encode.go 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "runtime"
  11. "sort"
  12. "strconv"
  13. "sync"
  14. "time"
  15. )
  16. // defEncByteBufSize is the default size of []byte used
  17. // for bufio buffer or []byte (when nil passed)
  18. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  19. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  20. /*
  21. // encWriter abstracts writing to a byte array or to an io.Writer.
  22. //
  23. //
  24. // Deprecated: Use encWriterSwitch instead.
  25. type encWriter interface {
  26. writeb([]byte)
  27. writestr(string)
  28. writen1(byte)
  29. writen2(byte, byte)
  30. end()
  31. }
  32. */
  33. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  34. type encDriver interface {
  35. EncodeNil()
  36. EncodeInt(i int64)
  37. EncodeUint(i uint64)
  38. EncodeBool(b bool)
  39. EncodeFloat32(f float32)
  40. EncodeFloat64(f float64)
  41. // encodeExtPreamble(xtag byte, length int)
  42. EncodeRawExt(re *RawExt, e *Encoder)
  43. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  44. // Deprecated: try to use EncodeStringEnc instead
  45. EncodeString(c charEncoding, v string)
  46. // c cannot be cRAW
  47. EncodeStringEnc(c charEncoding, v string)
  48. // EncodeSymbol(v string)
  49. // Deprecated: try to use EncodeStringBytesRaw instead
  50. EncodeStringBytes(c charEncoding, v []byte)
  51. EncodeStringBytesRaw(v []byte)
  52. EncodeTime(time.Time)
  53. //encBignum(f *big.Int)
  54. //encStringRunes(c charEncoding, v []rune)
  55. WriteArrayStart(length int)
  56. WriteArrayElem()
  57. WriteArrayEnd()
  58. WriteMapStart(length int)
  59. WriteMapElemKey()
  60. WriteMapElemValue()
  61. WriteMapEnd()
  62. reset()
  63. atEndOfEncode()
  64. }
  65. type encDriverAsis interface {
  66. EncodeAsis(v []byte)
  67. }
  68. type encodeError struct {
  69. codecError
  70. }
  71. func (e encodeError) Error() string {
  72. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  73. }
  74. type encDriverNoopContainerWriter struct{}
  75. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  76. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  77. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  78. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  79. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  80. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  81. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  82. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  83. type encDriverTrackContainerWriter struct {
  84. c containerState
  85. }
  86. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  87. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  88. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  89. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  90. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  91. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  92. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  93. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  94. // type ioEncWriterWriter interface {
  95. // WriteByte(c byte) error
  96. // WriteString(s string) (n int, err error)
  97. // Write(p []byte) (n int, err error)
  98. // }
  99. // EncodeOptions captures configuration options during encode.
  100. type EncodeOptions struct {
  101. // WriterBufferSize is the size of the buffer used when writing.
  102. //
  103. // if > 0, we use a smart buffer internally for performance purposes.
  104. WriterBufferSize int
  105. // ChanRecvTimeout is the timeout used when selecting from a chan.
  106. //
  107. // Configuring this controls how we receive from a chan during the encoding process.
  108. // - If ==0, we only consume the elements currently available in the chan.
  109. // - if <0, we consume until the chan is closed.
  110. // - If >0, we consume until this timeout.
  111. ChanRecvTimeout time.Duration
  112. // StructToArray specifies to encode a struct as an array, and not as a map
  113. StructToArray bool
  114. // Canonical representation means that encoding a value will always result in the same
  115. // sequence of bytes.
  116. //
  117. // This only affects maps, as the iteration order for maps is random.
  118. //
  119. // The implementation MAY use the natural sort order for the map keys if possible:
  120. //
  121. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  122. // then the map keys are first sorted in natural order and then written
  123. // with corresponding map values to the strema.
  124. // - If there is no natural sort order, then the map keys will first be
  125. // encoded into []byte, and then sorted,
  126. // before writing the sorted keys and the corresponding map values to the stream.
  127. //
  128. Canonical bool
  129. // CheckCircularRef controls whether we check for circular references
  130. // and error fast during an encode.
  131. //
  132. // If enabled, an error is received if a pointer to a struct
  133. // references itself either directly or through one of its fields (iteratively).
  134. //
  135. // This is opt-in, as there may be a performance hit to checking circular references.
  136. CheckCircularRef bool
  137. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  138. // when checking if a value is empty.
  139. //
  140. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  141. RecursiveEmptyCheck bool
  142. // Raw controls whether we encode Raw values.
  143. // This is a "dangerous" option and must be explicitly set.
  144. // If set, we blindly encode Raw values as-is, without checking
  145. // if they are a correct representation of a value in that format.
  146. // If unset, we error out.
  147. Raw bool
  148. // // AsSymbols defines what should be encoded as symbols.
  149. // //
  150. // // Encoding as symbols can reduce the encoded size significantly.
  151. // //
  152. // // However, during decoding, each string to be encoded as a symbol must
  153. // // be checked to see if it has been seen before. Consequently, encoding time
  154. // // will increase if using symbols, because string comparisons has a clear cost.
  155. // //
  156. // // Sample values:
  157. // // AsSymbolNone
  158. // // AsSymbolAll
  159. // // AsSymbolMapStringKeys
  160. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  161. // AsSymbols AsSymbolFlag
  162. }
  163. // ---------------------------------------------
  164. /*
  165. type ioEncStringWriter interface {
  166. WriteString(s string) (n int, err error)
  167. }
  168. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  169. type ioEncWriter struct {
  170. w io.Writer
  171. ww io.Writer
  172. bw io.ByteWriter
  173. sw ioEncStringWriter
  174. fw ioFlusher
  175. b [8]byte
  176. }
  177. func (z *ioEncWriter) reset(w io.Writer) {
  178. z.w = w
  179. var ok bool
  180. if z.bw, ok = w.(io.ByteWriter); !ok {
  181. z.bw = z
  182. }
  183. if z.sw, ok = w.(ioEncStringWriter); !ok {
  184. z.sw = z
  185. }
  186. z.fw, _ = w.(ioFlusher)
  187. z.ww = w
  188. }
  189. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  190. z.b[0] = b
  191. _, err = z.w.Write(z.b[:1])
  192. return
  193. }
  194. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  195. return z.w.Write(bytesView(s))
  196. }
  197. func (z *ioEncWriter) writeb(bs []byte) {
  198. if _, err := z.ww.Write(bs); err != nil {
  199. panic(err)
  200. }
  201. }
  202. func (z *ioEncWriter) writestr(s string) {
  203. if _, err := z.sw.WriteString(s); err != nil {
  204. panic(err)
  205. }
  206. }
  207. func (z *ioEncWriter) writen1(b byte) {
  208. if err := z.bw.WriteByte(b); err != nil {
  209. panic(err)
  210. }
  211. }
  212. func (z *ioEncWriter) writen2(b1, b2 byte) {
  213. var err error
  214. if err = z.bw.WriteByte(b1); err == nil {
  215. if err = z.bw.WriteByte(b2); err == nil {
  216. return
  217. }
  218. }
  219. panic(err)
  220. }
  221. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  222. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  223. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  224. // panic(err)
  225. // }
  226. // }
  227. //go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
  228. func (z *ioEncWriter) end() {
  229. if z.fw != nil {
  230. if err := z.fw.Flush(); err != nil {
  231. panic(err)
  232. }
  233. }
  234. }
  235. */
  236. // ---------------------------------------------
  237. // bufioEncWriter
  238. type bufioEncWriter struct {
  239. buf []byte
  240. w io.Writer
  241. n int
  242. bytesBufPooler
  243. _ [3]uint64 // padding
  244. // a int
  245. // b [4]byte
  246. // err
  247. }
  248. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  249. z.w = w
  250. z.n = 0
  251. if bufsize <= 0 {
  252. bufsize = defEncByteBufSize
  253. }
  254. if cap(z.buf) >= bufsize {
  255. z.buf = z.buf[:cap(z.buf)]
  256. } else {
  257. z.bytesBufPooler.end() // potentially return old one to pool
  258. z.buf = z.bytesBufPooler.get(bufsize)
  259. // z.buf = make([]byte, bufsize)
  260. }
  261. }
  262. //go:noinline - flush only called intermittently
  263. func (z *bufioEncWriter) flush() {
  264. n, err := z.w.Write(z.buf[:z.n])
  265. z.n -= n
  266. if z.n > 0 && err == nil {
  267. err = io.ErrShortWrite
  268. }
  269. if err != nil {
  270. if n > 0 && z.n > 0 {
  271. copy(z.buf, z.buf[n:z.n+n])
  272. }
  273. panic(err)
  274. }
  275. }
  276. func (z *bufioEncWriter) writeb(s []byte) {
  277. LOOP:
  278. a := len(z.buf) - z.n
  279. if len(s) > a {
  280. z.n += copy(z.buf[z.n:], s[:a])
  281. s = s[a:]
  282. z.flush()
  283. goto LOOP
  284. }
  285. z.n += copy(z.buf[z.n:], s)
  286. }
  287. func (z *bufioEncWriter) writestr(s string) {
  288. // z.writeb(bytesView(s)) // inlined below
  289. LOOP:
  290. a := len(z.buf) - z.n
  291. if len(s) > a {
  292. z.n += copy(z.buf[z.n:], s[:a])
  293. s = s[a:]
  294. z.flush()
  295. goto LOOP
  296. }
  297. z.n += copy(z.buf[z.n:], s)
  298. }
  299. func (z *bufioEncWriter) writen1(b1 byte) {
  300. if 1 > len(z.buf)-z.n {
  301. z.flush()
  302. }
  303. z.buf[z.n] = b1
  304. z.n++
  305. }
  306. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  307. if 2 > len(z.buf)-z.n {
  308. z.flush()
  309. }
  310. z.buf[z.n+1] = b2
  311. z.buf[z.n] = b1
  312. z.n += 2
  313. }
  314. func (z *bufioEncWriter) end() {
  315. if z.n > 0 {
  316. z.flush()
  317. }
  318. }
  319. // ---------------------------------------------
  320. // bytesEncAppender implements encWriter and can write to an byte slice.
  321. type bytesEncAppender struct {
  322. b []byte
  323. out *[]byte
  324. }
  325. func (z *bytesEncAppender) writeb(s []byte) {
  326. z.b = append(z.b, s...)
  327. }
  328. func (z *bytesEncAppender) writestr(s string) {
  329. z.b = append(z.b, s...)
  330. }
  331. func (z *bytesEncAppender) writen1(b1 byte) {
  332. z.b = append(z.b, b1)
  333. }
  334. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  335. z.b = append(z.b, b1, b2)
  336. }
  337. func (z *bytesEncAppender) end() {
  338. *(z.out) = z.b
  339. }
  340. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  341. z.b = in[:0]
  342. z.out = out
  343. }
  344. // ---------------------------------------------
  345. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  346. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  347. }
  348. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  349. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  350. }
  351. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  352. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  353. }
  354. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  355. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  356. e.marshalRaw(bs, fnerr)
  357. }
  358. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  359. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  360. e.marshalUtf8(bs, fnerr)
  361. }
  362. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  363. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  364. e.marshalAsis(bs, fnerr)
  365. }
  366. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  367. e.rawBytes(rv2i(rv).(Raw))
  368. }
  369. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  370. e.e.EncodeNil()
  371. }
  372. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  373. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  374. }
  375. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  376. ti := f.ti
  377. ee := e.e
  378. // array may be non-addressable, so we have to manage with care
  379. // (don't call rv.Bytes, rv.Slice, etc).
  380. // E.g. type struct S{B [2]byte};
  381. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  382. if f.seq != seqTypeArray {
  383. if rv.IsNil() {
  384. ee.EncodeNil()
  385. return
  386. }
  387. // If in this method, then there was no extension function defined.
  388. // So it's okay to treat as []byte.
  389. if ti.rtid == uint8SliceTypId {
  390. ee.EncodeStringBytesRaw(rv.Bytes())
  391. return
  392. }
  393. }
  394. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  395. e.errorf("send-only channel cannot be encoded")
  396. }
  397. elemsep := e.esep
  398. rtelem := ti.elem
  399. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  400. var l int
  401. // if a slice, array or chan of bytes, treat specially
  402. if rtelemIsByte {
  403. switch f.seq {
  404. case seqTypeSlice:
  405. ee.EncodeStringBytesRaw(rv.Bytes())
  406. case seqTypeArray:
  407. l = rv.Len()
  408. if rv.CanAddr() {
  409. ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  410. } else {
  411. var bs []byte
  412. if l <= cap(e.b) {
  413. bs = e.b[:l]
  414. } else {
  415. bs = make([]byte, l)
  416. }
  417. reflect.Copy(reflect.ValueOf(bs), rv)
  418. ee.EncodeStringBytesRaw(bs)
  419. }
  420. case seqTypeChan:
  421. // do not use range, so that the number of elements encoded
  422. // does not change, and encoding does not hang waiting on someone to close chan.
  423. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  424. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  425. if rv.IsNil() {
  426. ee.EncodeNil()
  427. break
  428. }
  429. bs := e.b[:0]
  430. irv := rv2i(rv)
  431. ch, ok := irv.(<-chan byte)
  432. if !ok {
  433. ch = irv.(chan byte)
  434. }
  435. L1:
  436. switch timeout := e.h.ChanRecvTimeout; {
  437. case timeout == 0: // only consume available
  438. for {
  439. select {
  440. case b := <-ch:
  441. bs = append(bs, b)
  442. default:
  443. break L1
  444. }
  445. }
  446. case timeout > 0: // consume until timeout
  447. tt := time.NewTimer(timeout)
  448. for {
  449. select {
  450. case b := <-ch:
  451. bs = append(bs, b)
  452. case <-tt.C:
  453. // close(tt.C)
  454. break L1
  455. }
  456. }
  457. default: // consume until close
  458. for b := range ch {
  459. bs = append(bs, b)
  460. }
  461. }
  462. ee.EncodeStringBytesRaw(bs)
  463. }
  464. return
  465. }
  466. // if chan, consume chan into a slice, and work off that slice.
  467. var rvcs reflect.Value
  468. if f.seq == seqTypeChan {
  469. rvcs = reflect.Zero(reflect.SliceOf(rtelem))
  470. timeout := e.h.ChanRecvTimeout
  471. if timeout < 0 { // consume until close
  472. for {
  473. recv, recvOk := rv.Recv()
  474. if !recvOk {
  475. break
  476. }
  477. rvcs = reflect.Append(rvcs, recv)
  478. }
  479. } else {
  480. cases := make([]reflect.SelectCase, 2)
  481. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  482. if timeout == 0 {
  483. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  484. } else {
  485. tt := time.NewTimer(timeout)
  486. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  487. }
  488. for {
  489. chosen, recv, recvOk := reflect.Select(cases)
  490. if chosen == 1 || !recvOk {
  491. break
  492. }
  493. rvcs = reflect.Append(rvcs, recv)
  494. }
  495. }
  496. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  497. }
  498. l = rv.Len()
  499. if ti.mbs {
  500. if l%2 == 1 {
  501. e.errorf("mapBySlice requires even slice length, but got %v", l)
  502. return
  503. }
  504. ee.WriteMapStart(l / 2)
  505. } else {
  506. ee.WriteArrayStart(l)
  507. }
  508. if l > 0 {
  509. var fn *codecFn
  510. for rtelem.Kind() == reflect.Ptr {
  511. rtelem = rtelem.Elem()
  512. }
  513. // if kind is reflect.Interface, do not pre-determine the
  514. // encoding type, because preEncodeValue may break it down to
  515. // a concrete type and kInterface will bomb.
  516. if rtelem.Kind() != reflect.Interface {
  517. fn = e.cfer().get(rtelem, true, true)
  518. }
  519. for j := 0; j < l; j++ {
  520. if elemsep {
  521. if ti.mbs {
  522. if j%2 == 0 {
  523. ee.WriteMapElemKey()
  524. } else {
  525. ee.WriteMapElemValue()
  526. }
  527. } else {
  528. ee.WriteArrayElem()
  529. }
  530. }
  531. e.encodeValue(rv.Index(j), fn, true)
  532. }
  533. }
  534. if ti.mbs {
  535. ee.WriteMapEnd()
  536. } else {
  537. ee.WriteArrayEnd()
  538. }
  539. }
  540. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  541. fti := f.ti
  542. elemsep := e.esep
  543. tisfi := fti.sfiSrc
  544. toMap := !(fti.toArray || e.h.StructToArray)
  545. if toMap {
  546. tisfi = fti.sfiSort
  547. }
  548. ee := e.e
  549. sfn := structFieldNode{v: rv, update: false}
  550. if toMap {
  551. ee.WriteMapStart(len(tisfi))
  552. if elemsep {
  553. for _, si := range tisfi {
  554. ee.WriteMapElemKey()
  555. // ee.EncodeStringEnc(cUTF8, si.encName)
  556. e.kStructFieldKey(fti.keyType, si)
  557. ee.WriteMapElemValue()
  558. e.encodeValue(sfn.field(si), nil, true)
  559. }
  560. } else {
  561. for _, si := range tisfi {
  562. // ee.EncodeStringEnc(cUTF8, si.encName)
  563. e.kStructFieldKey(fti.keyType, si)
  564. e.encodeValue(sfn.field(si), nil, true)
  565. }
  566. }
  567. ee.WriteMapEnd()
  568. } else {
  569. ee.WriteArrayStart(len(tisfi))
  570. if elemsep {
  571. for _, si := range tisfi {
  572. ee.WriteArrayElem()
  573. e.encodeValue(sfn.field(si), nil, true)
  574. }
  575. } else {
  576. for _, si := range tisfi {
  577. e.encodeValue(sfn.field(si), nil, true)
  578. }
  579. }
  580. ee.WriteArrayEnd()
  581. }
  582. }
  583. func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
  584. var m must
  585. // use if-else-if, not switch (which compiles to binary-search)
  586. // since keyType is typically valueTypeString, branch prediction is pretty good.
  587. if keyType == valueTypeString {
  588. if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
  589. e.w.writen1('"')
  590. e.w.writestr(s.encName)
  591. e.w.writen1('"')
  592. } else { // keyType == valueTypeString
  593. e.e.EncodeStringEnc(cUTF8, s.encName)
  594. }
  595. } else if keyType == valueTypeInt {
  596. e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
  597. } else if keyType == valueTypeUint {
  598. e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
  599. } else if keyType == valueTypeFloat {
  600. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
  601. }
  602. }
  603. func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
  604. var m must
  605. // use if-else-if, not switch (which compiles to binary-search)
  606. // since keyType is typically valueTypeString, branch prediction is pretty good.
  607. if keyType == valueTypeString {
  608. e.e.EncodeStringEnc(cUTF8, encName)
  609. } else if keyType == valueTypeInt {
  610. e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  611. } else if keyType == valueTypeUint {
  612. e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  613. } else if keyType == valueTypeFloat {
  614. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  615. }
  616. }
  617. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  618. fti := f.ti
  619. elemsep := e.esep
  620. tisfi := fti.sfiSrc
  621. var newlen int
  622. toMap := !(fti.toArray || e.h.StructToArray)
  623. var mf map[string]interface{}
  624. if f.ti.mf {
  625. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  626. toMap = true
  627. newlen += len(mf)
  628. } else if f.ti.mfp {
  629. if rv.CanAddr() {
  630. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  631. } else {
  632. // make a new addressable value of same one, and use it
  633. rv2 := reflect.New(rv.Type())
  634. rv2.Elem().Set(rv)
  635. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  636. }
  637. toMap = true
  638. newlen += len(mf)
  639. }
  640. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  641. if toMap {
  642. tisfi = fti.sfiSort
  643. }
  644. newlen += len(tisfi)
  645. ee := e.e
  646. // Use sync.Pool to reduce allocating slices unnecessarily.
  647. // The cost of sync.Pool is less than the cost of new allocation.
  648. //
  649. // Each element of the array pools one of encStructPool(8|16|32|64).
  650. // It allows the re-use of slices up to 64 in length.
  651. // A performance cost of encoding structs was collecting
  652. // which values were empty and should be omitted.
  653. // We needed slices of reflect.Value and string to collect them.
  654. // This shared pool reduces the amount of unnecessary creation we do.
  655. // The cost is that of locking sometimes, but sync.Pool is efficient
  656. // enough to reduce thread contention.
  657. var spool *sync.Pool
  658. var poolv interface{}
  659. var fkvs []sfiRv
  660. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  661. if newlen < 0 { // bounds-check-elimination
  662. // cannot happen // here for bounds-check-elimination
  663. } else if newlen <= 8 {
  664. spool, poolv = pool.sfiRv8()
  665. fkvs = poolv.(*[8]sfiRv)[:newlen]
  666. } else if newlen <= 16 {
  667. spool, poolv = pool.sfiRv16()
  668. fkvs = poolv.(*[16]sfiRv)[:newlen]
  669. } else if newlen <= 32 {
  670. spool, poolv = pool.sfiRv32()
  671. fkvs = poolv.(*[32]sfiRv)[:newlen]
  672. } else if newlen <= 64 {
  673. spool, poolv = pool.sfiRv64()
  674. fkvs = poolv.(*[64]sfiRv)[:newlen]
  675. } else if newlen <= 128 {
  676. spool, poolv = pool.sfiRv128()
  677. fkvs = poolv.(*[128]sfiRv)[:newlen]
  678. } else {
  679. fkvs = make([]sfiRv, newlen)
  680. }
  681. var kv sfiRv
  682. recur := e.h.RecursiveEmptyCheck
  683. sfn := structFieldNode{v: rv, update: false}
  684. newlen = 0
  685. for _, si := range tisfi {
  686. // kv.r = si.field(rv, false)
  687. kv.r = sfn.field(si)
  688. if toMap {
  689. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  690. continue
  691. }
  692. kv.v = si // si.encName
  693. } else {
  694. // use the zero value.
  695. // if a reference or struct, set to nil (so you do not output too much)
  696. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  697. switch kv.r.Kind() {
  698. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  699. kv.r = reflect.Value{} //encode as nil
  700. }
  701. }
  702. }
  703. fkvs[newlen] = kv
  704. newlen++
  705. }
  706. fkvs = fkvs[:newlen]
  707. var mflen int
  708. for k, v := range mf {
  709. if k == "" {
  710. delete(mf, k)
  711. continue
  712. }
  713. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  714. delete(mf, k)
  715. continue
  716. }
  717. mflen++
  718. }
  719. var j int
  720. if toMap {
  721. ee.WriteMapStart(newlen + mflen)
  722. if elemsep {
  723. for j = 0; j < len(fkvs); j++ {
  724. kv = fkvs[j]
  725. ee.WriteMapElemKey()
  726. // ee.EncodeStringEnc(cUTF8, kv.v)
  727. e.kStructFieldKey(fti.keyType, kv.v)
  728. ee.WriteMapElemValue()
  729. e.encodeValue(kv.r, nil, true)
  730. }
  731. } else {
  732. for j = 0; j < len(fkvs); j++ {
  733. kv = fkvs[j]
  734. // ee.EncodeStringEnc(cUTF8, kv.v)
  735. e.kStructFieldKey(fti.keyType, kv.v)
  736. e.encodeValue(kv.r, nil, true)
  737. }
  738. }
  739. // now, add the others
  740. for k, v := range mf {
  741. ee.WriteMapElemKey()
  742. e.kStructFieldKeyName(fti.keyType, k)
  743. ee.WriteMapElemValue()
  744. e.encode(v)
  745. }
  746. ee.WriteMapEnd()
  747. } else {
  748. ee.WriteArrayStart(newlen)
  749. if elemsep {
  750. for j = 0; j < len(fkvs); j++ {
  751. ee.WriteArrayElem()
  752. e.encodeValue(fkvs[j].r, nil, true)
  753. }
  754. } else {
  755. for j = 0; j < len(fkvs); j++ {
  756. e.encodeValue(fkvs[j].r, nil, true)
  757. }
  758. }
  759. ee.WriteArrayEnd()
  760. }
  761. // do not use defer. Instead, use explicit pool return at end of function.
  762. // defer has a cost we are trying to avoid.
  763. // If there is a panic and these slices are not returned, it is ok.
  764. if spool != nil {
  765. spool.Put(poolv)
  766. }
  767. }
  768. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  769. ee := e.e
  770. if rv.IsNil() {
  771. ee.EncodeNil()
  772. return
  773. }
  774. l := rv.Len()
  775. ee.WriteMapStart(l)
  776. elemsep := e.esep
  777. if l == 0 {
  778. ee.WriteMapEnd()
  779. return
  780. }
  781. // var asSymbols bool
  782. // determine the underlying key and val encFn's for the map.
  783. // This eliminates some work which is done for each loop iteration i.e.
  784. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  785. //
  786. // However, if kind is reflect.Interface, do not pre-determine the
  787. // encoding type, because preEncodeValue may break it down to
  788. // a concrete type and kInterface will bomb.
  789. var keyFn, valFn *codecFn
  790. ti := f.ti
  791. rtkey0 := ti.key
  792. rtkey := rtkey0
  793. rtval0 := ti.elem
  794. rtval := rtval0
  795. // rtkeyid := rt2id(rtkey0)
  796. for rtval.Kind() == reflect.Ptr {
  797. rtval = rtval.Elem()
  798. }
  799. if rtval.Kind() != reflect.Interface {
  800. valFn = e.cfer().get(rtval, true, true)
  801. }
  802. mks := rv.MapKeys()
  803. if e.h.Canonical {
  804. e.kMapCanonical(rtkey, rv, mks, valFn)
  805. ee.WriteMapEnd()
  806. return
  807. }
  808. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  809. if !keyTypeIsString {
  810. for rtkey.Kind() == reflect.Ptr {
  811. rtkey = rtkey.Elem()
  812. }
  813. if rtkey.Kind() != reflect.Interface {
  814. // rtkeyid = rt2id(rtkey)
  815. keyFn = e.cfer().get(rtkey, true, true)
  816. }
  817. }
  818. // for j, lmks := 0, len(mks); j < lmks; j++ {
  819. for j := range mks {
  820. if elemsep {
  821. ee.WriteMapElemKey()
  822. }
  823. if keyTypeIsString {
  824. ee.EncodeStringEnc(cUTF8, mks[j].String())
  825. } else {
  826. e.encodeValue(mks[j], keyFn, true)
  827. }
  828. if elemsep {
  829. ee.WriteMapElemValue()
  830. }
  831. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  832. }
  833. ee.WriteMapEnd()
  834. }
  835. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  836. ee := e.e
  837. elemsep := e.esep
  838. // we previously did out-of-band if an extension was registered.
  839. // This is not necessary, as the natural kind is sufficient for ordering.
  840. switch rtkey.Kind() {
  841. case reflect.Bool:
  842. mksv := make([]boolRv, len(mks))
  843. for i, k := range mks {
  844. v := &mksv[i]
  845. v.r = k
  846. v.v = k.Bool()
  847. }
  848. sort.Sort(boolRvSlice(mksv))
  849. for i := range mksv {
  850. if elemsep {
  851. ee.WriteMapElemKey()
  852. }
  853. ee.EncodeBool(mksv[i].v)
  854. if elemsep {
  855. ee.WriteMapElemValue()
  856. }
  857. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  858. }
  859. case reflect.String:
  860. mksv := make([]stringRv, len(mks))
  861. for i, k := range mks {
  862. v := &mksv[i]
  863. v.r = k
  864. v.v = k.String()
  865. }
  866. sort.Sort(stringRvSlice(mksv))
  867. for i := range mksv {
  868. if elemsep {
  869. ee.WriteMapElemKey()
  870. }
  871. ee.EncodeStringEnc(cUTF8, mksv[i].v)
  872. if elemsep {
  873. ee.WriteMapElemValue()
  874. }
  875. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  876. }
  877. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  878. mksv := make([]uintRv, len(mks))
  879. for i, k := range mks {
  880. v := &mksv[i]
  881. v.r = k
  882. v.v = k.Uint()
  883. }
  884. sort.Sort(uintRvSlice(mksv))
  885. for i := range mksv {
  886. if elemsep {
  887. ee.WriteMapElemKey()
  888. }
  889. ee.EncodeUint(mksv[i].v)
  890. if elemsep {
  891. ee.WriteMapElemValue()
  892. }
  893. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  894. }
  895. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  896. mksv := make([]intRv, len(mks))
  897. for i, k := range mks {
  898. v := &mksv[i]
  899. v.r = k
  900. v.v = k.Int()
  901. }
  902. sort.Sort(intRvSlice(mksv))
  903. for i := range mksv {
  904. if elemsep {
  905. ee.WriteMapElemKey()
  906. }
  907. ee.EncodeInt(mksv[i].v)
  908. if elemsep {
  909. ee.WriteMapElemValue()
  910. }
  911. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  912. }
  913. case reflect.Float32:
  914. mksv := make([]floatRv, len(mks))
  915. for i, k := range mks {
  916. v := &mksv[i]
  917. v.r = k
  918. v.v = k.Float()
  919. }
  920. sort.Sort(floatRvSlice(mksv))
  921. for i := range mksv {
  922. if elemsep {
  923. ee.WriteMapElemKey()
  924. }
  925. ee.EncodeFloat32(float32(mksv[i].v))
  926. if elemsep {
  927. ee.WriteMapElemValue()
  928. }
  929. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  930. }
  931. case reflect.Float64:
  932. mksv := make([]floatRv, len(mks))
  933. for i, k := range mks {
  934. v := &mksv[i]
  935. v.r = k
  936. v.v = k.Float()
  937. }
  938. sort.Sort(floatRvSlice(mksv))
  939. for i := range mksv {
  940. if elemsep {
  941. ee.WriteMapElemKey()
  942. }
  943. ee.EncodeFloat64(mksv[i].v)
  944. if elemsep {
  945. ee.WriteMapElemValue()
  946. }
  947. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  948. }
  949. case reflect.Struct:
  950. if rv.Type() == timeTyp {
  951. mksv := make([]timeRv, len(mks))
  952. for i, k := range mks {
  953. v := &mksv[i]
  954. v.r = k
  955. v.v = rv2i(k).(time.Time)
  956. }
  957. sort.Sort(timeRvSlice(mksv))
  958. for i := range mksv {
  959. if elemsep {
  960. ee.WriteMapElemKey()
  961. }
  962. ee.EncodeTime(mksv[i].v)
  963. if elemsep {
  964. ee.WriteMapElemValue()
  965. }
  966. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  967. }
  968. break
  969. }
  970. fallthrough
  971. default:
  972. // out-of-band
  973. // first encode each key to a []byte first, then sort them, then record
  974. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  975. e2 := NewEncoderBytes(&mksv, e.hh)
  976. mksbv := make([]bytesRv, len(mks))
  977. for i, k := range mks {
  978. v := &mksbv[i]
  979. l := len(mksv)
  980. e2.MustEncode(k)
  981. v.r = k
  982. v.v = mksv[l:]
  983. }
  984. sort.Sort(bytesRvSlice(mksbv))
  985. for j := range mksbv {
  986. if elemsep {
  987. ee.WriteMapElemKey()
  988. }
  989. e.asis(mksbv[j].v)
  990. if elemsep {
  991. ee.WriteMapElemValue()
  992. }
  993. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  994. }
  995. }
  996. }
  997. // // --------------------------------------------------
  998. type encWriterSwitch struct {
  999. // wi *ioEncWriter
  1000. wb bytesEncAppender
  1001. wf *bufioEncWriter
  1002. // typ entryType
  1003. bytes bool // encoding to []byte
  1004. esep bool // whether it has elem separators
  1005. isas bool // whether e.as != nil
  1006. js bool // captured here, so that no need to piggy back on *codecFner for this
  1007. be bool // captured here, so that no need to piggy back on *codecFner for this
  1008. _ [2]byte // padding
  1009. // _ [2]uint64 // padding
  1010. // _ uint64 // padding
  1011. }
  1012. func (z *encWriterSwitch) writeb(s []byte) {
  1013. if z.bytes {
  1014. z.wb.writeb(s)
  1015. } else {
  1016. z.wf.writeb(s)
  1017. }
  1018. }
  1019. func (z *encWriterSwitch) writestr(s string) {
  1020. if z.bytes {
  1021. z.wb.writestr(s)
  1022. } else {
  1023. z.wf.writestr(s)
  1024. }
  1025. }
  1026. func (z *encWriterSwitch) writen1(b1 byte) {
  1027. if z.bytes {
  1028. z.wb.writen1(b1)
  1029. } else {
  1030. z.wf.writen1(b1)
  1031. }
  1032. }
  1033. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1034. if z.bytes {
  1035. z.wb.writen2(b1, b2)
  1036. } else {
  1037. z.wf.writen2(b1, b2)
  1038. }
  1039. }
  1040. func (z *encWriterSwitch) end() {
  1041. if z.bytes {
  1042. z.wb.end()
  1043. } else {
  1044. z.wf.end()
  1045. }
  1046. }
  1047. /*
  1048. // ------------------------------------------
  1049. func (z *encWriterSwitch) writeb(s []byte) {
  1050. switch z.typ {
  1051. case entryTypeBytes:
  1052. z.wb.writeb(s)
  1053. case entryTypeIo:
  1054. z.wi.writeb(s)
  1055. default:
  1056. z.wf.writeb(s)
  1057. }
  1058. }
  1059. func (z *encWriterSwitch) writestr(s string) {
  1060. switch z.typ {
  1061. case entryTypeBytes:
  1062. z.wb.writestr(s)
  1063. case entryTypeIo:
  1064. z.wi.writestr(s)
  1065. default:
  1066. z.wf.writestr(s)
  1067. }
  1068. }
  1069. func (z *encWriterSwitch) writen1(b1 byte) {
  1070. switch z.typ {
  1071. case entryTypeBytes:
  1072. z.wb.writen1(b1)
  1073. case entryTypeIo:
  1074. z.wi.writen1(b1)
  1075. default:
  1076. z.wf.writen1(b1)
  1077. }
  1078. }
  1079. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1080. switch z.typ {
  1081. case entryTypeBytes:
  1082. z.wb.writen2(b1, b2)
  1083. case entryTypeIo:
  1084. z.wi.writen2(b1, b2)
  1085. default:
  1086. z.wf.writen2(b1, b2)
  1087. }
  1088. }
  1089. func (z *encWriterSwitch) end() {
  1090. switch z.typ {
  1091. case entryTypeBytes:
  1092. z.wb.end()
  1093. case entryTypeIo:
  1094. z.wi.end()
  1095. default:
  1096. z.wf.end()
  1097. }
  1098. }
  1099. // ------------------------------------------
  1100. func (z *encWriterSwitch) writeb(s []byte) {
  1101. if z.bytes {
  1102. z.wb.writeb(s)
  1103. } else {
  1104. z.wi.writeb(s)
  1105. }
  1106. }
  1107. func (z *encWriterSwitch) writestr(s string) {
  1108. if z.bytes {
  1109. z.wb.writestr(s)
  1110. } else {
  1111. z.wi.writestr(s)
  1112. }
  1113. }
  1114. func (z *encWriterSwitch) writen1(b1 byte) {
  1115. if z.bytes {
  1116. z.wb.writen1(b1)
  1117. } else {
  1118. z.wi.writen1(b1)
  1119. }
  1120. }
  1121. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1122. if z.bytes {
  1123. z.wb.writen2(b1, b2)
  1124. } else {
  1125. z.wi.writen2(b1, b2)
  1126. }
  1127. }
  1128. func (z *encWriterSwitch) end() {
  1129. if z.bytes {
  1130. z.wb.end()
  1131. } else {
  1132. z.wi.end()
  1133. }
  1134. }
  1135. */
  1136. // Encoder writes an object to an output stream in a supported format.
  1137. //
  1138. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1139. // concurrently in multiple goroutines.
  1140. //
  1141. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1142. // so its state can be reused to decode new input streams repeatedly.
  1143. // This is the idiomatic way to use.
  1144. type Encoder struct {
  1145. panicHdl
  1146. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1147. e encDriver
  1148. // NOTE: Encoder shouldn't call it's write methods,
  1149. // as the handler MAY need to do some coordination.
  1150. w *encWriterSwitch
  1151. // bw *bufio.Writer
  1152. as encDriverAsis
  1153. err error
  1154. h *BasicHandle
  1155. // ---- cpu cache line boundary? + 3
  1156. encWriterSwitch
  1157. ci set
  1158. codecFnPooler
  1159. b [3 * 8]byte // for encoding chan or (non-addressable) [N]byte
  1160. // ---- writable fields during execution --- *try* to keep in sep cache line
  1161. // ---- cpu cache line boundary?
  1162. // b [scratchByteArrayLen]byte
  1163. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1164. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  1165. }
  1166. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1167. //
  1168. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  1169. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  1170. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1171. e := newEncoder(h)
  1172. e.Reset(w)
  1173. return e
  1174. }
  1175. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1176. // into a byte slice, using zero-copying to temporary slices.
  1177. //
  1178. // It will potentially replace the output byte slice pointed to.
  1179. // After encoding, the out parameter contains the encoded contents.
  1180. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1181. e := newEncoder(h)
  1182. e.ResetBytes(out)
  1183. return e
  1184. }
  1185. func newEncoder(h Handle) *Encoder {
  1186. e := &Encoder{h: h.getBasicHandle(), err: errEncoderNotInitialized}
  1187. e.bytes = true
  1188. if useFinalizers {
  1189. runtime.SetFinalizer(e, (*Encoder).finalize)
  1190. // xdebugf(">>>> new(Encoder) with finalizer")
  1191. }
  1192. e.w = &e.encWriterSwitch
  1193. e.hh = h
  1194. e.esep = h.hasElemSeparators()
  1195. return e
  1196. }
  1197. func (e *Encoder) resetCommon() {
  1198. // e.w = &e.encWriterSwitch
  1199. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1200. e.e = e.hh.newEncDriver(e)
  1201. e.as, e.isas = e.e.(encDriverAsis)
  1202. // e.cr, _ = e.e.(containerStateRecv)
  1203. }
  1204. e.be = e.hh.isBinary()
  1205. _, e.js = e.hh.(*JsonHandle)
  1206. e.e.reset()
  1207. e.err = nil
  1208. }
  1209. // Reset resets the Encoder with a new output stream.
  1210. //
  1211. // This accommodates using the state of the Encoder,
  1212. // where it has "cached" information about sub-engines.
  1213. func (e *Encoder) Reset(w io.Writer) {
  1214. if w == nil {
  1215. return
  1216. }
  1217. // var ok bool
  1218. e.bytes = false
  1219. if e.wf == nil {
  1220. e.wf = new(bufioEncWriter)
  1221. }
  1222. // e.typ = entryTypeUnset
  1223. // if e.h.WriterBufferSize > 0 {
  1224. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1225. // // e.wi.bw = bw
  1226. // // e.wi.sw = bw
  1227. // // e.wi.fw = bw
  1228. // // e.wi.ww = bw
  1229. // if e.wf == nil {
  1230. // e.wf = new(bufioEncWriter)
  1231. // }
  1232. // e.wf.reset(w, e.h.WriterBufferSize)
  1233. // e.typ = entryTypeBufio
  1234. // } else {
  1235. // if e.wi == nil {
  1236. // e.wi = new(ioEncWriter)
  1237. // }
  1238. // e.wi.reset(w)
  1239. // e.typ = entryTypeIo
  1240. // }
  1241. e.wf.reset(w, e.h.WriterBufferSize)
  1242. // e.typ = entryTypeBufio
  1243. // e.w = e.wi
  1244. e.resetCommon()
  1245. }
  1246. // ResetBytes resets the Encoder with a new destination output []byte.
  1247. func (e *Encoder) ResetBytes(out *[]byte) {
  1248. if out == nil {
  1249. return
  1250. }
  1251. var in []byte
  1252. if out != nil {
  1253. in = *out
  1254. }
  1255. if in == nil {
  1256. in = make([]byte, defEncByteBufSize)
  1257. }
  1258. e.bytes = true
  1259. // e.typ = entryTypeBytes
  1260. e.wb.reset(in, out)
  1261. // e.w = &e.wb
  1262. e.resetCommon()
  1263. }
  1264. // Encode writes an object into a stream.
  1265. //
  1266. // Encoding can be configured via the struct tag for the fields.
  1267. // The key (in the struct tags) that we look at is configurable.
  1268. //
  1269. // By default, we look up the "codec" key in the struct field's tags,
  1270. // and fall bak to the "json" key if "codec" is absent.
  1271. // That key in struct field's tag value is the key name,
  1272. // followed by an optional comma and options.
  1273. //
  1274. // To set an option on all fields (e.g. omitempty on all fields), you
  1275. // can create a field called _struct, and set flags on it. The options
  1276. // which can be set on _struct are:
  1277. // - omitempty: so all fields are omitted if empty
  1278. // - toarray: so struct is encoded as an array
  1279. // - int: so struct key names are encoded as signed integers (instead of strings)
  1280. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1281. // - float: so struct key names are encoded as floats (instead of strings)
  1282. // More details on these below.
  1283. //
  1284. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1285. // - the field's tag is "-", OR
  1286. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1287. //
  1288. // When encoding as a map, the first string in the tag (before the comma)
  1289. // is the map key string to use when encoding.
  1290. // ...
  1291. // This key is typically encoded as a string.
  1292. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1293. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1294. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1295. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1296. // This is done with the int,uint or float option on the _struct field (see above).
  1297. //
  1298. // However, struct values may encode as arrays. This happens when:
  1299. // - StructToArray Encode option is set, OR
  1300. // - the tag on the _struct field sets the "toarray" option
  1301. // Note that omitempty is ignored when encoding struct values as arrays,
  1302. // as an entry must be encoded for each field, to maintain its position.
  1303. //
  1304. // Values with types that implement MapBySlice are encoded as stream maps.
  1305. //
  1306. // The empty values (for omitempty option) are false, 0, any nil pointer
  1307. // or interface value, and any array, slice, map, or string of length zero.
  1308. //
  1309. // Anonymous fields are encoded inline except:
  1310. // - the struct tag specifies a replacement name (first value)
  1311. // - the field is of an interface type
  1312. //
  1313. // Examples:
  1314. //
  1315. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1316. // type MyStruct struct {
  1317. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1318. // Field1 string `codec:"-"` //skip this field
  1319. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1320. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1321. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1322. // io.Reader //use key "Reader".
  1323. // MyStruct `codec:"my1" //use key "my1".
  1324. // MyStruct //inline it
  1325. // ...
  1326. // }
  1327. //
  1328. // type MyStruct struct {
  1329. // _struct bool `codec:",toarray"` //encode struct as an array
  1330. // }
  1331. //
  1332. // type MyStruct struct {
  1333. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1334. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1335. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1336. // }
  1337. //
  1338. // The mode of encoding is based on the type of the value. When a value is seen:
  1339. // - If a Selfer, call its CodecEncodeSelf method
  1340. // - If an extension is registered for it, call that extension function
  1341. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1342. // - Else encode it based on its reflect.Kind
  1343. //
  1344. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1345. // Some formats support symbols (e.g. binc) and will properly encode the string
  1346. // only once in the stream, and use a tag to refer to it thereafter.
  1347. func (e *Encoder) Encode(v interface{}) (err error) {
  1348. // tried to use closure, as runtime optimizes defer with no params.
  1349. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1350. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1351. // defer func() { e.deferred(&err) }() }
  1352. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1353. if e.err != nil {
  1354. return e.err
  1355. }
  1356. if recoverPanicToErr {
  1357. defer func() {
  1358. e.w.end()
  1359. if x := recover(); x != nil {
  1360. panicValToErr(e, x, &e.err)
  1361. err = e.err
  1362. }
  1363. }()
  1364. }
  1365. // defer e.deferred(&err)
  1366. e.mustEncode(v)
  1367. return
  1368. }
  1369. // MustEncode is like Encode, but panics if unable to Encode.
  1370. // This provides insight to the code location that triggered the error.
  1371. func (e *Encoder) MustEncode(v interface{}) {
  1372. if e.err != nil {
  1373. panic(e.err)
  1374. }
  1375. e.mustEncode(v)
  1376. }
  1377. func (e *Encoder) mustEncode(v interface{}) {
  1378. e.encode(v)
  1379. e.e.atEndOfEncode()
  1380. e.w.end()
  1381. }
  1382. // func (e *Encoder) deferred(err1 *error) {
  1383. // e.w.end()
  1384. // if recoverPanicToErr {
  1385. // if x := recover(); x != nil {
  1386. // panicValToErr(e, x, err1)
  1387. // panicValToErr(e, x, &e.err)
  1388. // }
  1389. // }
  1390. // }
  1391. //go:noinline -- as it is run by finalizer
  1392. func (e *Encoder) finalize() {
  1393. xdebugf("finalizing Encoder")
  1394. e.Close()
  1395. }
  1396. // Close releases shared (pooled) resources.
  1397. //
  1398. // It is important to call Close() when done with an Encoder, so those resources
  1399. // are released instantly for use by subsequently created Encoders.
  1400. func (e *Encoder) Close() {
  1401. if useFinalizers && removeFinalizerOnClose {
  1402. runtime.SetFinalizer(e, nil)
  1403. }
  1404. if e.wf != nil {
  1405. e.wf.buf = nil
  1406. e.wf.bytesBufPooler.end()
  1407. }
  1408. e.codecFnPooler.end()
  1409. }
  1410. func (e *Encoder) encode(iv interface{}) {
  1411. if iv == nil || definitelyNil(iv) {
  1412. e.e.EncodeNil()
  1413. return
  1414. }
  1415. if v, ok := iv.(Selfer); ok {
  1416. v.CodecEncodeSelf(e)
  1417. return
  1418. }
  1419. // a switch with only concrete types can be optimized.
  1420. // consequently, we deal with nil and interfaces outside.
  1421. switch v := iv.(type) {
  1422. case Raw:
  1423. e.rawBytes(v)
  1424. case reflect.Value:
  1425. e.encodeValue(v, nil, true)
  1426. case string:
  1427. e.e.EncodeStringEnc(cUTF8, v)
  1428. case bool:
  1429. e.e.EncodeBool(v)
  1430. case int:
  1431. e.e.EncodeInt(int64(v))
  1432. case int8:
  1433. e.e.EncodeInt(int64(v))
  1434. case int16:
  1435. e.e.EncodeInt(int64(v))
  1436. case int32:
  1437. e.e.EncodeInt(int64(v))
  1438. case int64:
  1439. e.e.EncodeInt(v)
  1440. case uint:
  1441. e.e.EncodeUint(uint64(v))
  1442. case uint8:
  1443. e.e.EncodeUint(uint64(v))
  1444. case uint16:
  1445. e.e.EncodeUint(uint64(v))
  1446. case uint32:
  1447. e.e.EncodeUint(uint64(v))
  1448. case uint64:
  1449. e.e.EncodeUint(v)
  1450. case uintptr:
  1451. e.e.EncodeUint(uint64(v))
  1452. case float32:
  1453. e.e.EncodeFloat32(v)
  1454. case float64:
  1455. e.e.EncodeFloat64(v)
  1456. case time.Time:
  1457. e.e.EncodeTime(v)
  1458. case []uint8:
  1459. e.e.EncodeStringBytesRaw(v)
  1460. case *Raw:
  1461. e.rawBytes(*v)
  1462. case *string:
  1463. e.e.EncodeStringEnc(cUTF8, *v)
  1464. case *bool:
  1465. e.e.EncodeBool(*v)
  1466. case *int:
  1467. e.e.EncodeInt(int64(*v))
  1468. case *int8:
  1469. e.e.EncodeInt(int64(*v))
  1470. case *int16:
  1471. e.e.EncodeInt(int64(*v))
  1472. case *int32:
  1473. e.e.EncodeInt(int64(*v))
  1474. case *int64:
  1475. e.e.EncodeInt(*v)
  1476. case *uint:
  1477. e.e.EncodeUint(uint64(*v))
  1478. case *uint8:
  1479. e.e.EncodeUint(uint64(*v))
  1480. case *uint16:
  1481. e.e.EncodeUint(uint64(*v))
  1482. case *uint32:
  1483. e.e.EncodeUint(uint64(*v))
  1484. case *uint64:
  1485. e.e.EncodeUint(*v)
  1486. case *uintptr:
  1487. e.e.EncodeUint(uint64(*v))
  1488. case *float32:
  1489. e.e.EncodeFloat32(*v)
  1490. case *float64:
  1491. e.e.EncodeFloat64(*v)
  1492. case *time.Time:
  1493. e.e.EncodeTime(*v)
  1494. case *[]uint8:
  1495. e.e.EncodeStringBytesRaw(*v)
  1496. default:
  1497. if !fastpathEncodeTypeSwitch(iv, e) {
  1498. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1499. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1500. }
  1501. }
  1502. }
  1503. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1504. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1505. var sptr uintptr
  1506. var rvp reflect.Value
  1507. var rvpValid bool
  1508. TOP:
  1509. switch rv.Kind() {
  1510. case reflect.Ptr:
  1511. if rv.IsNil() {
  1512. e.e.EncodeNil()
  1513. return
  1514. }
  1515. rvpValid = true
  1516. rvp = rv
  1517. rv = rv.Elem()
  1518. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1519. // TODO: Movable pointers will be an issue here. Future problem.
  1520. sptr = rv.UnsafeAddr()
  1521. break TOP
  1522. }
  1523. goto TOP
  1524. case reflect.Interface:
  1525. if rv.IsNil() {
  1526. e.e.EncodeNil()
  1527. return
  1528. }
  1529. rv = rv.Elem()
  1530. goto TOP
  1531. case reflect.Slice, reflect.Map:
  1532. if rv.IsNil() {
  1533. e.e.EncodeNil()
  1534. return
  1535. }
  1536. case reflect.Invalid, reflect.Func:
  1537. e.e.EncodeNil()
  1538. return
  1539. }
  1540. if sptr != 0 && (&e.ci).add(sptr) {
  1541. e.errorf("circular reference found: # %d", sptr)
  1542. }
  1543. if fn == nil {
  1544. rt := rv.Type()
  1545. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1546. fn = e.cfer().get(rt, checkFastpath, true)
  1547. }
  1548. if fn.i.addrE {
  1549. if rvpValid {
  1550. fn.fe(e, &fn.i, rvp)
  1551. } else if rv.CanAddr() {
  1552. fn.fe(e, &fn.i, rv.Addr())
  1553. } else {
  1554. rv2 := reflect.New(rv.Type())
  1555. rv2.Elem().Set(rv)
  1556. fn.fe(e, &fn.i, rv2)
  1557. }
  1558. } else {
  1559. fn.fe(e, &fn.i, rv)
  1560. }
  1561. if sptr != 0 {
  1562. (&e.ci).remove(sptr)
  1563. }
  1564. }
  1565. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1566. // if fnerr != nil {
  1567. // panic(fnerr)
  1568. // }
  1569. // if bs == nil {
  1570. // e.e.EncodeNil()
  1571. // } else if asis {
  1572. // e.asis(bs)
  1573. // } else {
  1574. // e.e.EncodeStringBytes(c, bs)
  1575. // }
  1576. // }
  1577. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1578. if fnerr != nil {
  1579. panic(fnerr)
  1580. }
  1581. if bs == nil {
  1582. e.e.EncodeNil()
  1583. } else {
  1584. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1585. }
  1586. }
  1587. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1588. if fnerr != nil {
  1589. panic(fnerr)
  1590. }
  1591. if bs == nil {
  1592. e.e.EncodeNil()
  1593. } else {
  1594. e.asis(bs)
  1595. }
  1596. }
  1597. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1598. if fnerr != nil {
  1599. panic(fnerr)
  1600. }
  1601. if bs == nil {
  1602. e.e.EncodeNil()
  1603. } else {
  1604. e.e.EncodeStringBytesRaw(bs)
  1605. }
  1606. }
  1607. func (e *Encoder) asis(v []byte) {
  1608. if e.isas {
  1609. e.as.EncodeAsis(v)
  1610. } else {
  1611. e.w.writeb(v)
  1612. }
  1613. }
  1614. func (e *Encoder) rawBytes(vv Raw) {
  1615. v := []byte(vv)
  1616. if !e.h.Raw {
  1617. e.errorf("Raw values cannot be encoded: %v", v)
  1618. }
  1619. e.asis(v)
  1620. }
  1621. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1622. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1623. }