default:
  1451. if !fastpathEncodeTypeSwitch(iv, e) {
  1452. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1453. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1454. }
  1455. }
  1456. }
  1457. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1458. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1459. var sptr uintptr
  1460. var rvp reflect.Value
  1461. var rvpValid bool
  1462. TOP:
  1463. switch rv.Kind() {
  1464. case reflect.Ptr:
  1465. if rv.IsNil() {
  1466. e.e.EncodeNil()
  1467. return
  1468. }
  1469. rvpValid = true
  1470. rvp = rv
  1471. rv = rv.Elem()
  1472. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1473. // TODO: Movable pointers will be an issue here. Future problem.
  1474. sptr = rv.UnsafeAddr()
  1475. break TOP
  1476. }
  1477. goto TOP
  1478. case reflect.Interface:
  1479. if rv.IsNil() {
  1480. e.e.EncodeNil()
  1481. return
  1482. }
  1483. rv = rv.Elem()
  1484. goto TOP
  1485. case reflect.Slice, reflect.Map:
  1486. if rv.IsNil() {
  1487. e.e.EncodeNil()
  1488. return
  1489. }
  1490. case reflect.Invalid, reflect.Func:
  1491. e.e.EncodeNil()
  1492. return
  1493. }
  1494. if sptr != 0 && (&e.ci).add(sptr) {
  1495. e.errorf("circular reference found: # %d", sptr)
  1496. }
  1497. if fn == nil {
  1498. rt := rv.Type()
  1499. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1500. fn = e.cfer().get(rt, checkFastpath, true)
  1501. }
  1502. if fn.i.addrE {
  1503. if rvpValid {
  1504. fn.fe(e, &fn.i, rvp)
  1505. } else if rv.CanAddr() {
  1506. fn.fe(e, &fn.i, rv.Addr())
  1507. } else {
  1508. rv2 := reflect.New(rv.Type())
  1509. rv2.Elem().Set(rv)
  1510. fn.fe(e, &fn.i, rv2)
  1511. }
  1512. } else {
  1513. fn.fe(e, &fn.i, rv)
  1514. }
  1515. if sptr != 0 {
  1516. (&e.ci).remove(sptr)
  1517. }
  1518. }
  1519. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1520. // if fnerr != nil {
  1521. // panic(fnerr)
  1522. // }
  1523. // if bs == nil {
  1524. // e.e.EncodeNil()
  1525. // } else if asis {
  1526. // e.asis(bs)
  1527. // } else {
  1528. // e.e.EncodeStringBytes(c, bs)
  1529. // }
  1530. // }
  1531. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1532. if fnerr != nil {
  1533. panic(fnerr)
  1534. }
  1535. if bs == nil {
  1536. e.e.EncodeNil()
  1537. } else {
  1538. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1539. }
  1540. }
  1541. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1542. if fnerr != nil {
  1543. panic(fnerr)
  1544. }
  1545. if bs == nil {
  1546. e.e.EncodeNil()
  1547. } else {
  1548. e.asis(bs)
  1549. }
  1550. }
  1551. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1552. if fnerr != nil {
  1553. panic(fnerr)
  1554. }
  1555. if bs == nil {
  1556. e.e.EncodeNil()
  1557. } else {
  1558. e.e.EncodeStringBytesRaw(bs)
  1559. }
  1560. }
  1561. func (e *Encoder) asis(v []byte) {
  1562. if e.isas {
  1563. e.as.EncodeAsis(v)
  1564. } else {
  1565. e.w.writeb(v)
  1566. }
  1567. }
  1568. func (e *Encoder) rawBytes(vv Raw) {
  1569. v := []byte(vv)
  1570. if !e.h.Raw {
  1571. e.errorf("Raw values cannot be encoded: %v", v)
  1572. }
  1573. e.asis(v)
  1574. }
  1575. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1576. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1577. }