encode.go 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "runtime"
  11. "sort"
  12. "strconv"
  13. "time"
  14. )
  15. // defEncByteBufSize is the default size of []byte used
  16. // for bufio buffer or []byte (when nil passed)
  17. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  18. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  19. /*
  20. // encWriter abstracts writing to a byte array or to an io.Writer.
  21. //
  22. //
  23. // Deprecated: Use encWriterSwitch instead.
  24. type encWriter interface {
  25. writeb([]byte)
  26. writestr(string)
  27. writeqstr(string) // write string wrapped in quotes ie "..."
  28. writen1(byte)
  29. writen2(byte, byte)
  30. end()
  31. }
  32. */
  33. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  34. type encDriver interface {
  35. EncodeNil()
  36. EncodeInt(i int64)
  37. EncodeUint(i uint64)
  38. EncodeBool(b bool)
  39. EncodeFloat32(f float32)
  40. EncodeFloat64(f float64)
  41. // encodeExtPreamble(xtag byte, length int)
  42. EncodeRawExt(re *RawExt)
  43. EncodeExt(v interface{}, xtag uint64, ext Ext)
  44. EncodeStringEnc(c charEncoding, v string) // c cannot be cRAW
  45. // EncodeSymbol(v string)
  46. EncodeStringBytesRaw(v []byte)
  47. EncodeTime(time.Time)
  48. //encBignum(f *big.Int)
  49. //encStringRunes(c charEncoding, v []rune)
  50. WriteArrayStart(length int)
  51. WriteArrayEnd()
  52. WriteMapStart(length int)
  53. WriteMapEnd()
  54. reset()
  55. atEndOfEncode()
  56. }
  57. type encDriverContainerTracker interface {
  58. WriteArrayElem()
  59. WriteMapElemKey()
  60. WriteMapElemValue()
  61. }
  62. type encDriverAsis interface {
  63. EncodeAsis(v []byte)
  64. }
  65. type encodeError struct {
  66. codecError
  67. }
  68. func (e encodeError) Error() string {
  69. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  70. }
  71. type encDriverNoopContainerWriter struct{}
  72. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  73. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  74. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  75. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  76. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  77. // func (encDriverNoopContainerWriter) WriteArrayElem() {}
  78. // func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  79. // func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  80. // type encDriverTrackContainerWriter struct {
  81. // c containerState
  82. // }
  83. // func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  84. // func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  85. // func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  86. // func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  87. // func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  88. // func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  89. // func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  90. // func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  91. // type ioEncWriterWriter interface {
  92. // WriteByte(c byte) error
  93. // WriteString(s string) (n int, err error)
  94. // Write(p []byte) (n int, err error)
  95. // }
  96. // EncodeOptions captures configuration options during encode.
  97. type EncodeOptions struct {
  98. // WriterBufferSize is the size of the buffer used when writing.
  99. //
  100. // if > 0, we use a smart buffer internally for performance purposes.
  101. WriterBufferSize int
  102. // ChanRecvTimeout is the timeout used when selecting from a chan.
  103. //
  104. // Configuring this controls how we receive from a chan during the encoding process.
  105. // - If ==0, we only consume the elements currently available in the chan.
  106. // - if <0, we consume until the chan is closed.
  107. // - If >0, we consume until this timeout.
  108. ChanRecvTimeout time.Duration
  109. // StructToArray specifies to encode a struct as an array, and not as a map
  110. StructToArray bool
  111. // Canonical representation means that encoding a value will always result in the same
  112. // sequence of bytes.
  113. //
  114. // This only affects maps, as the iteration order for maps is random.
  115. //
  116. // The implementation MAY use the natural sort order for the map keys if possible:
  117. //
  118. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  119. // then the map keys are first sorted in natural order and then written
  120. // with corresponding map values to the strema.
  121. // - If there is no natural sort order, then the map keys will first be
  122. // encoded into []byte, and then sorted,
  123. // before writing the sorted keys and the corresponding map values to the stream.
  124. //
  125. Canonical bool
  126. // CheckCircularRef controls whether we check for circular references
  127. // and error fast during an encode.
  128. //
  129. // If enabled, an error is received if a pointer to a struct
  130. // references itself either directly or through one of its fields (iteratively).
  131. //
  132. // This is opt-in, as there may be a performance hit to checking circular references.
  133. CheckCircularRef bool
  134. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  135. // when checking if a value is empty.
  136. //
  137. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  138. RecursiveEmptyCheck bool
  139. // Raw controls whether we encode Raw values.
  140. // This is a "dangerous" option and must be explicitly set.
  141. // If set, we blindly encode Raw values as-is, without checking
  142. // if they are a correct representation of a value in that format.
  143. // If unset, we error out.
  144. Raw bool
  145. // StringToRaw controls how strings are encoded.
  146. //
  147. // As a go string is just an (immutable) sequence of bytes,
  148. // it can be encoded either as raw bytes or as a UTF string.
  149. //
  150. // By default, strings are encoded as UTF-8.
  151. // but can be treated as []byte during an encode.
  152. //
  153. // Note that things which we know (by definition) to be UTF-8
  154. // are ALWAYS encoded as UTF-8 strings.
  155. // These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
  156. StringToRaw bool
  157. // // AsSymbols defines what should be encoded as symbols.
  158. // //
  159. // // Encoding as symbols can reduce the encoded size significantly.
  160. // //
  161. // // However, during decoding, each string to be encoded as a symbol must
  162. // // be checked to see if it has been seen before. Consequently, encoding time
  163. // // will increase if using symbols, because string comparisons has a clear cost.
  164. // //
  165. // // Sample values:
  166. // // AsSymbolNone
  167. // // AsSymbolAll
  168. // // AsSymbolMapStringKeys
  169. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  170. // AsSymbols AsSymbolFlag
  171. }
  172. // ---------------------------------------------
  173. /*
  174. type ioEncStringWriter interface {
  175. WriteString(s string) (n int, err error)
  176. }
  177. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  178. type ioEncWriter struct {
  179. w io.Writer
  180. ww io.Writer
  181. bw io.ByteWriter
  182. sw ioEncStringWriter
  183. fw ioFlusher
  184. b [8]byte
  185. }
  186. func (z *ioEncWriter) reset(w io.Writer) {
  187. z.w = w
  188. var ok bool
  189. if z.bw, ok = w.(io.ByteWriter); !ok {
  190. z.bw = z
  191. }
  192. if z.sw, ok = w.(ioEncStringWriter); !ok {
  193. z.sw = z
  194. }
  195. z.fw, _ = w.(ioFlusher)
  196. z.ww = w
  197. }
  198. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  199. z.b[0] = b
  200. _, err = z.w.Write(z.b[:1])
  201. return
  202. }
  203. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  204. return z.w.Write(bytesView(s))
  205. }
  206. func (z *ioEncWriter) writeb(bs []byte) {
  207. if _, err := z.ww.Write(bs); err != nil {
  208. panic(err)
  209. }
  210. }
  211. func (z *ioEncWriter) writestr(s string) {
  212. if _, err := z.sw.WriteString(s); err != nil {
  213. panic(err)
  214. }
  215. }
  216. func (z *ioEncWriter) writeqstr(s string) {
  217. writestr("\"" + s + "\"")
  218. }
  219. func (z *ioEncWriter) writen1(b byte) {
  220. if err := z.bw.WriteByte(b); err != nil {
  221. panic(err)
  222. }
  223. }
  224. func (z *ioEncWriter) writen2(b1, b2 byte) {
  225. var err error
  226. if err = z.bw.WriteByte(b1); err == nil {
  227. if err = z.bw.WriteByte(b2); err == nil {
  228. return
  229. }
  230. }
  231. panic(err)
  232. }
  233. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  234. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  235. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  236. // panic(err)
  237. // }
  238. // }
  239. //go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
  240. func (z *ioEncWriter) end() {
  241. if z.fw != nil {
  242. if err := z.fw.Flush(); err != nil {
  243. panic(err)
  244. }
  245. }
  246. }
  247. */
  248. // ---------------------------------------------
  249. // bufioEncWriter
  250. type bufioEncWriter struct {
  251. w io.Writer
  252. buf []byte
  253. n int
  254. // Extensions can call Encode() within a current Encode() call.
  255. // We need to know when the top level Encode() call returns,
  256. // so we can decide whether to Release() or not.
  257. calls uint16 // what depth in mustDecode are we in now.
  258. sz int // buf size
  259. // _ uint64 // padding (cache-aligned)
  260. // ---- cache line
  261. // write-most fields below
  262. // less used fields
  263. bytesBufPooler
  264. b [40]byte // scratch buffer and padding (cache-aligned)
  265. // a int
  266. // b [4]byte
  267. // err
  268. }
  269. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  270. z.w = w
  271. z.n = 0
  272. z.calls = 0
  273. if bufsize <= 0 {
  274. bufsize = defEncByteBufSize
  275. }
  276. z.sz = bufsize
  277. if cap(z.buf) >= bufsize {
  278. z.buf = z.buf[:cap(z.buf)]
  279. } else if bufsize <= len(z.b) {
  280. z.buf = z.b[:]
  281. } else {
  282. z.buf = z.bytesBufPooler.get(bufsize)
  283. // z.buf = make([]byte, bufsize)
  284. }
  285. }
  286. func (z *bufioEncWriter) release() {
  287. z.buf = nil
  288. z.bytesBufPooler.end()
  289. }
  290. //go:noinline - flush only called intermittently
  291. func (z *bufioEncWriter) flushErr() (err error) {
  292. n, err := z.w.Write(z.buf[:z.n])
  293. z.n -= n
  294. if z.n > 0 && err == nil {
  295. err = io.ErrShortWrite
  296. }
  297. if n > 0 && z.n > 0 {
  298. copy(z.buf, z.buf[n:z.n+n])
  299. }
  300. return err
  301. }
  302. func (z *bufioEncWriter) flush() {
  303. if err := z.flushErr(); err != nil {
  304. panic(err)
  305. }
  306. }
  307. func (z *bufioEncWriter) writeb(s []byte) {
  308. LOOP:
  309. a := len(z.buf) - z.n
  310. if len(s) > a {
  311. z.n += copy(z.buf[z.n:], s[:a])
  312. s = s[a:]
  313. z.flush()
  314. goto LOOP
  315. }
  316. z.n += copy(z.buf[z.n:], s)
  317. }
  318. func (z *bufioEncWriter) writestr(s string) {
  319. // z.writeb(bytesView(s)) // inlined below
  320. LOOP:
  321. a := len(z.buf) - z.n
  322. if len(s) > a {
  323. z.n += copy(z.buf[z.n:], s[:a])
  324. s = s[a:]
  325. z.flush()
  326. goto LOOP
  327. }
  328. z.n += copy(z.buf[z.n:], s)
  329. }
  330. func (z *bufioEncWriter) writeqstr(s string) {
  331. // z.writen1('"')
  332. // z.writestr(s)
  333. // z.writen1('"')
  334. if z.n+len(s)+2 > len(z.buf) {
  335. z.flush()
  336. }
  337. z.buf[z.n] = '"'
  338. z.n++
  339. LOOP:
  340. a := len(z.buf) - z.n
  341. if len(s)+1 > a {
  342. z.n += copy(z.buf[z.n:], s[:a])
  343. s = s[a:]
  344. z.flush()
  345. goto LOOP
  346. }
  347. z.n += copy(z.buf[z.n:], s)
  348. z.buf[z.n] = '"'
  349. z.n++
  350. }
  351. func (z *bufioEncWriter) writen1(b1 byte) {
  352. if 1 > len(z.buf)-z.n {
  353. z.flush()
  354. }
  355. z.buf[z.n] = b1
  356. z.n++
  357. }
  358. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  359. if 2 > len(z.buf)-z.n {
  360. z.flush()
  361. }
  362. z.buf[z.n+1] = b2
  363. z.buf[z.n] = b1
  364. z.n += 2
  365. }
  366. func (z *bufioEncWriter) endErr() (err error) {
  367. if z.n > 0 {
  368. err = z.flushErr()
  369. }
  370. return
  371. }
  372. // ---------------------------------------------
  373. // bytesEncAppender implements encWriter and can write to an byte slice.
  374. type bytesEncAppender struct {
  375. b []byte
  376. out *[]byte
  377. }
  378. func (z *bytesEncAppender) writeb(s []byte) {
  379. z.b = append(z.b, s...)
  380. }
  381. func (z *bytesEncAppender) writestr(s string) {
  382. z.b = append(z.b, s...)
  383. }
  384. func (z *bytesEncAppender) writeqstr(s string) {
  385. // z.writen1('"')
  386. // z.writestr(s)
  387. // z.writen1('"')
  388. z.b = append(append(append(z.b, '"'), s...), '"')
  389. // z.b = append(z.b, '"')
  390. // z.b = append(z.b, s...)
  391. // z.b = append(z.b, '"')
  392. }
  393. func (z *bytesEncAppender) writen1(b1 byte) {
  394. z.b = append(z.b, b1)
  395. }
  396. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  397. z.b = append(z.b, b1, b2)
  398. }
  399. func (z *bytesEncAppender) endErr() error {
  400. *(z.out) = z.b
  401. return nil
  402. }
  403. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  404. z.b = in[:0]
  405. z.out = out
  406. }
  407. // ---------------------------------------------
  408. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  409. e.e.EncodeRawExt(rv2i(rv).(*RawExt))
  410. }
  411. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  412. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn)
  413. }
  414. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  415. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  416. }
  417. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  418. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  419. e.marshalRaw(bs, fnerr)
  420. }
  421. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  422. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  423. e.marshalUtf8(bs, fnerr)
  424. }
  425. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  426. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  427. e.marshalAsis(bs, fnerr)
  428. }
  429. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  430. e.rawBytes(rv2i(rv).(Raw))
  431. }
  432. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  433. e.e.EncodeNil()
  434. }
  435. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  436. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  437. }
  438. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  439. // array may be non-addressable, so we have to manage with care
  440. // (don't call rv.Bytes, rv.Slice, etc).
  441. // E.g. type struct S{B [2]byte};
  442. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  443. if f.seq != seqTypeArray {
  444. if rvisnil(rv) {
  445. e.e.EncodeNil()
  446. return
  447. }
  448. // If in this method, then there was no extension function defined.
  449. // So it's okay to treat as []byte.
  450. if f.ti.rtid == uint8SliceTypId {
  451. e.e.EncodeStringBytesRaw(rv.Bytes())
  452. return
  453. }
  454. }
  455. if f.seq == seqTypeChan && f.ti.chandir&uint8(reflect.RecvDir) == 0 {
  456. e.errorf("send-only channel cannot be encoded")
  457. }
  458. mbs := f.ti.mbs
  459. rtelem := f.ti.elem
  460. // if a slice, array or chan of bytes, treat specially
  461. if !mbs && uint8TypId == rt2id(rtelem) { // NOT rtelem.Kind() == reflect.Uint8
  462. e.kSliceBytes(rv, f.seq)
  463. return
  464. }
  465. // if chan, consume chan into a slice, and work off that slice.
  466. if f.seq == seqTypeChan {
  467. rvcs := reflect.Zero(reflect.SliceOf(rtelem))
  468. timeout := e.h.ChanRecvTimeout
  469. if timeout < 0 { // consume until close
  470. for {
  471. recv, recvOk := rv.Recv()
  472. if !recvOk {
  473. break
  474. }
  475. rvcs = reflect.Append(rvcs, recv)
  476. }
  477. } else {
  478. cases := make([]reflect.SelectCase, 2)
  479. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  480. if timeout == 0 {
  481. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  482. } else {
  483. tt := time.NewTimer(timeout)
  484. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  485. }
  486. for {
  487. chosen, recv, recvOk := reflect.Select(cases)
  488. if chosen == 1 || !recvOk {
  489. break
  490. }
  491. rvcs = reflect.Append(rvcs, recv)
  492. }
  493. }
  494. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  495. }
  496. var l = rv.Len() // rv may be slice or array
  497. if mbs {
  498. if l%2 == 1 {
  499. e.errorf("mapBySlice requires even slice length, but got %v", l)
  500. return
  501. }
  502. e.mapStart(l / 2)
  503. } else {
  504. e.arrayStart(l)
  505. }
  506. if l > 0 {
  507. var fn *codecFn
  508. for rtelem.Kind() == reflect.Ptr {
  509. rtelem = rtelem.Elem()
  510. }
  511. // if kind is reflect.Interface, do not pre-determine the
  512. // encoding type, because preEncodeValue may break it down to
  513. // a concrete type and kInterface will bomb.
  514. if rtelem.Kind() != reflect.Interface {
  515. fn = e.h.fn(rtelem)
  516. }
  517. for j := 0; j < l; j++ {
  518. if mbs {
  519. if j%2 == 0 {
  520. e.mapElemKey()
  521. } else {
  522. e.mapElemValue()
  523. }
  524. } else {
  525. e.arrayElem()
  526. }
  527. e.encodeValue(rv.Index(j), fn)
  528. }
  529. }
  530. if mbs {
  531. e.mapEnd()
  532. } else {
  533. e.arrayEnd()
  534. }
  535. }
  536. func (e *Encoder) kSliceBytes(rv reflect.Value, seq seqType) {
  537. switch seq {
  538. case seqTypeSlice:
  539. e.e.EncodeStringBytesRaw(rv.Bytes())
  540. case seqTypeArray:
  541. var l = rv.Len()
  542. if rv.CanAddr() {
  543. e.e.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  544. } else {
  545. var bs []byte
  546. if l <= cap(e.b) {
  547. bs = e.b[:l]
  548. } else {
  549. bs = make([]byte, l)
  550. }
  551. reflect.Copy(reflect.ValueOf(bs), rv)
  552. e.e.EncodeStringBytesRaw(bs)
  553. }
  554. case seqTypeChan:
  555. // do not use range, so that the number of elements encoded
  556. // does not change, and encoding does not hang waiting on someone to close chan.
  557. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  558. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  559. if rvisnil(rv) {
  560. e.e.EncodeNil()
  561. break
  562. }
  563. bs := e.b[:0]
  564. irv := rv2i(rv)
  565. ch, ok := irv.(<-chan byte)
  566. if !ok {
  567. ch = irv.(chan byte)
  568. }
  569. L1:
  570. switch timeout := e.h.ChanRecvTimeout; {
  571. case timeout == 0: // only consume available
  572. for {
  573. select {
  574. case b := <-ch:
  575. bs = append(bs, b)
  576. default:
  577. break L1
  578. }
  579. }
  580. case timeout > 0: // consume until timeout
  581. tt := time.NewTimer(timeout)
  582. for {
  583. select {
  584. case b := <-ch:
  585. bs = append(bs, b)
  586. case <-tt.C:
  587. // close(tt.C)
  588. break L1
  589. }
  590. }
  591. default: // consume until close
  592. for b := range ch {
  593. bs = append(bs, b)
  594. }
  595. }
  596. e.e.EncodeStringBytesRaw(bs)
  597. }
  598. }
  599. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  600. sfn := structFieldNode{v: rv, update: false}
  601. if f.ti.toArray || e.h.StructToArray { // toArray
  602. e.arrayStart(len(f.ti.sfiSrc))
  603. for _, si := range f.ti.sfiSrc {
  604. e.arrayElem()
  605. e.encodeValue(sfn.field(si), nil)
  606. }
  607. e.arrayEnd()
  608. } else {
  609. e.mapStart(len(f.ti.sfiSort))
  610. for _, si := range f.ti.sfiSort {
  611. e.mapElemKey()
  612. e.kStructFieldKey(f.ti.keyType, si.encNameAsciiAlphaNum, si.encName)
  613. e.mapElemValue()
  614. e.encodeValue(sfn.field(si), nil)
  615. }
  616. e.mapEnd()
  617. }
  618. }
  619. func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
  620. encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
  621. }
  622. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  623. var newlen int
  624. toMap := !(f.ti.toArray || e.h.StructToArray)
  625. var mf map[string]interface{}
  626. if f.ti.mf {
  627. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  628. toMap = true
  629. newlen += len(mf)
  630. } else if f.ti.mfp {
  631. if rv.CanAddr() {
  632. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  633. } else {
  634. // make a new addressable value of same one, and use it
  635. rv2 := reflect.New(rv.Type())
  636. rv2.Elem().Set(rv)
  637. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  638. }
  639. toMap = true
  640. newlen += len(mf)
  641. }
  642. newlen += len(f.ti.sfiSrc)
  643. // Use sync.Pool to reduce allocating slices unnecessarily.
  644. // The cost of sync.Pool is less than the cost of new allocation.
  645. //
  646. // Each element of the array pools one of encStructPool(8|16|32|64).
  647. // It allows the re-use of slices up to 64 in length.
  648. // A performance cost of encoding structs was collecting
  649. // which values were empty and should be omitted.
  650. // We needed slices of reflect.Value and string to collect them.
  651. // This shared pool reduces the amount of unnecessary creation we do.
  652. // The cost is that of locking sometimes, but sync.Pool is efficient
  653. // enough to reduce thread contention.
  654. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  655. var spool sfiRvPooler
  656. var fkvs = spool.get(newlen)
  657. recur := e.h.RecursiveEmptyCheck
  658. sfn := structFieldNode{v: rv, update: false}
  659. var kv sfiRv
  660. var j int
  661. if toMap {
  662. newlen = 0
  663. for _, si := range f.ti.sfiSort { // use sorted array
  664. // kv.r = si.field(rv, false)
  665. kv.r = sfn.field(si)
  666. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  667. continue
  668. }
  669. kv.v = si // si.encName
  670. fkvs[newlen] = kv
  671. newlen++
  672. }
  673. var mflen int
  674. for k, v := range mf {
  675. if k == "" {
  676. delete(mf, k)
  677. continue
  678. }
  679. if f.ti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  680. delete(mf, k)
  681. continue
  682. }
  683. mflen++
  684. }
  685. // encode it all
  686. e.mapStart(newlen + mflen)
  687. for j = 0; j < newlen; j++ {
  688. kv = fkvs[j]
  689. e.mapElemKey()
  690. e.kStructFieldKey(f.ti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  691. e.mapElemValue()
  692. e.encodeValue(kv.r, nil)
  693. }
  694. // now, add the others
  695. for k, v := range mf {
  696. e.mapElemKey()
  697. e.kStructFieldKey(f.ti.keyType, false, k)
  698. e.mapElemValue()
  699. e.encode(v)
  700. }
  701. e.mapEnd()
  702. } else {
  703. newlen = len(f.ti.sfiSrc)
  704. // kv.v = nil
  705. for i, si := range f.ti.sfiSrc { // use unsorted array (to match sequence in struct)
  706. // kv.r = si.field(rv, false)
  707. kv.r = sfn.field(si)
  708. // use the zero value.
  709. // if a reference or struct, set to nil (so you do not output too much)
  710. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  711. switch kv.r.Kind() {
  712. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  713. kv.r = reflect.Value{} //encode as nil
  714. }
  715. }
  716. fkvs[i] = kv
  717. }
  718. // encode it all
  719. e.arrayStart(newlen)
  720. for j = 0; j < newlen; j++ {
  721. e.arrayElem()
  722. e.encodeValue(fkvs[j].r, nil)
  723. }
  724. e.arrayEnd()
  725. }
  726. // do not use defer. Instead, use explicit pool return at end of function.
  727. // defer has a cost we are trying to avoid.
  728. // If there is a panic and these slices are not returned, it is ok.
  729. spool.end()
  730. }
  731. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  732. if rvisnil(rv) {
  733. e.e.EncodeNil()
  734. return
  735. }
  736. l := rv.Len()
  737. e.mapStart(l)
  738. if l == 0 {
  739. e.mapEnd()
  740. return
  741. }
  742. // var asSymbols bool
  743. // determine the underlying key and val encFn's for the map.
  744. // This eliminates some work which is done for each loop iteration i.e.
  745. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  746. //
  747. // However, if kind is reflect.Interface, do not pre-determine the
  748. // encoding type, because preEncodeValue may break it down to
  749. // a concrete type and kInterface will bomb.
  750. var keyFn, valFn *codecFn
  751. rtval := f.ti.elem
  752. // rtkeyid := rt2id(f.ti.key)
  753. for rtval.Kind() == reflect.Ptr {
  754. rtval = rtval.Elem()
  755. }
  756. if rtval.Kind() != reflect.Interface {
  757. valFn = e.h.fn(rtval)
  758. }
  759. if e.h.Canonical {
  760. e.kMapCanonical(f.ti.key, f.ti.elem, rv, valFn)
  761. e.mapEnd()
  762. return
  763. }
  764. rtkey := f.ti.key
  765. var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
  766. if !keyTypeIsString {
  767. for rtkey.Kind() == reflect.Ptr {
  768. rtkey = rtkey.Elem()
  769. }
  770. if rtkey.Kind() != reflect.Interface {
  771. // rtkeyid = rt2id(rtkey)
  772. keyFn = e.h.fn(rtkey)
  773. }
  774. }
  775. var rvk = mapAddressableRV(f.ti.key) //, f.ti.key.Kind())
  776. var rvv = mapAddressableRV(f.ti.elem) //, f.ti.elem.Kind())
  777. it := mapRange(rv, rvk, rvv, true)
  778. for it.Next() {
  779. e.mapElemKey()
  780. if keyTypeIsString {
  781. if e.h.StringToRaw {
  782. e.e.EncodeStringBytesRaw(bytesView(it.Key().String()))
  783. } else {
  784. e.e.EncodeStringEnc(cUTF8, it.Key().String())
  785. }
  786. } else {
  787. e.encodeValue(it.Key(), keyFn) //
  788. }
  789. e.mapElemValue()
  790. iv := it.Value()
  791. e.encodeValue(iv, valFn)
  792. }
  793. e.mapEnd()
  794. }
  795. func (e *Encoder) kMapCanonical(rtkey, rtval reflect.Type, rv reflect.Value, valFn *codecFn) {
  796. // we previously did out-of-band if an extension was registered.
  797. // This is not necessary, as the natural kind is sufficient for ordering.
  798. rvv := mapAddressableRV(rtval)
  799. mks := rv.MapKeys()
  800. switch rtkey.Kind() {
  801. case reflect.Bool:
  802. mksv := make([]boolRv, len(mks))
  803. for i, k := range mks {
  804. v := &mksv[i]
  805. v.r = k
  806. v.v = k.Bool()
  807. }
  808. sort.Sort(boolRvSlice(mksv))
  809. for i := range mksv {
  810. e.mapElemKey()
  811. e.e.EncodeBool(mksv[i].v)
  812. e.mapElemValue()
  813. e.encodeValue(mapIndex(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  814. }
  815. case reflect.String:
  816. mksv := make([]stringRv, len(mks))
  817. for i, k := range mks {
  818. v := &mksv[i]
  819. v.r = k
  820. v.v = k.String()
  821. }
  822. sort.Sort(stringRvSlice(mksv))
  823. for i := range mksv {
  824. e.mapElemKey()
  825. if e.h.StringToRaw {
  826. e.e.EncodeStringBytesRaw(bytesView(mksv[i].v))
  827. } else {
  828. e.e.EncodeStringEnc(cUTF8, mksv[i].v)
  829. }
  830. e.mapElemValue()
  831. e.encodeValue(mapIndex(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  832. }
  833. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  834. mksv := make([]uint64Rv, len(mks))
  835. for i, k := range mks {
  836. v := &mksv[i]
  837. v.r = k
  838. v.v = k.Uint()
  839. }
  840. sort.Sort(uint64RvSlice(mksv))
  841. for i := range mksv {
  842. e.mapElemKey()
  843. e.e.EncodeUint(mksv[i].v)
  844. e.mapElemValue()
  845. e.encodeValue(mapIndex(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  846. }
  847. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  848. mksv := make([]int64Rv, len(mks))
  849. for i, k := range mks {
  850. v := &mksv[i]
  851. v.r = k
  852. v.v = k.Int()
  853. }
  854. sort.Sort(int64RvSlice(mksv))
  855. for i := range mksv {
  856. e.mapElemKey()
  857. e.e.EncodeInt(mksv[i].v)
  858. e.mapElemValue()
  859. e.encodeValue(mapIndex(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  860. }
  861. case reflect.Float32:
  862. mksv := make([]float64Rv, len(mks))
  863. for i, k := range mks {
  864. v := &mksv[i]
  865. v.r = k
  866. v.v = k.Float()
  867. }
  868. sort.Sort(float64RvSlice(mksv))
  869. for i := range mksv {
  870. e.mapElemKey()
  871. e.e.EncodeFloat32(float32(mksv[i].v))
  872. e.mapElemValue()
  873. e.encodeValue(mapIndex(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  874. }
  875. case reflect.Float64:
  876. mksv := make([]float64Rv, len(mks))
  877. for i, k := range mks {
  878. v := &mksv[i]
  879. v.r = k
  880. v.v = k.Float()
  881. }
  882. sort.Sort(float64RvSlice(mksv))
  883. for i := range mksv {
  884. e.mapElemKey()
  885. e.e.EncodeFloat64(mksv[i].v)
  886. e.mapElemValue()
  887. e.encodeValue(mapIndex(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  888. }
  889. case reflect.Struct:
  890. if rv.Type() == timeTyp {
  891. mksv := make([]timeRv, len(mks))
  892. for i, k := range mks {
  893. v := &mksv[i]
  894. v.r = k
  895. v.v = rv2i(k).(time.Time)
  896. }
  897. sort.Sort(timeRvSlice(mksv))
  898. for i := range mksv {
  899. e.mapElemKey()
  900. e.e.EncodeTime(mksv[i].v)
  901. e.mapElemValue()
  902. e.encodeValue(mapIndex(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  903. }
  904. break
  905. }
  906. fallthrough
  907. default:
  908. // out-of-band
  909. // first encode each key to a []byte first, then sort them, then record
  910. var bufp bytesBufPooler
  911. var mksv []byte = bufp.get(len(mks) * 16)[:0]
  912. e2 := NewEncoderBytes(&mksv, e.hh)
  913. mksbv := make([]bytesRv, len(mks))
  914. for i, k := range mks {
  915. v := &mksbv[i]
  916. l := len(mksv)
  917. e2.MustEncode(k)
  918. v.r = k
  919. v.v = mksv[l:]
  920. }
  921. sort.Sort(bytesRvSlice(mksbv))
  922. for j := range mksbv {
  923. e.mapElemKey()
  924. e.asis(mksbv[j].v)
  925. e.mapElemValue()
  926. e.encodeValue(mapIndex(rv, mksbv[j].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksbv[j].r), valFn)
  927. }
  928. bufp.end()
  929. }
  930. }
  931. // // --------------------------------------------------
  932. type encWriterSwitch struct {
  933. esep bool // whether it has elem separators
  934. bytes bool // encoding to []byte
  935. isas bool // whether e.as != nil
  936. js bool // is json encoder?
  937. be bool // is binary encoder?
  938. c containerState
  939. // _ [3]byte // padding
  940. // _ [2]uint64 // padding
  941. // _ uint64 // padding
  942. // wi *ioEncWriter
  943. wb bytesEncAppender
  944. wf *bufioEncWriter
  945. // typ entryType
  946. }
  947. func (z *encWriterSwitch) writeb(s []byte) {
  948. if z.bytes {
  949. z.wb.writeb(s)
  950. } else {
  951. z.wf.writeb(s)
  952. }
  953. }
  954. func (z *encWriterSwitch) writeqstr(s string) {
  955. if z.bytes {
  956. z.wb.writeqstr(s)
  957. } else {
  958. z.wf.writeqstr(s)
  959. }
  960. }
  961. func (z *encWriterSwitch) writestr(s string) {
  962. if z.bytes {
  963. z.wb.writestr(s)
  964. } else {
  965. z.wf.writestr(s)
  966. }
  967. }
  968. func (z *encWriterSwitch) writen1(b1 byte) {
  969. if z.bytes {
  970. z.wb.writen1(b1)
  971. } else {
  972. z.wf.writen1(b1)
  973. }
  974. }
  975. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  976. if z.bytes {
  977. z.wb.writen2(b1, b2)
  978. } else {
  979. z.wf.writen2(b1, b2)
  980. }
  981. }
  982. func (z *encWriterSwitch) endErr() error {
  983. if z.bytes {
  984. return z.wb.endErr()
  985. }
  986. return z.wf.endErr()
  987. }
  988. func (z *encWriterSwitch) end() {
  989. if err := z.endErr(); err != nil {
  990. panic(err)
  991. }
  992. }
  993. /*
  994. // ------------------------------------------
  995. func (z *encWriterSwitch) writeb(s []byte) {
  996. switch z.typ {
  997. case entryTypeBytes:
  998. z.wb.writeb(s)
  999. case entryTypeIo:
  1000. z.wi.writeb(s)
  1001. default:
  1002. z.wf.writeb(s)
  1003. }
  1004. }
  1005. func (z *encWriterSwitch) writestr(s string) {
  1006. switch z.typ {
  1007. case entryTypeBytes:
  1008. z.wb.writestr(s)
  1009. case entryTypeIo:
  1010. z.wi.writestr(s)
  1011. default:
  1012. z.wf.writestr(s)
  1013. }
  1014. }
  1015. func (z *encWriterSwitch) writen1(b1 byte) {
  1016. switch z.typ {
  1017. case entryTypeBytes:
  1018. z.wb.writen1(b1)
  1019. case entryTypeIo:
  1020. z.wi.writen1(b1)
  1021. default:
  1022. z.wf.writen1(b1)
  1023. }
  1024. }
  1025. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1026. switch z.typ {
  1027. case entryTypeBytes:
  1028. z.wb.writen2(b1, b2)
  1029. case entryTypeIo:
  1030. z.wi.writen2(b1, b2)
  1031. default:
  1032. z.wf.writen2(b1, b2)
  1033. }
  1034. }
  1035. func (z *encWriterSwitch) end() {
  1036. switch z.typ {
  1037. case entryTypeBytes:
  1038. z.wb.end()
  1039. case entryTypeIo:
  1040. z.wi.end()
  1041. default:
  1042. z.wf.end()
  1043. }
  1044. }
  1045. // ------------------------------------------
  1046. func (z *encWriterSwitch) writeb(s []byte) {
  1047. if z.bytes {
  1048. z.wb.writeb(s)
  1049. } else {
  1050. z.wi.writeb(s)
  1051. }
  1052. }
  1053. func (z *encWriterSwitch) writestr(s string) {
  1054. if z.bytes {
  1055. z.wb.writestr(s)
  1056. } else {
  1057. z.wi.writestr(s)
  1058. }
  1059. }
  1060. func (z *encWriterSwitch) writen1(b1 byte) {
  1061. if z.bytes {
  1062. z.wb.writen1(b1)
  1063. } else {
  1064. z.wi.writen1(b1)
  1065. }
  1066. }
  1067. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1068. if z.bytes {
  1069. z.wb.writen2(b1, b2)
  1070. } else {
  1071. z.wi.writen2(b1, b2)
  1072. }
  1073. }
  1074. func (z *encWriterSwitch) end() {
  1075. if z.bytes {
  1076. z.wb.end()
  1077. } else {
  1078. z.wi.end()
  1079. }
  1080. }
  1081. */
  1082. // Encoder writes an object to an output stream in a supported format.
  1083. //
  1084. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1085. // concurrently in multiple goroutines.
  1086. //
  1087. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1088. // so its state can be reused to decode new input streams repeatedly.
  1089. // This is the idiomatic way to use.
  1090. type Encoder struct {
  1091. panicHdl
  1092. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1093. e encDriver
  1094. // NOTE: Encoder shouldn't call it's write methods,
  1095. // as the handler MAY need to do some coordination.
  1096. // w *encWriterSwitch
  1097. // bw *bufio.Writer
  1098. as encDriverAsis
  1099. jenc *jsonEncDriver
  1100. h *BasicHandle
  1101. hh Handle
  1102. // ---- cpu cache line boundary
  1103. encWriterSwitch
  1104. err error
  1105. // ---- cpu cache line boundary
  1106. // ---- writable fields during execution --- *try* to keep in sep cache line
  1107. ci set // holds set of addresses found during an encoding (if CheckCircularRef=true)
  1108. // cidef [1]interface{} // default ci
  1109. b [(5 * 8)]byte // for encoding chan byte, (non-addressable) [N]byte, etc
  1110. // ---- cpu cache line boundary?
  1111. // b [scratchByteArrayLen]byte
  1112. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1113. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  1114. }
  1115. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1116. //
  1117. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  1118. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  1119. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1120. e := newEncoder(h)
  1121. e.Reset(w)
  1122. return e
  1123. }
  1124. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1125. // into a byte slice, using zero-copying to temporary slices.
  1126. //
  1127. // It will potentially replace the output byte slice pointed to.
  1128. // After encoding, the out parameter contains the encoded contents.
  1129. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1130. e := newEncoder(h)
  1131. e.ResetBytes(out)
  1132. return e
  1133. }
  1134. func newEncoder(h Handle) *Encoder {
  1135. e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
  1136. e.bytes = true
  1137. if useFinalizers {
  1138. runtime.SetFinalizer(e, (*Encoder).finalize)
  1139. }
  1140. // e.w = &e.encWriterSwitch
  1141. e.hh = h
  1142. e.esep = h.hasElemSeparators()
  1143. return e
  1144. }
  1145. func (e *Encoder) w() *encWriterSwitch {
  1146. return &e.encWriterSwitch
  1147. }
  1148. func (e *Encoder) resetCommon() {
  1149. // e.w = &e.encWriterSwitch
  1150. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1151. e.e = e.hh.newEncDriver(e)
  1152. e.as, e.isas = e.e.(encDriverAsis)
  1153. // e.cr, _ = e.e.(containerStateRecv)
  1154. }
  1155. if e.ci == nil {
  1156. // e.ci = (set)(e.cidef[:0])
  1157. } else {
  1158. e.ci = e.ci[:0]
  1159. }
  1160. e.be = e.hh.isBinary()
  1161. e.jenc = nil
  1162. _, e.js = e.hh.(*JsonHandle)
  1163. if e.js {
  1164. e.jenc = e.e.(interface{ getJsonEncDriver() *jsonEncDriver }).getJsonEncDriver()
  1165. }
  1166. e.e.reset()
  1167. e.c = 0
  1168. e.err = nil
  1169. }
  1170. // Reset resets the Encoder with a new output stream.
  1171. //
  1172. // This accommodates using the state of the Encoder,
  1173. // where it has "cached" information about sub-engines.
  1174. func (e *Encoder) Reset(w io.Writer) {
  1175. if w == nil {
  1176. return
  1177. }
  1178. // var ok bool
  1179. e.bytes = false
  1180. if e.wf == nil {
  1181. e.wf = new(bufioEncWriter)
  1182. }
  1183. // e.typ = entryTypeUnset
  1184. // if e.h.WriterBufferSize > 0 {
  1185. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1186. // // e.wi.bw = bw
  1187. // // e.wi.sw = bw
  1188. // // e.wi.fw = bw
  1189. // // e.wi.ww = bw
  1190. // if e.wf == nil {
  1191. // e.wf = new(bufioEncWriter)
  1192. // }
  1193. // e.wf.reset(w, e.h.WriterBufferSize)
  1194. // e.typ = entryTypeBufio
  1195. // } else {
  1196. // if e.wi == nil {
  1197. // e.wi = new(ioEncWriter)
  1198. // }
  1199. // e.wi.reset(w)
  1200. // e.typ = entryTypeIo
  1201. // }
  1202. e.wf.reset(w, e.h.WriterBufferSize)
  1203. // e.typ = entryTypeBufio
  1204. // e.w = e.wi
  1205. e.resetCommon()
  1206. }
  1207. // ResetBytes resets the Encoder with a new destination output []byte.
  1208. func (e *Encoder) ResetBytes(out *[]byte) {
  1209. if out == nil {
  1210. return
  1211. }
  1212. var in []byte = *out
  1213. if in == nil {
  1214. in = make([]byte, defEncByteBufSize)
  1215. }
  1216. e.bytes = true
  1217. // e.typ = entryTypeBytes
  1218. e.wb.reset(in, out)
  1219. // e.w = &e.wb
  1220. e.resetCommon()
  1221. }
  1222. // Encode writes an object into a stream.
  1223. //
  1224. // Encoding can be configured via the struct tag for the fields.
  1225. // The key (in the struct tags) that we look at is configurable.
  1226. //
  1227. // By default, we look up the "codec" key in the struct field's tags,
  1228. // and fall bak to the "json" key if "codec" is absent.
  1229. // That key in struct field's tag value is the key name,
  1230. // followed by an optional comma and options.
  1231. //
  1232. // To set an option on all fields (e.g. omitempty on all fields), you
  1233. // can create a field called _struct, and set flags on it. The options
  1234. // which can be set on _struct are:
  1235. // - omitempty: so all fields are omitted if empty
  1236. // - toarray: so struct is encoded as an array
  1237. // - int: so struct key names are encoded as signed integers (instead of strings)
  1238. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1239. // - float: so struct key names are encoded as floats (instead of strings)
  1240. // More details on these below.
  1241. //
  1242. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1243. // - the field's tag is "-", OR
  1244. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1245. //
  1246. // When encoding as a map, the first string in the tag (before the comma)
  1247. // is the map key string to use when encoding.
  1248. // ...
  1249. // This key is typically encoded as a string.
  1250. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1251. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1252. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1253. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1254. // This is done with the int,uint or float option on the _struct field (see above).
  1255. //
  1256. // However, struct values may encode as arrays. This happens when:
  1257. // - StructToArray Encode option is set, OR
  1258. // - the tag on the _struct field sets the "toarray" option
  1259. // Note that omitempty is ignored when encoding struct values as arrays,
  1260. // as an entry must be encoded for each field, to maintain its position.
  1261. //
  1262. // Values with types that implement MapBySlice are encoded as stream maps.
  1263. //
  1264. // The empty values (for omitempty option) are false, 0, any nil pointer
  1265. // or interface value, and any array, slice, map, or string of length zero.
  1266. //
  1267. // Anonymous fields are encoded inline except:
  1268. // - the struct tag specifies a replacement name (first value)
  1269. // - the field is of an interface type
  1270. //
  1271. // Examples:
  1272. //
  1273. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1274. // type MyStruct struct {
  1275. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1276. // Field1 string `codec:"-"` //skip this field
  1277. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1278. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1279. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1280. // io.Reader //use key "Reader".
  1281. // MyStruct `codec:"my1" //use key "my1".
  1282. // MyStruct //inline it
  1283. // ...
  1284. // }
  1285. //
  1286. // type MyStruct struct {
  1287. // _struct bool `codec:",toarray"` //encode struct as an array
  1288. // }
  1289. //
  1290. // type MyStruct struct {
  1291. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1292. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1293. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1294. // }
  1295. //
  1296. // The mode of encoding is based on the type of the value. When a value is seen:
  1297. // - If a Selfer, call its CodecEncodeSelf method
  1298. // - If an extension is registered for it, call that extension function
  1299. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1300. // - Else encode it based on its reflect.Kind
  1301. //
  1302. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1303. // Some formats support symbols (e.g. binc) and will properly encode the string
  1304. // only once in the stream, and use a tag to refer to it thereafter.
  1305. func (e *Encoder) Encode(v interface{}) (err error) {
  1306. // tried to use closure, as runtime optimizes defer with no params.
  1307. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1308. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1309. // defer func() { e.deferred(&err) }() }
  1310. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1311. if e.err != nil {
  1312. return e.err
  1313. }
  1314. if recoverPanicToErr {
  1315. defer func() {
  1316. // if error occurred during encoding, return that error;
  1317. // else if error occurred on end'ing (i.e. during flush), return that error.
  1318. err = e.w().endErr()
  1319. x := recover()
  1320. if x == nil {
  1321. if e.err != err {
  1322. e.err = err
  1323. }
  1324. } else {
  1325. panicValToErr(e, x, &e.err)
  1326. if e.err != err {
  1327. err = e.err
  1328. }
  1329. }
  1330. }()
  1331. }
  1332. // defer e.deferred(&err)
  1333. e.mustEncode(v)
  1334. return
  1335. }
  1336. // MustEncode is like Encode, but panics if unable to Encode.
  1337. // This provides insight to the code location that triggered the error.
  1338. func (e *Encoder) MustEncode(v interface{}) {
  1339. if e.err != nil {
  1340. panic(e.err)
  1341. }
  1342. e.mustEncode(v)
  1343. }
  1344. func (e *Encoder) mustEncode(v interface{}) {
  1345. if e.wf == nil {
  1346. e.encode(v)
  1347. e.e.atEndOfEncode()
  1348. e.w().end()
  1349. return
  1350. }
  1351. if e.wf.buf == nil {
  1352. e.wf.buf = e.wf.bytesBufPooler.get(e.wf.sz)
  1353. }
  1354. e.wf.calls++
  1355. e.encode(v)
  1356. e.wf.calls--
  1357. if e.wf.calls == 0 {
  1358. e.e.atEndOfEncode()
  1359. e.w().end()
  1360. if !e.h.ExplicitRelease {
  1361. e.wf.release()
  1362. }
  1363. }
  1364. }
  1365. // func (e *Encoder) deferred(err1 *error) {
  1366. // e.w().end()
  1367. // if recoverPanicToErr {
  1368. // if x := recover(); x != nil {
  1369. // panicValToErr(e, x, err1)
  1370. // panicValToErr(e, x, &e.err)
  1371. // }
  1372. // }
  1373. // }
  1374. //go:noinline -- as it is run by finalizer
  1375. func (e *Encoder) finalize() {
  1376. e.Release()
  1377. }
  1378. // Release releases shared (pooled) resources.
  1379. //
  1380. // It is important to call Release() when done with an Encoder, so those resources
  1381. // are released instantly for use by subsequently created Encoders.
  1382. func (e *Encoder) Release() {
  1383. if e.wf != nil {
  1384. e.wf.release()
  1385. }
  1386. }
  1387. func (e *Encoder) encode(iv interface{}) {
  1388. // a switch with only concrete types can be optimized.
  1389. // consequently, we deal with nil and interfaces outside the switch.
  1390. if iv == nil || definitelyNil(iv) {
  1391. e.e.EncodeNil()
  1392. return
  1393. }
  1394. switch v := iv.(type) {
  1395. // case nil:
  1396. // case Selfer:
  1397. case Raw:
  1398. e.rawBytes(v)
  1399. case reflect.Value:
  1400. e.encodeValue(v, nil)
  1401. case string:
  1402. if e.h.StringToRaw {
  1403. e.e.EncodeStringBytesRaw(bytesView(v))
  1404. } else {
  1405. e.e.EncodeStringEnc(cUTF8, v)
  1406. }
  1407. case bool:
  1408. e.e.EncodeBool(v)
  1409. case int:
  1410. e.e.EncodeInt(int64(v))
  1411. case int8:
  1412. e.e.EncodeInt(int64(v))
  1413. case int16:
  1414. e.e.EncodeInt(int64(v))
  1415. case int32:
  1416. e.e.EncodeInt(int64(v))
  1417. case int64:
  1418. e.e.EncodeInt(v)
  1419. case uint:
  1420. e.e.EncodeUint(uint64(v))
  1421. case uint8:
  1422. e.e.EncodeUint(uint64(v))
  1423. case uint16:
  1424. e.e.EncodeUint(uint64(v))
  1425. case uint32:
  1426. e.e.EncodeUint(uint64(v))
  1427. case uint64:
  1428. e.e.EncodeUint(v)
  1429. case uintptr:
  1430. e.e.EncodeUint(uint64(v))
  1431. case float32:
  1432. e.e.EncodeFloat32(v)
  1433. case float64:
  1434. e.e.EncodeFloat64(v)
  1435. case time.Time:
  1436. e.e.EncodeTime(v)
  1437. case []uint8:
  1438. e.e.EncodeStringBytesRaw(v)
  1439. case *Raw:
  1440. e.rawBytes(*v)
  1441. case *string:
  1442. if e.h.StringToRaw {
  1443. e.e.EncodeStringBytesRaw(bytesView(*v))
  1444. } else {
  1445. e.e.EncodeStringEnc(cUTF8, *v)
  1446. }
  1447. case *bool:
  1448. e.e.EncodeBool(*v)
  1449. case *int:
  1450. e.e.EncodeInt(int64(*v))
  1451. case *int8:
  1452. e.e.EncodeInt(int64(*v))
  1453. case *int16:
  1454. e.e.EncodeInt(int64(*v))
  1455. case *int32:
  1456. e.e.EncodeInt(int64(*v))
  1457. case *int64:
  1458. e.e.EncodeInt(*v)
  1459. case *uint:
  1460. e.e.EncodeUint(uint64(*v))
  1461. case *uint8:
  1462. e.e.EncodeUint(uint64(*v))
  1463. case *uint16:
  1464. e.e.EncodeUint(uint64(*v))
  1465. case *uint32:
  1466. e.e.EncodeUint(uint64(*v))
  1467. case *uint64:
  1468. e.e.EncodeUint(*v)
  1469. case *uintptr:
  1470. e.e.EncodeUint(uint64(*v))
  1471. case *float32:
  1472. e.e.EncodeFloat32(*v)
  1473. case *float64:
  1474. e.e.EncodeFloat64(*v)
  1475. case *time.Time:
  1476. e.e.EncodeTime(*v)
  1477. case *[]uint8:
  1478. e.e.EncodeStringBytesRaw(*v)
  1479. default:
  1480. if v, ok := iv.(Selfer); ok {
  1481. v.CodecEncodeSelf(e)
  1482. } else if !fastpathEncodeTypeSwitch(iv, e) {
  1483. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1484. e.encodeValue(reflect.ValueOf(iv), nil)
  1485. }
  1486. }
  1487. }
  1488. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
  1489. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1490. // We considered using a uintptr (a pointer) retrievable via rv.UnsafeAddr.
  1491. // However, it is possible for the same pointer to point to 2 different types e.g.
  1492. // type T struct { tHelper }
  1493. // Here, for var v T; &v and &v.tHelper are the same pointer.
  1494. // Consequently, we need a tuple of type and pointer, which interface{} natively provides.
  1495. var sptr interface{} // uintptr
  1496. var rvp reflect.Value
  1497. var rvpValid bool
  1498. TOP:
  1499. switch rv.Kind() {
  1500. case reflect.Ptr:
  1501. if rvisnil(rv) {
  1502. e.e.EncodeNil()
  1503. return
  1504. }
  1505. rvpValid = true
  1506. rvp = rv
  1507. rv = rv.Elem()
  1508. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1509. sptr = rv2i(rvp) // rv.UnsafeAddr()
  1510. break TOP
  1511. }
  1512. goto TOP
  1513. case reflect.Interface:
  1514. if rvisnil(rv) {
  1515. e.e.EncodeNil()
  1516. return
  1517. }
  1518. rv = rv.Elem()
  1519. goto TOP
  1520. case reflect.Slice, reflect.Map:
  1521. if rvisnil(rv) {
  1522. e.e.EncodeNil()
  1523. return
  1524. }
  1525. case reflect.Invalid, reflect.Func:
  1526. e.e.EncodeNil()
  1527. return
  1528. }
  1529. if sptr != nil && (&e.ci).add(sptr) {
  1530. // e.errorf("circular reference found: # %d", sptr)
  1531. e.errorf("circular reference found: # %p, %T", sptr, sptr)
  1532. }
  1533. if fn == nil {
  1534. rt := rv.Type()
  1535. fn = e.h.fn(rt)
  1536. }
  1537. if fn.i.addrE {
  1538. if rvpValid {
  1539. fn.fe(e, &fn.i, rvp)
  1540. } else if rv.CanAddr() {
  1541. fn.fe(e, &fn.i, rv.Addr())
  1542. } else {
  1543. rv2 := reflect.New(rv.Type())
  1544. rv2.Elem().Set(rv)
  1545. fn.fe(e, &fn.i, rv2)
  1546. }
  1547. } else {
  1548. fn.fe(e, &fn.i, rv)
  1549. }
  1550. if sptr != 0 {
  1551. (&e.ci).remove(sptr)
  1552. }
  1553. }
  1554. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1555. // if fnerr != nil {
  1556. // panic(fnerr)
  1557. // }
  1558. // if bs == nil {
  1559. // e.e.EncodeNil()
  1560. // } else if asis {
  1561. // e.asis(bs)
  1562. // } else {
  1563. // e.e.EncodeStringBytesRaw(bs)
  1564. // }
  1565. // }
  1566. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1567. if fnerr != nil {
  1568. panic(fnerr)
  1569. }
  1570. if bs == nil {
  1571. e.e.EncodeNil()
  1572. } else {
  1573. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1574. }
  1575. }
  1576. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1577. if fnerr != nil {
  1578. panic(fnerr)
  1579. }
  1580. if bs == nil {
  1581. e.e.EncodeNil()
  1582. } else {
  1583. e.asis(bs)
  1584. }
  1585. }
  1586. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1587. if fnerr != nil {
  1588. panic(fnerr)
  1589. }
  1590. if bs == nil {
  1591. e.e.EncodeNil()
  1592. } else {
  1593. e.e.EncodeStringBytesRaw(bs)
  1594. }
  1595. }
  1596. func (e *Encoder) asis(v []byte) {
  1597. if e.isas {
  1598. e.as.EncodeAsis(v)
  1599. } else {
  1600. e.w().writeb(v)
  1601. }
  1602. }
  1603. func (e *Encoder) rawBytes(vv Raw) {
  1604. v := []byte(vv)
  1605. if !e.h.Raw {
  1606. e.errorf("Raw values cannot be encoded: %v", v)
  1607. }
  1608. e.asis(v)
  1609. }
  1610. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1611. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1612. }
  1613. // ---- container tracker methods
  1614. // Note: We update the .c after calling the callback.
  1615. // This way, the callback can know what the last status was.
  1616. func (e *Encoder) mapStart(length int) {
  1617. e.e.WriteMapStart(length)
  1618. e.c = containerMapStart
  1619. }
  1620. func (e *Encoder) mapElemKey() {
  1621. if e.js {
  1622. e.jenc.WriteMapElemKey()
  1623. }
  1624. e.c = containerMapKey
  1625. }
  1626. func (e *Encoder) mapElemValue() {
  1627. if e.js {
  1628. e.jenc.WriteMapElemValue()
  1629. }
  1630. e.c = containerMapValue
  1631. }
  1632. func (e *Encoder) mapEnd() {
  1633. e.e.WriteMapEnd()
  1634. e.c = containerMapEnd
  1635. e.c = 0
  1636. }
  1637. func (e *Encoder) arrayStart(length int) {
  1638. e.e.WriteArrayStart(length)
  1639. e.c = containerArrayStart
  1640. }
  1641. func (e *Encoder) arrayElem() {
  1642. if e.js {
  1643. e.jenc.WriteArrayElem()
  1644. }
  1645. e.c = containerArrayElem
  1646. }
  1647. func (e *Encoder) arrayEnd() {
  1648. e.e.WriteArrayEnd()
  1649. e.c = 0
  1650. e.c = containerArrayEnd
  1651. }
  1652. // ----------
  1653. func (e *Encoder) sideEncode(v interface{}, bs *[]byte) {
  1654. rv := baseRV(v)
  1655. e2 := NewEncoderBytes(bs, e.hh)
  1656. e2.encodeValue(rv, e.h.fnNoExt(rv.Type()))
  1657. e2.e.atEndOfEncode()
  1658. e2.w().end()
  1659. }
  1660. func encStructFieldKey(encName string, ee encDriver, w *encWriterSwitch,
  1661. keyType valueType, encNameAsciiAlphaNum bool, js bool) {
  1662. var m must
  1663. // use if-else-if, not switch (which compiles to binary-search)
  1664. // since keyType is typically valueTypeString, branch prediction is pretty good.
  1665. if keyType == valueTypeString {
  1666. if js && encNameAsciiAlphaNum { // keyType == valueTypeString
  1667. w.writeqstr(encName)
  1668. // ----
  1669. // w.writen1('"')
  1670. // w.writestr(encName)
  1671. // w.writen1('"')
  1672. // ----
  1673. // w.writestr(`"` + encName + `"`)
  1674. // ----
  1675. // // do concat myself, so it is faster than the generic string concat
  1676. // b := make([]byte, len(encName)+2)
  1677. // copy(b[1:], encName)
  1678. // b[0] = '"'
  1679. // b[len(b)-1] = '"'
  1680. // w.writeb(b)
  1681. } else { // keyType == valueTypeString
  1682. ee.EncodeStringEnc(cUTF8, encName)
  1683. }
  1684. } else if keyType == valueTypeInt {
  1685. ee.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  1686. } else if keyType == valueTypeUint {
  1687. ee.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  1688. } else if keyType == valueTypeFloat {
  1689. ee.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  1690. }
  1691. }
  1692. // type encExtPreambler interface {
  1693. // encodeExtPreamble(tag uint8, length int)
  1694. // }
  1695. // func encBytesExt(rv interface{}, xtag uint64, ext Ext, h Handle, e encDriver) {
  1696. // var bs []byte
  1697. // var bufp bytesBufPooler
  1698. // if ext == SelfExt {
  1699. // bs = bufp.get(1024)[:0]
  1700. // rv2 := reflect.ValueOf(v)
  1701. // NewEncoderBytes(&bs, h).encodeValue(rv2, h.fnNoExt(rv2.Type()))
  1702. // } else {
  1703. // bs = ext.WriteExt(v)
  1704. // }
  1705. // if bs == nil {
  1706. // e.EncodeNil()
  1707. // return
  1708. // }
  1709. // if e.h.WriteExt {
  1710. // e.encodeExtPreamble(uint8(xtag), len(bs))
  1711. // e.w.writeb(bs)
  1712. // } else {
  1713. // e.EncodeStringBytesRaw(bs)
  1714. // }
  1715. // if ext == SelfExt {
  1716. // bufp.end()
  1717. // }
  1718. // }
  1719. // func encStringAsRawBytesMaybe(ee encDriver, s string, stringToRaw bool) {
  1720. // if stringToRaw {
  1721. // ee.EncodeStringBytesRaw(bytesView(s))
  1722. // } else {
  1723. // ee.EncodeStringEnc(cUTF8, s)
  1724. // }
  1725. // }