encode.go 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "fmt"
  7. "io"
  8. "reflect"
  9. "sort"
  10. "sync"
  11. )
  12. const defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  13. // AsSymbolFlag defines what should be encoded as symbols.
  14. type AsSymbolFlag uint8
  15. const (
  16. // AsSymbolDefault is default.
  17. // Currently, this means only encode struct field names as symbols.
  18. // The default is subject to change.
  19. AsSymbolDefault AsSymbolFlag = iota
  20. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  21. AsSymbolAll = 0xfe
  22. // AsSymbolNone means do not encode anything as a symbol.
  23. AsSymbolNone = 1 << iota
  24. // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
  25. AsSymbolMapStringKeysFlag
  26. // AsSymbolStructFieldName means encode struct field names as symbols.
  27. AsSymbolStructFieldNameFlag
  28. )
  29. // encWriter abstracts writing to a byte array or to an io.Writer.
  30. type encWriter interface {
  31. writeb([]byte)
  32. writestr(string)
  33. writen1(byte)
  34. writen2(byte, byte)
  35. writen4(byte, byte, byte, byte)
  36. writen5(byte, byte, byte, byte, byte)
  37. atEndOfEncode()
  38. }
  39. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  40. type encDriver interface {
  41. // IsBuiltinType(rt uintptr) bool
  42. EncodeBuiltin(rt uintptr, v interface{})
  43. EncodeNil()
  44. EncodeInt(i int64)
  45. EncodeUint(i uint64)
  46. EncodeBool(b bool)
  47. EncodeFloat32(f float32)
  48. EncodeFloat64(f float64)
  49. // encodeExtPreamble(xtag byte, length int)
  50. EncodeRawExt(re *RawExt, e *Encoder)
  51. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  52. EncodeArrayStart(length int)
  53. EncodeMapStart(length int)
  54. EncodeString(c charEncoding, v string)
  55. EncodeSymbol(v string)
  56. EncodeStringBytes(c charEncoding, v []byte)
  57. //TODO
  58. //encBignum(f *big.Int)
  59. //encStringRunes(c charEncoding, v []rune)
  60. reset()
  61. }
  62. type encDriverAsis interface {
  63. EncodeAsis(v []byte)
  64. }
  65. type encNoSeparator struct{}
  66. func (_ encNoSeparator) EncodeEnd() {}
  67. type ioEncWriterWriter interface {
  68. WriteByte(c byte) error
  69. WriteString(s string) (n int, err error)
  70. Write(p []byte) (n int, err error)
  71. }
  72. type ioEncStringWriter interface {
  73. WriteString(s string) (n int, err error)
  74. }
  75. type EncodeOptions struct {
  76. // Encode a struct as an array, and not as a map
  77. StructToArray bool
  78. // Canonical representation means that encoding a value will always result in the same
  79. // sequence of bytes.
  80. //
  81. // This only affects maps, as the iteration order for maps is random.
  82. //
  83. // The implementation MAY use the natural sort order for the map keys if possible:
  84. //
  85. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  86. // then the map keys are first sorted in natural order and then written
  87. // with corresponding map values to the strema.
  88. // - If there is no natural sort order, then the map keys will first be
  89. // encoded into []byte, and then sorted,
  90. // before writing the sorted keys and the corresponding map values to the stream.
  91. //
  92. Canonical bool
  93. // CheckCircularRef controls whether we check for circular references
  94. // and error fast during an encode.
  95. //
  96. // If enabled, an error is received if a pointer to a struct
  97. // references itself either directly or through one of its fields (iteratively).
  98. //
  99. // This is opt-in, as there may be a performance hit to checking circular references.
  100. CheckCircularRef bool
  101. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  102. // when checking if a value is empty.
  103. //
  104. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  105. RecursiveEmptyCheck bool
  106. // Raw controls whether we encode Raw values.
  107. // This is a "dangerous" option and must be explicitly set.
  108. // If set, we blindly encode Raw values as-is, without checking
  109. // if they are a correct representation of a value in that format.
  110. // If unset, we error out.
  111. Raw bool
  112. // AsSymbols defines what should be encoded as symbols.
  113. //
  114. // Encoding as symbols can reduce the encoded size significantly.
  115. //
  116. // However, during decoding, each string to be encoded as a symbol must
  117. // be checked to see if it has been seen before. Consequently, encoding time
  118. // will increase if using symbols, because string comparisons has a clear cost.
  119. //
  120. // Sample values:
  121. // AsSymbolNone
  122. // AsSymbolAll
  123. // AsSymbolMapStringKeys
  124. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  125. AsSymbols AsSymbolFlag
  126. }
  127. // ---------------------------------------------
  128. type simpleIoEncWriterWriter struct {
  129. w io.Writer
  130. bw io.ByteWriter
  131. sw ioEncStringWriter
  132. bs [1]byte
  133. }
  134. func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
  135. if o.bw != nil {
  136. return o.bw.WriteByte(c)
  137. }
  138. // _, err = o.w.Write([]byte{c})
  139. o.bs[0] = c
  140. _, err = o.w.Write(o.bs[:])
  141. return
  142. }
  143. func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
  144. if o.sw != nil {
  145. return o.sw.WriteString(s)
  146. }
  147. // return o.w.Write([]byte(s))
  148. return o.w.Write(bytesView(s))
  149. }
  150. func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
  151. return o.w.Write(p)
  152. }
  153. // ----------------------------------------
  154. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  155. type ioEncWriter struct {
  156. w ioEncWriterWriter
  157. s simpleIoEncWriterWriter
  158. // x [8]byte // temp byte array re-used internally for efficiency
  159. }
  160. func (z *ioEncWriter) writeb(bs []byte) {
  161. if len(bs) == 0 {
  162. return
  163. }
  164. n, err := z.w.Write(bs)
  165. if err != nil {
  166. panic(err)
  167. }
  168. if n != len(bs) {
  169. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n))
  170. }
  171. }
  172. func (z *ioEncWriter) writestr(s string) {
  173. if len(s) == 0 {
  174. return
  175. }
  176. n, err := z.w.WriteString(s)
  177. if err != nil {
  178. panic(err)
  179. }
  180. if n != len(s) {
  181. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n))
  182. }
  183. }
  184. func (z *ioEncWriter) writen1(b byte) {
  185. if err := z.w.WriteByte(b); err != nil {
  186. panic(err)
  187. }
  188. }
  189. func (z *ioEncWriter) writen2(b1, b2 byte) {
  190. for _, b := range [...]byte{b1, b2} {
  191. if err := z.w.WriteByte(b); err != nil {
  192. panic(err)
  193. }
  194. }
  195. }
  196. func (z *ioEncWriter) writen4(b1, b2, b3, b4 byte) {
  197. for _, b := range [...]byte{b1, b2, b3, b4} {
  198. if err := z.w.WriteByte(b); err != nil {
  199. panic(err)
  200. }
  201. }
  202. }
  203. func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  204. for _, b := range [...]byte{b1, b2, b3, b4, b5} {
  205. if err := z.w.WriteByte(b); err != nil {
  206. panic(err)
  207. }
  208. }
  209. }
  210. func (z *ioEncWriter) atEndOfEncode() {}
  211. // ----------------------------------------
  212. // bytesEncWriter implements encWriter and can write to an byte slice.
  213. // It is used by Marshal function.
  214. type bytesEncWriter struct {
  215. b []byte
  216. c int // cursor
  217. out *[]byte // write out on atEndOfEncode
  218. }
  219. func (z *bytesEncWriter) writeb(s []byte) {
  220. slen := len(s)
  221. if slen == 0 {
  222. return
  223. }
  224. oc, a := z.growNoAlloc(slen)
  225. if a {
  226. z.growAlloc(slen, oc)
  227. }
  228. copy(z.b[oc:], s)
  229. }
  230. func (z *bytesEncWriter) writestr(s string) {
  231. slen := len(s)
  232. if slen == 0 {
  233. return
  234. }
  235. oc, a := z.growNoAlloc(slen)
  236. if a {
  237. z.growAlloc(slen, oc)
  238. }
  239. copy(z.b[oc:], s)
  240. }
  241. func (z *bytesEncWriter) writen1(b1 byte) {
  242. oc, a := z.growNoAlloc(1)
  243. if a {
  244. z.growAlloc(1, oc)
  245. }
  246. z.b[oc] = b1
  247. }
  248. func (z *bytesEncWriter) writen2(b1, b2 byte) {
  249. oc, a := z.growNoAlloc(2)
  250. if a {
  251. z.growAlloc(2, oc)
  252. }
  253. z.b[oc+1] = b2
  254. z.b[oc] = b1
  255. }
  256. func (z *bytesEncWriter) writen4(b1, b2, b3, b4 byte) {
  257. oc, a := z.growNoAlloc(4)
  258. if a {
  259. z.growAlloc(4, oc)
  260. }
  261. z.b[oc+3] = b4
  262. z.b[oc+2] = b3
  263. z.b[oc+1] = b2
  264. z.b[oc] = b1
  265. }
  266. func (z *bytesEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  267. oc, a := z.growNoAlloc(5)
  268. if a {
  269. z.growAlloc(5, oc)
  270. }
  271. z.b[oc+4] = b5
  272. z.b[oc+3] = b4
  273. z.b[oc+2] = b3
  274. z.b[oc+1] = b2
  275. z.b[oc] = b1
  276. }
  277. func (z *bytesEncWriter) atEndOfEncode() {
  278. *(z.out) = z.b[:z.c]
  279. }
  280. // have a growNoalloc(n int), which can be inlined.
  281. // if allocation is needed, then call growAlloc(n int)
  282. func (z *bytesEncWriter) growNoAlloc(n int) (oldcursor int, allocNeeded bool) {
  283. oldcursor = z.c
  284. z.c = z.c + n
  285. if z.c > len(z.b) {
  286. if z.c > cap(z.b) {
  287. allocNeeded = true
  288. } else {
  289. z.b = z.b[:cap(z.b)]
  290. }
  291. }
  292. return
  293. }
  294. func (z *bytesEncWriter) growAlloc(n int, oldcursor int) {
  295. // appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
  296. // bytes.Buffer model (2*cap + n): much better
  297. // bs := make([]byte, 2*cap(z.b)+n)
  298. bs := make([]byte, growCap(cap(z.b), 1, n))
  299. copy(bs, z.b[:oldcursor])
  300. z.b = bs
  301. }
  302. // ---------------------------------------------
  303. func (e *Encoder) builtin(f *codecFnInfo, rv reflect.Value) {
  304. e.e.EncodeBuiltin(f.ti.rtid, rv2i(rv))
  305. }
  306. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  307. e.rawBytes(rv2i(rv).(Raw))
  308. }
  309. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  310. // rev := rv2i(rv).(RawExt)
  311. // e.e.EncodeRawExt(&rev, e)
  312. var re *RawExt
  313. if rv.CanAddr() {
  314. re = rv2i(rv.Addr()).(*RawExt)
  315. } else {
  316. rev := rv2i(rv).(RawExt)
  317. re = &rev
  318. }
  319. e.e.EncodeRawExt(re, e)
  320. }
  321. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  322. // if this is a struct|array and it was addressable, then pass the address directly (not the value)
  323. if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
  324. rv = rv.Addr()
  325. }
  326. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  327. }
  328. func (e *Encoder) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
  329. if indir == 0 {
  330. v = rv2i(rv)
  331. } else if indir == -1 {
  332. // If a non-pointer was passed to Encode(), then that value is not addressable.
  333. // Take addr if addressable, else copy value to an addressable value.
  334. if rv.CanAddr() {
  335. v = rv2i(rv.Addr())
  336. } else {
  337. rv2 := reflect.New(rv.Type())
  338. rv2.Elem().Set(rv)
  339. v = rv2i(rv2)
  340. }
  341. } else {
  342. for j := int8(0); j < indir; j++ {
  343. if rv.IsNil() {
  344. e.e.EncodeNil()
  345. return
  346. }
  347. rv = rv.Elem()
  348. }
  349. v = rv2i(rv)
  350. }
  351. return v, true
  352. }
  353. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  354. if v, proceed := e.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
  355. v.(Selfer).CodecEncodeSelf(e)
  356. }
  357. }
  358. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  359. if v, proceed := e.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
  360. bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
  361. e.marshal(bs, fnerr, false, c_RAW)
  362. }
  363. }
  364. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  365. if v, proceed := e.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
  366. bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
  367. e.marshal(bs, fnerr, false, c_UTF8)
  368. }
  369. }
  370. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  371. if v, proceed := e.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
  372. bs, fnerr := v.(jsonMarshaler).MarshalJSON()
  373. e.marshal(bs, fnerr, true, c_UTF8)
  374. }
  375. }
  376. func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
  377. e.e.EncodeBool(rv.Bool())
  378. }
  379. func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
  380. e.e.EncodeString(c_UTF8, rv.String())
  381. }
  382. func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
  383. e.e.EncodeFloat64(rv.Float())
  384. }
  385. func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
  386. e.e.EncodeFloat32(float32(rv.Float()))
  387. }
  388. func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
  389. e.e.EncodeInt(rv.Int())
  390. }
  391. func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
  392. e.e.EncodeUint(rv.Uint())
  393. }
  394. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  395. e.e.EncodeNil()
  396. }
  397. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  398. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  399. }
  400. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  401. ti := f.ti
  402. // array may be non-addressable, so we have to manage with care
  403. // (don't call rv.Bytes, rv.Slice, etc).
  404. // E.g. type struct S{B [2]byte};
  405. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  406. if f.seq != seqTypeArray {
  407. if rv.IsNil() {
  408. e.e.EncodeNil()
  409. return
  410. }
  411. // If in this method, then there was no extension function defined.
  412. // So it's okay to treat as []byte.
  413. if ti.rtid == uint8SliceTypId {
  414. e.e.EncodeStringBytes(c_RAW, rv.Bytes())
  415. return
  416. }
  417. }
  418. cr := e.cr
  419. rtelem := ti.rt.Elem()
  420. l := rv.Len()
  421. if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
  422. switch f.seq {
  423. case seqTypeArray:
  424. if rv.CanAddr() {
  425. e.e.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
  426. } else {
  427. var bs []byte
  428. if l <= cap(e.b) {
  429. bs = e.b[:l]
  430. } else {
  431. bs = make([]byte, l)
  432. }
  433. reflect.Copy(reflect.ValueOf(bs), rv)
  434. e.e.EncodeStringBytes(c_RAW, bs)
  435. }
  436. return
  437. case seqTypeSlice:
  438. e.e.EncodeStringBytes(c_RAW, rv.Bytes())
  439. return
  440. }
  441. }
  442. if ti.rtid == uint8SliceTypId && f.seq == seqTypeChan {
  443. bs := e.b[:0]
  444. // do not use range, so that the number of elements encoded
  445. // does not change, and encoding does not hang waiting on someone to close chan.
  446. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  447. ch := rv2i(rv).(<-chan byte)
  448. for i := 0; i < l; i++ {
  449. bs = append(bs, <-ch)
  450. }
  451. e.e.EncodeStringBytes(c_RAW, bs)
  452. return
  453. }
  454. if ti.mbs {
  455. if l%2 == 1 {
  456. e.errorf("mapBySlice requires even slice length, but got %v", l)
  457. return
  458. }
  459. e.e.EncodeMapStart(l / 2)
  460. } else {
  461. e.e.EncodeArrayStart(l)
  462. }
  463. if l > 0 {
  464. var fn *codecFn
  465. var recognizedVtyp = useLookupRecognizedTypes && isRecognizedRtidOrPtr(rt2id(rtelem))
  466. if !recognizedVtyp {
  467. for rtelem.Kind() == reflect.Ptr {
  468. rtelem = rtelem.Elem()
  469. }
  470. // if kind is reflect.Interface, do not pre-determine the
  471. // encoding type, because preEncodeValue may break it down to
  472. // a concrete type and kInterface will bomb.
  473. if rtelem.Kind() != reflect.Interface {
  474. fn = e.cf.get(rtelem, true, true)
  475. }
  476. }
  477. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  478. for j := 0; j < l; j++ {
  479. if cr != nil {
  480. if ti.mbs {
  481. if j%2 == 0 {
  482. cr.sendContainerState(containerMapKey)
  483. } else {
  484. cr.sendContainerState(containerMapValue)
  485. }
  486. } else {
  487. cr.sendContainerState(containerArrayElem)
  488. }
  489. }
  490. if f.seq == seqTypeChan {
  491. if rv2, ok2 := rv.Recv(); ok2 {
  492. if useLookupRecognizedTypes && recognizedVtyp {
  493. e.encode(rv2i(rv2))
  494. } else {
  495. e.encodeValue(rv2, fn, true)
  496. }
  497. } else {
  498. e.e.EncodeNil() // WE HAVE TO DO SOMETHING, so nil if nothing received.
  499. }
  500. } else {
  501. if useLookupRecognizedTypes && recognizedVtyp {
  502. e.encode(rv2i(rv.Index(j)))
  503. } else {
  504. e.encodeValue(rv.Index(j), fn, true)
  505. }
  506. }
  507. }
  508. }
  509. if cr != nil {
  510. if ti.mbs {
  511. cr.sendContainerState(containerMapEnd)
  512. } else {
  513. cr.sendContainerState(containerArrayEnd)
  514. }
  515. }
  516. }
  517. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  518. fti := f.ti
  519. cr := e.cr
  520. tisfi := fti.sfip
  521. toMap := !(fti.toArray || e.h.StructToArray)
  522. if toMap {
  523. tisfi = fti.sfi
  524. }
  525. ee := e.e
  526. sfn := structFieldNode{v: rv, update: false}
  527. if toMap {
  528. ee.EncodeMapStart(len(tisfi))
  529. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  530. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  531. if cr == nil {
  532. for _, si := range tisfi {
  533. if asSymbols {
  534. ee.EncodeSymbol(si.encName)
  535. } else {
  536. ee.EncodeString(c_UTF8, si.encName)
  537. }
  538. e.encodeValue(sfn.field(si), nil, true)
  539. }
  540. } else {
  541. for _, si := range tisfi {
  542. cr.sendContainerState(containerMapKey)
  543. if asSymbols {
  544. ee.EncodeSymbol(si.encName)
  545. } else {
  546. ee.EncodeString(c_UTF8, si.encName)
  547. }
  548. cr.sendContainerState(containerMapValue)
  549. e.encodeValue(sfn.field(si), nil, true)
  550. }
  551. cr.sendContainerState(containerMapEnd)
  552. }
  553. } else {
  554. ee.EncodeArrayStart(len(tisfi))
  555. if cr == nil {
  556. for _, si := range tisfi {
  557. e.encodeValue(sfn.field(si), nil, true)
  558. }
  559. } else {
  560. for _, si := range tisfi {
  561. cr.sendContainerState(containerArrayElem)
  562. e.encodeValue(sfn.field(si), nil, true)
  563. }
  564. cr.sendContainerState(containerArrayEnd)
  565. }
  566. }
  567. }
  568. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  569. fti := f.ti
  570. cr := e.cr
  571. tisfi := fti.sfip
  572. toMap := !(fti.toArray || e.h.StructToArray)
  573. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  574. if toMap {
  575. tisfi = fti.sfi
  576. }
  577. newlen := len(fti.sfi)
  578. ee := e.e
  579. // Use sync.Pool to reduce allocating slices unnecessarily.
  580. // The cost of sync.Pool is less than the cost of new allocation.
  581. //
  582. // Each element of the array pools one of encStructPool(8|16|32|64).
  583. // It allows the re-use of slices up to 64 in length.
  584. // A performance cost of encoding structs was collecting
  585. // which values were empty and should be omitted.
  586. // We needed slices of reflect.Value and string to collect them.
  587. // This shared pool reduces the amount of unnecessary creation we do.
  588. // The cost is that of locking sometimes, but sync.Pool is efficient
  589. // enough to reduce thread contention.
  590. var spool *sync.Pool
  591. var poolv interface{}
  592. var fkvs []stringRv
  593. if newlen <= 8 {
  594. spool, poolv = pool.stringRv8()
  595. fkvs = poolv.(*[8]stringRv)[:newlen]
  596. } else if newlen <= 16 {
  597. spool, poolv = pool.stringRv16()
  598. fkvs = poolv.(*[16]stringRv)[:newlen]
  599. } else if newlen <= 32 {
  600. spool, poolv = pool.stringRv32()
  601. fkvs = poolv.(*[32]stringRv)[:newlen]
  602. } else if newlen <= 64 {
  603. spool, poolv = pool.stringRv64()
  604. fkvs = poolv.(*[64]stringRv)[:newlen]
  605. } else if newlen <= 128 {
  606. spool, poolv = pool.stringRv128()
  607. fkvs = poolv.(*[128]stringRv)[:newlen]
  608. } else {
  609. fkvs = make([]stringRv, newlen)
  610. }
  611. newlen = 0
  612. var kv stringRv
  613. recur := e.h.RecursiveEmptyCheck
  614. sfn := structFieldNode{v: rv, update: false}
  615. for _, si := range tisfi {
  616. // kv.r = si.field(rv, false)
  617. kv.r = sfn.field(si)
  618. if toMap {
  619. if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
  620. continue
  621. }
  622. kv.v = si.encName
  623. } else {
  624. // use the zero value.
  625. // if a reference or struct, set to nil (so you do not output too much)
  626. if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
  627. switch kv.r.Kind() {
  628. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  629. kv.r = reflect.Value{} //encode as nil
  630. }
  631. }
  632. }
  633. fkvs[newlen] = kv
  634. newlen++
  635. }
  636. if toMap {
  637. ee.EncodeMapStart(newlen)
  638. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  639. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  640. if cr == nil {
  641. for j := 0; j < newlen; j++ {
  642. kv = fkvs[j]
  643. if asSymbols {
  644. ee.EncodeSymbol(kv.v)
  645. } else {
  646. ee.EncodeString(c_UTF8, kv.v)
  647. }
  648. e.encodeValue(kv.r, nil, true)
  649. }
  650. } else {
  651. for j := 0; j < newlen; j++ {
  652. kv = fkvs[j]
  653. cr.sendContainerState(containerMapKey)
  654. if asSymbols {
  655. ee.EncodeSymbol(kv.v)
  656. } else {
  657. ee.EncodeString(c_UTF8, kv.v)
  658. }
  659. cr.sendContainerState(containerMapValue)
  660. e.encodeValue(kv.r, nil, true)
  661. }
  662. cr.sendContainerState(containerMapEnd)
  663. }
  664. } else {
  665. ee.EncodeArrayStart(newlen)
  666. if cr == nil {
  667. for j := 0; j < newlen; j++ {
  668. e.encodeValue(fkvs[j].r, nil, true)
  669. }
  670. } else {
  671. for j := 0; j < newlen; j++ {
  672. cr.sendContainerState(containerArrayElem)
  673. e.encodeValue(fkvs[j].r, nil, true)
  674. }
  675. cr.sendContainerState(containerArrayEnd)
  676. }
  677. }
  678. // do not use defer. Instead, use explicit pool return at end of function.
  679. // defer has a cost we are trying to avoid.
  680. // If there is a panic and these slices are not returned, it is ok.
  681. if spool != nil {
  682. spool.Put(poolv)
  683. }
  684. }
  685. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  686. ee := e.e
  687. if rv.IsNil() {
  688. ee.EncodeNil()
  689. return
  690. }
  691. l := rv.Len()
  692. ee.EncodeMapStart(l)
  693. cr := e.cr
  694. if l == 0 {
  695. if cr != nil {
  696. cr.sendContainerState(containerMapEnd)
  697. }
  698. return
  699. }
  700. var asSymbols bool
  701. // determine the underlying key and val encFn's for the map.
  702. // This eliminates some work which is done for each loop iteration i.e.
  703. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  704. //
  705. // However, if kind is reflect.Interface, do not pre-determine the
  706. // encoding type, because preEncodeValue may break it down to
  707. // a concrete type and kInterface will bomb.
  708. var keyFn, valFn *codecFn
  709. ti := f.ti
  710. rtkey0 := ti.rt.Key()
  711. rtkey := rtkey0
  712. rtval0 := ti.rt.Elem()
  713. rtval := rtval0
  714. rtkeyid := rt2id(rtkey0)
  715. rtvalid := rt2id(rtval0)
  716. for rtval.Kind() == reflect.Ptr {
  717. rtval = rtval.Elem()
  718. }
  719. if rtval.Kind() != reflect.Interface {
  720. valFn = e.cf.get(rtval, true, true)
  721. }
  722. mks := rv.MapKeys()
  723. if e.h.Canonical {
  724. e.kMapCanonical(rtkey, rv, mks, valFn, asSymbols)
  725. if cr != nil {
  726. cr.sendContainerState(containerMapEnd)
  727. }
  728. return
  729. }
  730. var recognizedKtyp, recognizedVtyp bool
  731. var keyTypeIsString = rtkeyid == stringTypId
  732. if keyTypeIsString {
  733. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  734. } else {
  735. if useLookupRecognizedTypes {
  736. if recognizedKtyp = isRecognizedRtidOrPtr(rtkeyid); recognizedKtyp {
  737. goto LABEL1
  738. }
  739. }
  740. for rtkey.Kind() == reflect.Ptr {
  741. rtkey = rtkey.Elem()
  742. }
  743. if rtkey.Kind() != reflect.Interface {
  744. rtkeyid = rt2id(rtkey)
  745. keyFn = e.cf.get(rtkey, true, true)
  746. }
  747. }
  748. // for j, lmks := 0, len(mks); j < lmks; j++ {
  749. LABEL1:
  750. recognizedVtyp = useLookupRecognizedTypes && isRecognizedRtidOrPtr(rtvalid)
  751. for j := range mks {
  752. if cr != nil {
  753. cr.sendContainerState(containerMapKey)
  754. }
  755. if keyTypeIsString {
  756. if asSymbols {
  757. ee.EncodeSymbol(mks[j].String())
  758. } else {
  759. ee.EncodeString(c_UTF8, mks[j].String())
  760. }
  761. } else if useLookupRecognizedTypes && recognizedKtyp {
  762. e.encode(rv2i(mks[j]))
  763. } else {
  764. e.encodeValue(mks[j], keyFn, true)
  765. }
  766. if cr != nil {
  767. cr.sendContainerState(containerMapValue)
  768. }
  769. if useLookupRecognizedTypes && recognizedVtyp {
  770. e.encode(rv2i(rv.MapIndex(mks[j])))
  771. } else {
  772. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  773. }
  774. }
  775. if cr != nil {
  776. cr.sendContainerState(containerMapEnd)
  777. }
  778. }
  779. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn, asSymbols bool) {
  780. ee := e.e
  781. cr := e.cr
  782. // we previously did out-of-band if an extension was registered.
  783. // This is not necessary, as the natural kind is sufficient for ordering.
  784. // WHAT IS THIS? rtkeyid can never be a []uint8, per spec
  785. // if rtkeyid == uint8SliceTypId {
  786. // mksv := make([]bytesRv, len(mks))
  787. // for i, k := range mks {
  788. // v := &mksv[i]
  789. // v.r = k
  790. // v.v = k.Bytes()
  791. // }
  792. // sort.Sort(bytesRvSlice(mksv))
  793. // for i := range mksv {
  794. // if cr != nil {
  795. // cr.sendContainerState(containerMapKey)
  796. // }
  797. // ee.EncodeStringBytes(c_RAW, mksv[i].v)
  798. // if cr != nil {
  799. // cr.sendContainerState(containerMapValue)
  800. // }
  801. // e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  802. // }
  803. // return
  804. // }
  805. switch rtkey.Kind() {
  806. case reflect.Bool:
  807. mksv := make([]boolRv, len(mks))
  808. for i, k := range mks {
  809. v := &mksv[i]
  810. v.r = k
  811. v.v = k.Bool()
  812. }
  813. sort.Sort(boolRvSlice(mksv))
  814. for i := range mksv {
  815. if cr != nil {
  816. cr.sendContainerState(containerMapKey)
  817. }
  818. ee.EncodeBool(mksv[i].v)
  819. if cr != nil {
  820. cr.sendContainerState(containerMapValue)
  821. }
  822. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  823. }
  824. case reflect.String:
  825. mksv := make([]stringRv, len(mks))
  826. for i, k := range mks {
  827. v := &mksv[i]
  828. v.r = k
  829. v.v = k.String()
  830. }
  831. sort.Sort(stringRvSlice(mksv))
  832. for i := range mksv {
  833. if cr != nil {
  834. cr.sendContainerState(containerMapKey)
  835. }
  836. if asSymbols {
  837. ee.EncodeSymbol(mksv[i].v)
  838. } else {
  839. ee.EncodeString(c_UTF8, mksv[i].v)
  840. }
  841. if cr != nil {
  842. cr.sendContainerState(containerMapValue)
  843. }
  844. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  845. }
  846. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  847. mksv := make([]uintRv, len(mks))
  848. for i, k := range mks {
  849. v := &mksv[i]
  850. v.r = k
  851. v.v = k.Uint()
  852. }
  853. sort.Sort(uintRvSlice(mksv))
  854. for i := range mksv {
  855. if cr != nil {
  856. cr.sendContainerState(containerMapKey)
  857. }
  858. ee.EncodeUint(mksv[i].v)
  859. if cr != nil {
  860. cr.sendContainerState(containerMapValue)
  861. }
  862. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  863. }
  864. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  865. mksv := make([]intRv, len(mks))
  866. for i, k := range mks {
  867. v := &mksv[i]
  868. v.r = k
  869. v.v = k.Int()
  870. }
  871. sort.Sort(intRvSlice(mksv))
  872. for i := range mksv {
  873. if cr != nil {
  874. cr.sendContainerState(containerMapKey)
  875. }
  876. ee.EncodeInt(mksv[i].v)
  877. if cr != nil {
  878. cr.sendContainerState(containerMapValue)
  879. }
  880. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  881. }
  882. case reflect.Float32:
  883. mksv := make([]floatRv, len(mks))
  884. for i, k := range mks {
  885. v := &mksv[i]
  886. v.r = k
  887. v.v = k.Float()
  888. }
  889. sort.Sort(floatRvSlice(mksv))
  890. for i := range mksv {
  891. if cr != nil {
  892. cr.sendContainerState(containerMapKey)
  893. }
  894. ee.EncodeFloat32(float32(mksv[i].v))
  895. if cr != nil {
  896. cr.sendContainerState(containerMapValue)
  897. }
  898. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  899. }
  900. case reflect.Float64:
  901. mksv := make([]floatRv, len(mks))
  902. for i, k := range mks {
  903. v := &mksv[i]
  904. v.r = k
  905. v.v = k.Float()
  906. }
  907. sort.Sort(floatRvSlice(mksv))
  908. for i := range mksv {
  909. if cr != nil {
  910. cr.sendContainerState(containerMapKey)
  911. }
  912. ee.EncodeFloat64(mksv[i].v)
  913. if cr != nil {
  914. cr.sendContainerState(containerMapValue)
  915. }
  916. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  917. }
  918. default:
  919. // out-of-band
  920. // first encode each key to a []byte first, then sort them, then record
  921. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  922. e2 := NewEncoderBytes(&mksv, e.hh)
  923. mksbv := make([]bytesRv, len(mks))
  924. for i, k := range mks {
  925. v := &mksbv[i]
  926. l := len(mksv)
  927. e2.MustEncode(k)
  928. v.r = k
  929. v.v = mksv[l:]
  930. }
  931. sort.Sort(bytesRvSlice(mksbv))
  932. for j := range mksbv {
  933. if cr != nil {
  934. cr.sendContainerState(containerMapKey)
  935. }
  936. e.asis(mksbv[j].v)
  937. if cr != nil {
  938. cr.sendContainerState(containerMapValue)
  939. }
  940. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  941. }
  942. }
  943. }
  944. // // --------------------------------------------------
  945. // An Encoder writes an object to an output stream in the codec format.
  946. type Encoder struct {
  947. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  948. e encDriver
  949. // NOTE: Encoder shouldn't call it's write methods,
  950. // as the handler MAY need to do some coordination.
  951. w encWriter
  952. hh Handle
  953. h *BasicHandle
  954. // ---- cpu cache line boundary?
  955. wi ioEncWriter
  956. wb bytesEncWriter
  957. cr containerStateRecv
  958. as encDriverAsis
  959. // ---- cpu cache line boundary?
  960. ci set
  961. err error
  962. b [scratchByteArrayLen]byte
  963. cf codecFner
  964. }
  965. // NewEncoder returns an Encoder for encoding into an io.Writer.
  966. //
  967. // For efficiency, Users are encouraged to pass in a memory buffered writer
  968. // (eg bufio.Writer, bytes.Buffer).
  969. func NewEncoder(w io.Writer, h Handle) *Encoder {
  970. e := newEncoder(h)
  971. e.Reset(w)
  972. return e
  973. }
  974. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  975. // into a byte slice, using zero-copying to temporary slices.
  976. //
  977. // It will potentially replace the output byte slice pointed to.
  978. // After encoding, the out parameter contains the encoded contents.
  979. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  980. e := newEncoder(h)
  981. e.ResetBytes(out)
  982. return e
  983. }
  984. func newEncoder(h Handle) *Encoder {
  985. e := &Encoder{hh: h, h: h.getBasicHandle()}
  986. e.e = h.newEncDriver(e)
  987. e.as, _ = e.e.(encDriverAsis)
  988. e.cr, _ = e.e.(containerStateRecv)
  989. return e
  990. }
  991. // Reset the Encoder with a new output stream.
  992. //
  993. // This accommodates using the state of the Encoder,
  994. // where it has "cached" information about sub-engines.
  995. func (e *Encoder) Reset(w io.Writer) {
  996. ww, ok := w.(ioEncWriterWriter)
  997. if ok {
  998. e.wi.w = ww
  999. } else {
  1000. sww := &e.wi.s
  1001. sww.w = w
  1002. sww.bw, _ = w.(io.ByteWriter)
  1003. sww.sw, _ = w.(ioEncStringWriter)
  1004. e.wi.w = sww
  1005. //ww = bufio.NewWriterSize(w, defEncByteBufSize)
  1006. }
  1007. e.w = &e.wi
  1008. e.e.reset()
  1009. e.cf.reset(e.hh)
  1010. e.err = nil
  1011. }
  1012. func (e *Encoder) ResetBytes(out *[]byte) {
  1013. in := *out
  1014. if in == nil {
  1015. in = make([]byte, defEncByteBufSize)
  1016. }
  1017. e.wb.b, e.wb.out, e.wb.c = in, out, 0
  1018. e.w = &e.wb
  1019. e.e.reset()
  1020. e.cf.reset(e.hh)
  1021. e.err = nil
  1022. }
  1023. // Encode writes an object into a stream.
  1024. //
  1025. // Encoding can be configured via the struct tag for the fields.
  1026. // The "codec" key in struct field's tag value is the key name,
  1027. // followed by an optional comma and options.
  1028. // Note that the "json" key is used in the absence of the "codec" key.
  1029. //
  1030. // To set an option on all fields (e.g. omitempty on all fields), you
  1031. // can create a field called _struct, and set flags on it.
  1032. //
  1033. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1034. // - the field's tag is "-", OR
  1035. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1036. //
  1037. // When encoding as a map, the first string in the tag (before the comma)
  1038. // is the map key string to use when encoding.
  1039. //
  1040. // However, struct values may encode as arrays. This happens when:
  1041. // - StructToArray Encode option is set, OR
  1042. // - the tag on the _struct field sets the "toarray" option
  1043. // Note that omitempty is ignored when encoding struct values as arrays,
  1044. // as an entry must be encoded for each field, to maintain its position.
  1045. //
  1046. // Values with types that implement MapBySlice are encoded as stream maps.
  1047. //
  1048. // The empty values (for omitempty option) are false, 0, any nil pointer
  1049. // or interface value, and any array, slice, map, or string of length zero.
  1050. //
  1051. // Anonymous fields are encoded inline except:
  1052. // - the struct tag specifies a replacement name (first value)
  1053. // - the field is of an interface type
  1054. //
  1055. // Examples:
  1056. //
  1057. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1058. // type MyStruct struct {
  1059. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1060. // Field1 string `codec:"-"` //skip this field
  1061. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1062. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1063. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1064. // io.Reader //use key "Reader".
  1065. // MyStruct `codec:"my1" //use key "my1".
  1066. // MyStruct //inline it
  1067. // ...
  1068. // }
  1069. //
  1070. // type MyStruct struct {
  1071. // _struct bool `codec:",toarray"` //encode struct as an array
  1072. // }
  1073. //
  1074. // The mode of encoding is based on the type of the value. When a value is seen:
  1075. // - If a Selfer, call its CodecEncodeSelf method
  1076. // - If an extension is registered for it, call that extension function
  1077. // - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
  1078. // - Else encode it based on its reflect.Kind
  1079. //
  1080. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1081. // Some formats support symbols (e.g. binc) and will properly encode the string
  1082. // only once in the stream, and use a tag to refer to it thereafter.
  1083. func (e *Encoder) Encode(v interface{}) (err error) {
  1084. defer panicToErrs2(&e.err, &err)
  1085. e.MustEncode(v)
  1086. return
  1087. }
  1088. // MustEncode is like Encode, but panics if unable to Encode.
  1089. // This provides insight to the code location that triggered the error.
  1090. func (e *Encoder) MustEncode(v interface{}) {
  1091. if e.err != nil {
  1092. panic(e.err)
  1093. }
  1094. e.encode(v)
  1095. e.w.atEndOfEncode()
  1096. }
  1097. func (e *Encoder) encode(iv interface{}) {
  1098. if iv == nil || definitelyNil(iv) {
  1099. e.e.EncodeNil()
  1100. return
  1101. }
  1102. if v, ok := iv.(Selfer); ok {
  1103. v.CodecEncodeSelf(e)
  1104. return
  1105. }
  1106. switch v := iv.(type) {
  1107. // case nil:
  1108. // e.e.EncodeNil()
  1109. // case Selfer:
  1110. // v.CodecEncodeSelf(e)
  1111. case Raw:
  1112. e.rawBytes(v)
  1113. case reflect.Value:
  1114. e.encodeValue(v, nil, true)
  1115. case string:
  1116. e.e.EncodeString(c_UTF8, v)
  1117. case bool:
  1118. e.e.EncodeBool(v)
  1119. case int:
  1120. e.e.EncodeInt(int64(v))
  1121. case int8:
  1122. e.e.EncodeInt(int64(v))
  1123. case int16:
  1124. e.e.EncodeInt(int64(v))
  1125. case int32:
  1126. e.e.EncodeInt(int64(v))
  1127. case int64:
  1128. e.e.EncodeInt(v)
  1129. case uint:
  1130. e.e.EncodeUint(uint64(v))
  1131. case uint8:
  1132. e.e.EncodeUint(uint64(v))
  1133. case uint16:
  1134. e.e.EncodeUint(uint64(v))
  1135. case uint32:
  1136. e.e.EncodeUint(uint64(v))
  1137. case uint64:
  1138. e.e.EncodeUint(v)
  1139. case uintptr:
  1140. e.e.EncodeUint(uint64(v))
  1141. case float32:
  1142. e.e.EncodeFloat32(v)
  1143. case float64:
  1144. e.e.EncodeFloat64(v)
  1145. case []uint8:
  1146. e.e.EncodeStringBytes(c_RAW, v)
  1147. case *string:
  1148. e.e.EncodeString(c_UTF8, *v)
  1149. case *bool:
  1150. e.e.EncodeBool(*v)
  1151. case *int:
  1152. e.e.EncodeInt(int64(*v))
  1153. case *int8:
  1154. e.e.EncodeInt(int64(*v))
  1155. case *int16:
  1156. e.e.EncodeInt(int64(*v))
  1157. case *int32:
  1158. e.e.EncodeInt(int64(*v))
  1159. case *int64:
  1160. e.e.EncodeInt(*v)
  1161. case *uint:
  1162. e.e.EncodeUint(uint64(*v))
  1163. case *uint8:
  1164. e.e.EncodeUint(uint64(*v))
  1165. case *uint16:
  1166. e.e.EncodeUint(uint64(*v))
  1167. case *uint32:
  1168. e.e.EncodeUint(uint64(*v))
  1169. case *uint64:
  1170. e.e.EncodeUint(*v)
  1171. case *uintptr:
  1172. e.e.EncodeUint(uint64(*v))
  1173. case *float32:
  1174. e.e.EncodeFloat32(*v)
  1175. case *float64:
  1176. e.e.EncodeFloat64(*v)
  1177. case *[]uint8:
  1178. e.e.EncodeStringBytes(c_RAW, *v)
  1179. default:
  1180. if !fastpathEncodeTypeSwitch(iv, e) {
  1181. e.encodeValue(reflect.ValueOf(iv), nil, false)
  1182. }
  1183. }
  1184. }
  1185. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1186. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1187. var sptr uintptr
  1188. TOP:
  1189. switch rv.Kind() {
  1190. case reflect.Ptr:
  1191. if rv.IsNil() {
  1192. e.e.EncodeNil()
  1193. return
  1194. }
  1195. rv = rv.Elem()
  1196. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1197. // TODO: Movable pointers will be an issue here. Future problem.
  1198. sptr = rv.UnsafeAddr()
  1199. break TOP
  1200. }
  1201. goto TOP
  1202. case reflect.Interface:
  1203. if rv.IsNil() {
  1204. e.e.EncodeNil()
  1205. return
  1206. }
  1207. rv = rv.Elem()
  1208. goto TOP
  1209. case reflect.Slice, reflect.Map:
  1210. if rv.IsNil() {
  1211. e.e.EncodeNil()
  1212. return
  1213. }
  1214. case reflect.Invalid, reflect.Func:
  1215. e.e.EncodeNil()
  1216. return
  1217. }
  1218. if sptr != 0 && (&e.ci).add(sptr) {
  1219. e.errorf("circular reference found: # %d", sptr)
  1220. }
  1221. if fn == nil {
  1222. rt := rv.Type()
  1223. // TODO: calling isRecognizedRtid here is a major slowdown
  1224. if false && useLookupRecognizedTypes && isRecognizedRtidOrPtr(rt2id(rt)) {
  1225. e.encode(rv2i(rv))
  1226. return
  1227. }
  1228. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1229. fn = e.cf.get(rt, checkFastpath, true)
  1230. }
  1231. fn.fe(e, &fn.i, rv)
  1232. if sptr != 0 {
  1233. (&e.ci).remove(sptr)
  1234. }
  1235. }
  1236. func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1237. if fnerr != nil {
  1238. panic(fnerr)
  1239. }
  1240. if bs == nil {
  1241. e.e.EncodeNil()
  1242. } else if asis {
  1243. e.asis(bs)
  1244. } else {
  1245. e.e.EncodeStringBytes(c, bs)
  1246. }
  1247. }
  1248. func (e *Encoder) asis(v []byte) {
  1249. if e.as == nil {
  1250. e.w.writeb(v)
  1251. } else {
  1252. e.as.EncodeAsis(v)
  1253. }
  1254. }
  1255. func (e *Encoder) rawBytes(vv Raw) {
  1256. v := []byte(vv)
  1257. if !e.h.Raw {
  1258. e.errorf("Raw values cannot be encoded: %v", v)
  1259. }
  1260. if e.as == nil {
  1261. e.w.writeb(v)
  1262. } else {
  1263. e.as.EncodeAsis(v)
  1264. }
  1265. }
  1266. func (e *Encoder) errorf(format string, params ...interface{}) {
  1267. err := fmt.Errorf(format, params...)
  1268. panic(err)
  1269. }