encode.go 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "bufio"
  6. "encoding"
  7. "errors"
  8. "fmt"
  9. "io"
  10. "reflect"
  11. "sort"
  12. "sync"
  13. "time"
  14. )
  15. const defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  16. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  17. // AsSymbolFlag defines what should be encoded as symbols.
  18. type AsSymbolFlag uint8
  19. const (
  20. // AsSymbolDefault means only encode struct field names as symbols.
  21. AsSymbolDefault AsSymbolFlag = iota
  22. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  23. AsSymbolAll = 0xfe
  24. // AsSymbolNone means do not encode anything as a symbol.
  25. AsSymbolNone = 1 << iota
  26. // AsSymbolMapStringKeysFlag means encode keys in map[string]XXX as symbols.
  27. AsSymbolMapStringKeysFlag
  28. // AsSymbolStructFieldNameFlag means encode struct field names as symbols.
  29. AsSymbolStructFieldNameFlag
  30. )
  31. // encWriter abstracts writing to a byte array or to an io.Writer.
  32. type encWriter interface {
  33. writeb([]byte)
  34. writestr(string)
  35. writen1(byte)
  36. writen2(byte, byte)
  37. atEndOfEncode()
  38. }
  39. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  40. type encDriver interface {
  41. // IsBuiltinType(rt uintptr) bool
  42. // Deprecated: left here for now so that old codecgen'ed filed will work. TODO: remove.
  43. EncodeBuiltin(rt uintptr, v interface{})
  44. EncodeNil()
  45. EncodeInt(i int64)
  46. EncodeUint(i uint64)
  47. EncodeBool(b bool)
  48. EncodeFloat32(f float32)
  49. EncodeFloat64(f float64)
  50. // encodeExtPreamble(xtag byte, length int)
  51. EncodeRawExt(re *RawExt, e *Encoder)
  52. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  53. WriteArrayStart(length int)
  54. WriteArrayElem()
  55. WriteArrayEnd()
  56. WriteMapStart(length int)
  57. WriteMapElemKey()
  58. WriteMapElemValue()
  59. WriteMapEnd()
  60. EncodeString(c charEncoding, v string)
  61. EncodeSymbol(v string)
  62. EncodeStringBytes(c charEncoding, v []byte)
  63. EncodeTime(time.Time)
  64. //TODO
  65. //encBignum(f *big.Int)
  66. //encStringRunes(c charEncoding, v []rune)
  67. reset()
  68. atEndOfEncode()
  69. }
  70. type ioEncStringWriter interface {
  71. WriteString(s string) (n int, err error)
  72. }
  73. type encDriverAsis interface {
  74. EncodeAsis(v []byte)
  75. }
  76. type encDriverNoopContainerWriter struct{}
  77. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  78. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  79. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  80. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  81. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  82. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  83. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  84. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  85. // type ioEncWriterWriter interface {
  86. // WriteByte(c byte) error
  87. // WriteString(s string) (n int, err error)
  88. // Write(p []byte) (n int, err error)
  89. // }
  90. // EncodeOptions captures configuration options during encode.
  91. type EncodeOptions struct {
  92. // Encode a struct as an array, and not as a map
  93. StructToArray bool
  94. // Canonical representation means that encoding a value will always result in the same
  95. // sequence of bytes.
  96. //
  97. // This only affects maps, as the iteration order for maps is random.
  98. //
  99. // The implementation MAY use the natural sort order for the map keys if possible:
  100. //
  101. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  102. // then the map keys are first sorted in natural order and then written
  103. // with corresponding map values to the strema.
  104. // - If there is no natural sort order, then the map keys will first be
  105. // encoded into []byte, and then sorted,
  106. // before writing the sorted keys and the corresponding map values to the stream.
  107. //
  108. Canonical bool
  109. // CheckCircularRef controls whether we check for circular references
  110. // and error fast during an encode.
  111. //
  112. // If enabled, an error is received if a pointer to a struct
  113. // references itself either directly or through one of its fields (iteratively).
  114. //
  115. // This is opt-in, as there may be a performance hit to checking circular references.
  116. CheckCircularRef bool
  117. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  118. // when checking if a value is empty.
  119. //
  120. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  121. RecursiveEmptyCheck bool
  122. // Raw controls whether we encode Raw values.
  123. // This is a "dangerous" option and must be explicitly set.
  124. // If set, we blindly encode Raw values as-is, without checking
  125. // if they are a correct representation of a value in that format.
  126. // If unset, we error out.
  127. Raw bool
  128. // AsSymbols defines what should be encoded as symbols.
  129. //
  130. // Encoding as symbols can reduce the encoded size significantly.
  131. //
  132. // However, during decoding, each string to be encoded as a symbol must
  133. // be checked to see if it has been seen before. Consequently, encoding time
  134. // will increase if using symbols, because string comparisons has a clear cost.
  135. //
  136. // Sample values:
  137. // AsSymbolNone
  138. // AsSymbolAll
  139. // AsSymbolMapStringKeys
  140. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  141. AsSymbols AsSymbolFlag
  142. // WriterBufferSize is the size of the buffer used when writing.
  143. //
  144. // if > 0, we use a smart buffer internally for performance purposes.
  145. WriterBufferSize int
  146. }
  147. // ---------------------------------------------
  148. type simpleIoEncWriter struct {
  149. io.Writer
  150. }
  151. // type bufIoEncWriter struct {
  152. // w io.Writer
  153. // buf []byte
  154. // err error
  155. // }
  156. // func (x *bufIoEncWriter) Write(b []byte) (n int, err error) {
  157. // if x.err != nil {
  158. // return 0, x.err
  159. // }
  160. // if cap(x.buf)-len(x.buf) >= len(b) {
  161. // x.buf = append(x.buf, b)
  162. // return len(b), nil
  163. // }
  164. // n, err = x.w.Write(x.buf)
  165. // if err != nil {
  166. // x.err = err
  167. // return 0, x.err
  168. // }
  169. // n, err = x.w.Write(b)
  170. // x.err = err
  171. // return
  172. // }
  173. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  174. type ioEncWriter struct {
  175. w io.Writer
  176. ww io.Writer
  177. bw io.ByteWriter
  178. sw ioEncStringWriter
  179. fw ioFlusher
  180. b [8]byte
  181. }
  182. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  183. // x.bs[0] = b
  184. // _, err = x.ww.Write(x.bs[:])
  185. z.b[0] = b
  186. _, err = z.w.Write(z.b[:1])
  187. return
  188. }
  189. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  190. return z.w.Write(bytesView(s))
  191. }
  192. func (z *ioEncWriter) writeb(bs []byte) {
  193. // if len(bs) == 0 {
  194. // return
  195. // }
  196. if _, err := z.ww.Write(bs); err != nil {
  197. panic(err)
  198. }
  199. }
  200. func (z *ioEncWriter) writestr(s string) {
  201. // if len(s) == 0 {
  202. // return
  203. // }
  204. if _, err := z.sw.WriteString(s); err != nil {
  205. panic(err)
  206. }
  207. }
  208. func (z *ioEncWriter) writen1(b byte) {
  209. if err := z.bw.WriteByte(b); err != nil {
  210. panic(err)
  211. }
  212. }
  213. func (z *ioEncWriter) writen2(b1, b2 byte) {
  214. var err error
  215. if err = z.bw.WriteByte(b1); err == nil {
  216. if err = z.bw.WriteByte(b2); err == nil {
  217. return
  218. }
  219. }
  220. panic(err)
  221. }
  222. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  223. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  224. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  225. // panic(err)
  226. // }
  227. // }
  228. func (z *ioEncWriter) atEndOfEncode() {
  229. if z.fw != nil {
  230. z.fw.Flush()
  231. }
  232. }
  233. // // ----------------------------------------
  234. // // bytesEncWriter implements encWriter and can write to an byte slice.
  235. // // It is used by Marshal function.
  236. // type bytesEncWriter struct {
  237. // b []byte
  238. // c int // cursor
  239. // out *[]byte // write out on atEndOfEncode
  240. // }
  241. // func (z *bytesEncWriter) writeb(s []byte) {
  242. // oc, a := z.growNoAlloc(len(s))
  243. // if a {
  244. // z.growAlloc(len(s), oc)
  245. // }
  246. // copy(z.b[oc:], s)
  247. // }
  248. // func (z *bytesEncWriter) writestr(s string) {
  249. // oc, a := z.growNoAlloc(len(s))
  250. // if a {
  251. // z.growAlloc(len(s), oc)
  252. // }
  253. // copy(z.b[oc:], s)
  254. // }
  255. // func (z *bytesEncWriter) writen1(b1 byte) {
  256. // oc, a := z.growNoAlloc(1)
  257. // if a {
  258. // z.growAlloc(1, oc)
  259. // }
  260. // z.b[oc] = b1
  261. // }
  262. // func (z *bytesEncWriter) writen2(b1, b2 byte) {
  263. // oc, a := z.growNoAlloc(2)
  264. // if a {
  265. // z.growAlloc(2, oc)
  266. // }
  267. // z.b[oc+1] = b2
  268. // z.b[oc] = b1
  269. // }
  270. // func (z *bytesEncWriter) atEndOfEncode() {
  271. // *(z.out) = z.b[:z.c]
  272. // }
  273. // // have a growNoalloc(n int), which can be inlined.
  274. // // if allocation is needed, then call growAlloc(n int)
  275. // func (z *bytesEncWriter) growNoAlloc(n int) (oldcursor int, allocNeeded bool) {
  276. // oldcursor = z.c
  277. // z.c = z.c + n
  278. // if z.c > len(z.b) {
  279. // if z.c > cap(z.b) {
  280. // allocNeeded = true
  281. // } else {
  282. // z.b = z.b[:cap(z.b)]
  283. // }
  284. // }
  285. // return
  286. // }
  287. // func (z *bytesEncWriter) growAlloc(n int, oldcursor int) {
  288. // // appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
  289. // // bytes.Buffer model (2*cap + n): much better
  290. // // bs := make([]byte, 2*cap(z.b)+n)
  291. // bs := make([]byte, growCap(cap(z.b), 1, n))
  292. // copy(bs, z.b[:oldcursor])
  293. // z.b = bs
  294. // }
  295. // func (z *bytesEncWriter) reset(in []byte, out *[]byte) {
  296. // z.out = out
  297. // z.b = in
  298. // z.c = 0
  299. // }
  300. // ---------------------------------------------
  301. // bytesEncAppender implements encWriter and can write to an byte slice.
  302. type bytesEncAppender struct {
  303. b []byte
  304. out *[]byte
  305. }
  306. func (z *bytesEncAppender) writeb(s []byte) {
  307. z.b = append(z.b, s...)
  308. }
  309. func (z *bytesEncAppender) writestr(s string) {
  310. z.b = append(z.b, s...)
  311. }
  312. func (z *bytesEncAppender) writen1(b1 byte) {
  313. z.b = append(z.b, b1)
  314. }
  315. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  316. z.b = append(z.b, b1, b2)
  317. }
  318. func (z *bytesEncAppender) atEndOfEncode() {
  319. *(z.out) = z.b
  320. }
  321. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  322. z.b = in[:0]
  323. z.out = out
  324. }
  325. // ---------------------------------------------
  326. // func (e *Encoder) builtin(f *codecFnInfo, rv reflect.Value) {
  327. // e.e.EncodeBuiltin(f.ti.rtid, rv2i(rv))
  328. // }
  329. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  330. // rev := rv2i(rv).(RawExt)
  331. // e.e.EncodeRawExt(&rev, e)
  332. // var re *RawExt
  333. // if rv.CanAddr() {
  334. // re = rv2i(rv.Addr()).(*RawExt)
  335. // } else {
  336. // rev := rv2i(rv).(RawExt)
  337. // re = &rev
  338. // }
  339. // e.e.EncodeRawExt(re, e)
  340. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  341. }
  342. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  343. // if this is a struct|array and it was addressable, then pass the address directly (not the value)
  344. // if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
  345. // rv = rv.Addr()
  346. // }
  347. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  348. }
  349. // func rviptr(rv reflect.Value) (v interface{}) {
  350. // // If a non-pointer was passed to Encode(), then that value is not addressable.
  351. // // Take addr if addressable, else copy value to an addressable value.
  352. // if rv.CanAddr() {
  353. // v = rv2i(rv.Addr())
  354. // } else {
  355. // rv2 := reflect.New(rv.Type())
  356. // rv2.Elem().Set(rv)
  357. // v = rv2i(rv2)
  358. // }
  359. // return v
  360. // }
  361. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  362. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  363. }
  364. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  365. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  366. e.marshal(bs, fnerr, false, cRAW)
  367. }
  368. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  369. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  370. e.marshal(bs, fnerr, false, cUTF8)
  371. }
  372. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  373. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  374. e.marshal(bs, fnerr, true, cUTF8)
  375. }
  376. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  377. e.rawBytes(rv2i(rv).(Raw))
  378. }
  379. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  380. e.e.EncodeNil()
  381. }
  382. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  383. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  384. }
  385. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  386. ti := f.ti
  387. ee := e.e
  388. // array may be non-addressable, so we have to manage with care
  389. // (don't call rv.Bytes, rv.Slice, etc).
  390. // E.g. type struct S{B [2]byte};
  391. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  392. if f.seq != seqTypeArray {
  393. if rv.IsNil() {
  394. ee.EncodeNil()
  395. return
  396. }
  397. // If in this method, then there was no extension function defined.
  398. // So it's okay to treat as []byte.
  399. if ti.rtid == uint8SliceTypId {
  400. ee.EncodeStringBytes(cRAW, rv.Bytes())
  401. return
  402. }
  403. }
  404. if f.seq == seqTypeChan && ti.rt.ChanDir()&reflect.RecvDir == 0 {
  405. e.errorf("send-only channel cannot be used for receiving byte(s)")
  406. }
  407. elemsep := e.esep
  408. l := rv.Len()
  409. rtelem := ti.rt.Elem()
  410. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  411. // if a slice, array or chan of bytes, treat specially
  412. if rtelemIsByte {
  413. switch f.seq {
  414. case seqTypeSlice:
  415. ee.EncodeStringBytes(cRAW, rv.Bytes())
  416. case seqTypeArray:
  417. if rv.CanAddr() {
  418. ee.EncodeStringBytes(cRAW, rv.Slice(0, l).Bytes())
  419. } else {
  420. var bs []byte
  421. if l <= cap(e.b) {
  422. bs = e.b[:l]
  423. } else {
  424. bs = make([]byte, l)
  425. }
  426. reflect.Copy(reflect.ValueOf(bs), rv)
  427. ee.EncodeStringBytes(cRAW, bs)
  428. }
  429. case seqTypeChan:
  430. bs := e.b[:0]
  431. // do not use range, so that the number of elements encoded
  432. // does not change, and encoding does not hang waiting on someone to close chan.
  433. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  434. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  435. irv := rv2i(rv)
  436. ch, ok := irv.(<-chan byte)
  437. if !ok {
  438. ch = irv.(chan byte)
  439. }
  440. for i := 0; i < l; i++ {
  441. bs = append(bs, <-ch)
  442. }
  443. ee.EncodeStringBytes(cRAW, bs)
  444. }
  445. return
  446. }
  447. if ti.mbs {
  448. if l%2 == 1 {
  449. e.errorf("mapBySlice requires even slice length, but got %v", l)
  450. return
  451. }
  452. ee.WriteMapStart(l / 2)
  453. } else {
  454. ee.WriteArrayStart(l)
  455. }
  456. if l > 0 {
  457. var fn *codecFn
  458. for rtelem.Kind() == reflect.Ptr {
  459. rtelem = rtelem.Elem()
  460. }
  461. // if kind is reflect.Interface, do not pre-determine the
  462. // encoding type, because preEncodeValue may break it down to
  463. // a concrete type and kInterface will bomb.
  464. if rtelem.Kind() != reflect.Interface {
  465. fn = e.cf.get(rtelem, true, true)
  466. }
  467. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  468. for j := 0; j < l; j++ {
  469. if elemsep {
  470. if ti.mbs {
  471. if j%2 == 0 {
  472. ee.WriteMapElemKey()
  473. } else {
  474. ee.WriteMapElemValue()
  475. }
  476. } else {
  477. ee.WriteArrayElem()
  478. }
  479. }
  480. if f.seq == seqTypeChan {
  481. if rv2, ok2 := rv.Recv(); ok2 {
  482. e.encodeValue(rv2, fn, true)
  483. } else {
  484. ee.EncodeNil() // WE HAVE TO DO SOMETHING, so nil if nothing received.
  485. }
  486. } else {
  487. e.encodeValue(rv.Index(j), fn, true)
  488. }
  489. }
  490. }
  491. if ti.mbs {
  492. ee.WriteMapEnd()
  493. } else {
  494. ee.WriteArrayEnd()
  495. }
  496. }
  497. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  498. fti := f.ti
  499. elemsep := e.esep
  500. tisfi := fti.sfip
  501. toMap := !(fti.toArray || e.h.StructToArray)
  502. if toMap {
  503. tisfi = fti.sfi
  504. }
  505. ee := e.e
  506. sfn := structFieldNode{v: rv, update: false}
  507. if toMap {
  508. ee.WriteMapStart(len(tisfi))
  509. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  510. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  511. if !elemsep {
  512. for _, si := range tisfi {
  513. if asSymbols {
  514. ee.EncodeSymbol(si.encName)
  515. } else {
  516. ee.EncodeString(cUTF8, si.encName)
  517. }
  518. e.encodeValue(sfn.field(si), nil, true)
  519. }
  520. } else {
  521. for _, si := range tisfi {
  522. ee.WriteMapElemKey()
  523. if asSymbols {
  524. ee.EncodeSymbol(si.encName)
  525. } else {
  526. ee.EncodeString(cUTF8, si.encName)
  527. }
  528. ee.WriteMapElemValue()
  529. e.encodeValue(sfn.field(si), nil, true)
  530. }
  531. }
  532. ee.WriteMapEnd()
  533. } else {
  534. ee.WriteArrayStart(len(tisfi))
  535. if !elemsep {
  536. for _, si := range tisfi {
  537. e.encodeValue(sfn.field(si), nil, true)
  538. }
  539. } else {
  540. for _, si := range tisfi {
  541. ee.WriteArrayElem()
  542. e.encodeValue(sfn.field(si), nil, true)
  543. }
  544. }
  545. ee.WriteArrayEnd()
  546. }
  547. }
  548. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  549. fti := f.ti
  550. elemsep := e.esep
  551. tisfi := fti.sfip
  552. toMap := !(fti.toArray || e.h.StructToArray)
  553. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  554. if toMap {
  555. tisfi = fti.sfi
  556. }
  557. newlen := len(fti.sfi)
  558. ee := e.e
  559. // Use sync.Pool to reduce allocating slices unnecessarily.
  560. // The cost of sync.Pool is less than the cost of new allocation.
  561. //
  562. // Each element of the array pools one of encStructPool(8|16|32|64).
  563. // It allows the re-use of slices up to 64 in length.
  564. // A performance cost of encoding structs was collecting
  565. // which values were empty and should be omitted.
  566. // We needed slices of reflect.Value and string to collect them.
  567. // This shared pool reduces the amount of unnecessary creation we do.
  568. // The cost is that of locking sometimes, but sync.Pool is efficient
  569. // enough to reduce thread contention.
  570. var spool *sync.Pool
  571. var poolv interface{}
  572. var fkvs []stringRv
  573. if newlen <= 8 {
  574. spool, poolv = pool.stringRv8()
  575. fkvs = poolv.(*[8]stringRv)[:newlen]
  576. } else if newlen <= 16 {
  577. spool, poolv = pool.stringRv16()
  578. fkvs = poolv.(*[16]stringRv)[:newlen]
  579. } else if newlen <= 32 {
  580. spool, poolv = pool.stringRv32()
  581. fkvs = poolv.(*[32]stringRv)[:newlen]
  582. } else if newlen <= 64 {
  583. spool, poolv = pool.stringRv64()
  584. fkvs = poolv.(*[64]stringRv)[:newlen]
  585. } else if newlen <= 128 {
  586. spool, poolv = pool.stringRv128()
  587. fkvs = poolv.(*[128]stringRv)[:newlen]
  588. } else {
  589. fkvs = make([]stringRv, newlen)
  590. }
  591. newlen = 0
  592. var kv stringRv
  593. recur := e.h.RecursiveEmptyCheck
  594. sfn := structFieldNode{v: rv, update: false}
  595. for _, si := range tisfi {
  596. // kv.r = si.field(rv, false)
  597. kv.r = sfn.field(si)
  598. if toMap {
  599. if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
  600. continue
  601. }
  602. kv.v = si.encName
  603. } else {
  604. // use the zero value.
  605. // if a reference or struct, set to nil (so you do not output too much)
  606. if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
  607. switch kv.r.Kind() {
  608. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  609. kv.r = reflect.Value{} //encode as nil
  610. }
  611. }
  612. }
  613. fkvs[newlen] = kv
  614. newlen++
  615. }
  616. if toMap {
  617. ee.WriteMapStart(newlen)
  618. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  619. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  620. if !elemsep {
  621. for j := 0; j < newlen; j++ {
  622. kv = fkvs[j]
  623. if asSymbols {
  624. ee.EncodeSymbol(kv.v)
  625. } else {
  626. ee.EncodeString(cUTF8, kv.v)
  627. }
  628. e.encodeValue(kv.r, nil, true)
  629. }
  630. } else {
  631. for j := 0; j < newlen; j++ {
  632. kv = fkvs[j]
  633. ee.WriteMapElemKey()
  634. if asSymbols {
  635. ee.EncodeSymbol(kv.v)
  636. } else {
  637. ee.EncodeString(cUTF8, kv.v)
  638. }
  639. ee.WriteMapElemValue()
  640. e.encodeValue(kv.r, nil, true)
  641. }
  642. }
  643. ee.WriteMapEnd()
  644. } else {
  645. ee.WriteArrayStart(newlen)
  646. if !elemsep {
  647. for j := 0; j < newlen; j++ {
  648. e.encodeValue(fkvs[j].r, nil, true)
  649. }
  650. } else {
  651. for j := 0; j < newlen; j++ {
  652. ee.WriteArrayElem()
  653. e.encodeValue(fkvs[j].r, nil, true)
  654. }
  655. }
  656. ee.WriteArrayEnd()
  657. }
  658. // do not use defer. Instead, use explicit pool return at end of function.
  659. // defer has a cost we are trying to avoid.
  660. // If there is a panic and these slices are not returned, it is ok.
  661. if spool != nil {
  662. spool.Put(poolv)
  663. }
  664. }
  665. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  666. ee := e.e
  667. if rv.IsNil() {
  668. ee.EncodeNil()
  669. return
  670. }
  671. l := rv.Len()
  672. ee.WriteMapStart(l)
  673. elemsep := e.esep
  674. if l == 0 {
  675. ee.WriteMapEnd()
  676. return
  677. }
  678. var asSymbols bool
  679. // determine the underlying key and val encFn's for the map.
  680. // This eliminates some work which is done for each loop iteration i.e.
  681. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  682. //
  683. // However, if kind is reflect.Interface, do not pre-determine the
  684. // encoding type, because preEncodeValue may break it down to
  685. // a concrete type and kInterface will bomb.
  686. var keyFn, valFn *codecFn
  687. ti := f.ti
  688. rtkey0 := ti.rt.Key()
  689. rtkey := rtkey0
  690. rtval0 := ti.rt.Elem()
  691. rtval := rtval0
  692. // rtkeyid := rt2id(rtkey0)
  693. for rtval.Kind() == reflect.Ptr {
  694. rtval = rtval.Elem()
  695. }
  696. if rtval.Kind() != reflect.Interface {
  697. valFn = e.cf.get(rtval, true, true)
  698. }
  699. mks := rv.MapKeys()
  700. if e.h.Canonical {
  701. e.kMapCanonical(rtkey, rv, mks, valFn, asSymbols)
  702. ee.WriteMapEnd()
  703. return
  704. }
  705. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  706. if keyTypeIsString {
  707. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  708. } else {
  709. for rtkey.Kind() == reflect.Ptr {
  710. rtkey = rtkey.Elem()
  711. }
  712. if rtkey.Kind() != reflect.Interface {
  713. // rtkeyid = rt2id(rtkey)
  714. keyFn = e.cf.get(rtkey, true, true)
  715. }
  716. }
  717. // for j, lmks := 0, len(mks); j < lmks; j++ {
  718. for j := range mks {
  719. if elemsep {
  720. ee.WriteMapElemKey()
  721. }
  722. if keyTypeIsString {
  723. if asSymbols {
  724. ee.EncodeSymbol(mks[j].String())
  725. } else {
  726. ee.EncodeString(cUTF8, mks[j].String())
  727. }
  728. } else {
  729. e.encodeValue(mks[j], keyFn, true)
  730. }
  731. if elemsep {
  732. ee.WriteMapElemValue()
  733. }
  734. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  735. }
  736. ee.WriteMapEnd()
  737. }
  738. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn, asSymbols bool) {
  739. ee := e.e
  740. elemsep := e.esep
  741. // we previously did out-of-band if an extension was registered.
  742. // This is not necessary, as the natural kind is sufficient for ordering.
  743. // WHAT IS THIS? rtkeyid can never be a []uint8, per spec
  744. // if rtkeyid == uint8SliceTypId {
  745. // mksv := make([]bytesRv, len(mks))
  746. // for i, k := range mks {
  747. // v := &mksv[i]
  748. // v.r = k
  749. // v.v = k.Bytes()
  750. // }
  751. // sort.Sort(bytesRvSlice(mksv))
  752. // for i := range mksv {
  753. // if elemsep {
  754. // ee.WriteMapElemKey()
  755. // }
  756. // ee.EncodeStringBytes(cRAW, mksv[i].v)
  757. // if elemsep {
  758. // ee.WriteMapElemValue()
  759. // }
  760. // e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  761. // }
  762. // return
  763. // }
  764. switch rtkey.Kind() {
  765. case reflect.Bool:
  766. mksv := make([]boolRv, len(mks))
  767. for i, k := range mks {
  768. v := &mksv[i]
  769. v.r = k
  770. v.v = k.Bool()
  771. }
  772. sort.Sort(boolRvSlice(mksv))
  773. for i := range mksv {
  774. if elemsep {
  775. ee.WriteMapElemKey()
  776. }
  777. ee.EncodeBool(mksv[i].v)
  778. if elemsep {
  779. ee.WriteMapElemValue()
  780. }
  781. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  782. }
  783. case reflect.String:
  784. mksv := make([]stringRv, len(mks))
  785. for i, k := range mks {
  786. v := &mksv[i]
  787. v.r = k
  788. v.v = k.String()
  789. }
  790. sort.Sort(stringRvSlice(mksv))
  791. for i := range mksv {
  792. if elemsep {
  793. ee.WriteMapElemKey()
  794. }
  795. if asSymbols {
  796. ee.EncodeSymbol(mksv[i].v)
  797. } else {
  798. ee.EncodeString(cUTF8, mksv[i].v)
  799. }
  800. if elemsep {
  801. ee.WriteMapElemValue()
  802. }
  803. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  804. }
  805. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  806. mksv := make([]uintRv, len(mks))
  807. for i, k := range mks {
  808. v := &mksv[i]
  809. v.r = k
  810. v.v = k.Uint()
  811. }
  812. sort.Sort(uintRvSlice(mksv))
  813. for i := range mksv {
  814. if elemsep {
  815. ee.WriteMapElemKey()
  816. }
  817. ee.EncodeUint(mksv[i].v)
  818. if elemsep {
  819. ee.WriteMapElemValue()
  820. }
  821. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  822. }
  823. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  824. mksv := make([]intRv, len(mks))
  825. for i, k := range mks {
  826. v := &mksv[i]
  827. v.r = k
  828. v.v = k.Int()
  829. }
  830. sort.Sort(intRvSlice(mksv))
  831. for i := range mksv {
  832. if elemsep {
  833. ee.WriteMapElemKey()
  834. }
  835. ee.EncodeInt(mksv[i].v)
  836. if elemsep {
  837. ee.WriteMapElemValue()
  838. }
  839. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  840. }
  841. case reflect.Float32:
  842. mksv := make([]floatRv, len(mks))
  843. for i, k := range mks {
  844. v := &mksv[i]
  845. v.r = k
  846. v.v = k.Float()
  847. }
  848. sort.Sort(floatRvSlice(mksv))
  849. for i := range mksv {
  850. if elemsep {
  851. ee.WriteMapElemKey()
  852. }
  853. ee.EncodeFloat32(float32(mksv[i].v))
  854. if elemsep {
  855. ee.WriteMapElemValue()
  856. }
  857. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  858. }
  859. case reflect.Float64:
  860. mksv := make([]floatRv, len(mks))
  861. for i, k := range mks {
  862. v := &mksv[i]
  863. v.r = k
  864. v.v = k.Float()
  865. }
  866. sort.Sort(floatRvSlice(mksv))
  867. for i := range mksv {
  868. if elemsep {
  869. ee.WriteMapElemKey()
  870. }
  871. ee.EncodeFloat64(mksv[i].v)
  872. if elemsep {
  873. ee.WriteMapElemValue()
  874. }
  875. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  876. }
  877. case reflect.Struct:
  878. if rv.Type() == timeTyp {
  879. mksv := make([]timeRv, len(mks))
  880. for i, k := range mks {
  881. v := &mksv[i]
  882. v.r = k
  883. v.v = rv2i(k).(time.Time)
  884. }
  885. sort.Sort(timeRvSlice(mksv))
  886. for i := range mksv {
  887. if elemsep {
  888. ee.WriteMapElemKey()
  889. }
  890. ee.EncodeTime(mksv[i].v)
  891. if elemsep {
  892. ee.WriteMapElemValue()
  893. }
  894. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  895. }
  896. break
  897. }
  898. fallthrough
  899. default:
  900. // out-of-band
  901. // first encode each key to a []byte first, then sort them, then record
  902. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  903. e2 := NewEncoderBytes(&mksv, e.hh)
  904. mksbv := make([]bytesRv, len(mks))
  905. for i, k := range mks {
  906. v := &mksbv[i]
  907. l := len(mksv)
  908. e2.MustEncode(k)
  909. v.r = k
  910. v.v = mksv[l:]
  911. }
  912. sort.Sort(bytesRvSlice(mksbv))
  913. for j := range mksbv {
  914. if elemsep {
  915. ee.WriteMapElemKey()
  916. }
  917. e.asis(mksbv[j].v)
  918. if elemsep {
  919. ee.WriteMapElemValue()
  920. }
  921. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  922. }
  923. }
  924. }
  925. // // --------------------------------------------------
  926. type encWriterSwitch struct {
  927. wi ioEncWriter
  928. // ---- cpu cache line boundary?
  929. // wb bytesEncWriter
  930. wb bytesEncAppender
  931. wx bool // if bytes, wx=true
  932. esep bool // whether it has elem separators
  933. isas bool // whether e.as != nil
  934. }
  935. // TODO: Uncomment after mid-stack inlining enabled in go 1.10
  936. //
  937. // func (z *encWriterSwitch) writeb(s []byte) {
  938. // if z.wx {
  939. // z.wb.writeb(s)
  940. // } else {
  941. // z.wi.writeb(s)
  942. // }
  943. // }
  944. // func (z *encWriterSwitch) writestr(s string) {
  945. // if z.wx {
  946. // z.wb.writestr(s)
  947. // } else {
  948. // z.wi.writestr(s)
  949. // }
  950. // }
  951. // func (z *encWriterSwitch) writen1(b1 byte) {
  952. // if z.wx {
  953. // z.wb.writen1(b1)
  954. // } else {
  955. // z.wi.writen1(b1)
  956. // }
  957. // }
  958. // func (z *encWriterSwitch) writen2(b1, b2 byte) {
  959. // if z.wx {
  960. // z.wb.writen2(b1, b2)
  961. // } else {
  962. // z.wi.writen2(b1, b2)
  963. // }
  964. // }
  965. // An Encoder writes an object to an output stream in the codec format.
  966. type Encoder struct {
  967. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  968. e encDriver
  969. // NOTE: Encoder shouldn't call it's write methods,
  970. // as the handler MAY need to do some coordination.
  971. w encWriter
  972. // ho Handle // original handle
  973. hh Handle
  974. h *BasicHandle
  975. // ---- cpu cache line boundary?
  976. // cr containerStateRecv
  977. as encDriverAsis
  978. ci set
  979. // ---- cpu cache line boundary?
  980. encWriterSwitch
  981. // ---- cpu cache line boundary?
  982. bw bufio.Writer
  983. // ---- cpu cache line boundary?
  984. cf codecFner
  985. // ---- writable fields during execution --- *try* to keep in sep cache line
  986. // ---- cpu cache line boundary?
  987. b [scratchByteArrayLen]byte
  988. err error
  989. }
  990. // NewEncoder returns an Encoder for encoding into an io.Writer.
  991. //
  992. // For efficiency, Users are encouraged to pass in a memory buffered writer
  993. // (eg bufio.Writer, bytes.Buffer).
  994. func NewEncoder(w io.Writer, h Handle) *Encoder {
  995. e := newEncoder(h)
  996. e.Reset(w)
  997. return e
  998. }
  999. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1000. // into a byte slice, using zero-copying to temporary slices.
  1001. //
  1002. // It will potentially replace the output byte slice pointed to.
  1003. // After encoding, the out parameter contains the encoded contents.
  1004. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1005. e := newEncoder(h)
  1006. e.ResetBytes(out)
  1007. return e
  1008. }
  1009. func newEncoder(h Handle) *Encoder {
  1010. e := &Encoder{hh: h, h: h.getBasicHandle(), err: errEncoderNotInitialized}
  1011. e.esep = h.hasElemSeparators()
  1012. e.e = h.newEncDriver(e)
  1013. e.as, e.isas = e.e.(encDriverAsis)
  1014. // e.cr, _ = e.e.(containerStateRecv)
  1015. return e
  1016. }
  1017. func (e *Encoder) postReset() {
  1018. e.e.reset()
  1019. e.cf.reset(e.hh)
  1020. e.err = nil
  1021. }
  1022. // Reset resets the Encoder with a new output stream.
  1023. //
  1024. // This accommodates using the state of the Encoder,
  1025. // where it has "cached" information about sub-engines.
  1026. func (e *Encoder) Reset(w io.Writer) {
  1027. if w == nil {
  1028. return
  1029. }
  1030. var ok bool
  1031. e.wx = false
  1032. e.wi.w = w
  1033. if e.h.WriterBufferSize > 0 {
  1034. bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1035. e.bw = *bw
  1036. e.wi.bw = &e.bw
  1037. e.wi.sw = &e.bw
  1038. e.wi.fw = &e.bw
  1039. e.wi.ww = &e.bw
  1040. } else {
  1041. if e.wi.bw, ok = w.(io.ByteWriter); !ok {
  1042. e.wi.bw = &e.wi
  1043. }
  1044. if e.wi.sw, ok = w.(ioEncStringWriter); !ok {
  1045. e.wi.sw = &e.wi
  1046. }
  1047. e.wi.fw, _ = w.(ioFlusher)
  1048. e.wi.ww = w
  1049. }
  1050. e.w = &e.wi
  1051. e.postReset()
  1052. }
  1053. // ResetBytes resets the Encoder with a new destination output []byte.
  1054. func (e *Encoder) ResetBytes(out *[]byte) {
  1055. if out == nil {
  1056. return
  1057. }
  1058. var in []byte
  1059. if out != nil {
  1060. in = *out
  1061. }
  1062. if in == nil {
  1063. in = make([]byte, defEncByteBufSize)
  1064. }
  1065. e.wx = true
  1066. e.wb.reset(in, out)
  1067. e.w = &e.wb
  1068. e.postReset()
  1069. }
  1070. // Encode writes an object into a stream.
  1071. //
  1072. // Encoding can be configured via the struct tag for the fields.
  1073. // The "codec" key in struct field's tag value is the key name,
  1074. // followed by an optional comma and options.
  1075. // Note that the "json" key is used in the absence of the "codec" key.
  1076. //
  1077. // To set an option on all fields (e.g. omitempty on all fields), you
  1078. // can create a field called _struct, and set flags on it.
  1079. //
  1080. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1081. // - the field's tag is "-", OR
  1082. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1083. //
  1084. // When encoding as a map, the first string in the tag (before the comma)
  1085. // is the map key string to use when encoding.
  1086. //
  1087. // However, struct values may encode as arrays. This happens when:
  1088. // - StructToArray Encode option is set, OR
  1089. // - the tag on the _struct field sets the "toarray" option
  1090. // Note that omitempty is ignored when encoding struct values as arrays,
  1091. // as an entry must be encoded for each field, to maintain its position.
  1092. //
  1093. // Values with types that implement MapBySlice are encoded as stream maps.
  1094. //
  1095. // The empty values (for omitempty option) are false, 0, any nil pointer
  1096. // or interface value, and any array, slice, map, or string of length zero.
  1097. //
  1098. // Anonymous fields are encoded inline except:
  1099. // - the struct tag specifies a replacement name (first value)
  1100. // - the field is of an interface type
  1101. //
  1102. // Examples:
  1103. //
  1104. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1105. // type MyStruct struct {
  1106. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1107. // Field1 string `codec:"-"` //skip this field
  1108. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1109. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1110. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1111. // io.Reader //use key "Reader".
  1112. // MyStruct `codec:"my1" //use key "my1".
  1113. // MyStruct //inline it
  1114. // ...
  1115. // }
  1116. //
  1117. // type MyStruct struct {
  1118. // _struct bool `codec:",toarray"` //encode struct as an array
  1119. // }
  1120. //
  1121. // The mode of encoding is based on the type of the value. When a value is seen:
  1122. // - If a Selfer, call its CodecEncodeSelf method
  1123. // - If an extension is registered for it, call that extension function
  1124. // - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
  1125. // - Else encode it based on its reflect.Kind
  1126. //
  1127. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1128. // Some formats support symbols (e.g. binc) and will properly encode the string
  1129. // only once in the stream, and use a tag to refer to it thereafter.
  1130. func (e *Encoder) Encode(v interface{}) (err error) {
  1131. defer panicToErrs2(&e.err, &err)
  1132. e.MustEncode(v)
  1133. return
  1134. }
  1135. // MustEncode is like Encode, but panics if unable to Encode.
  1136. // This provides insight to the code location that triggered the error.
  1137. func (e *Encoder) MustEncode(v interface{}) {
  1138. if e.err != nil {
  1139. panic(e.err)
  1140. }
  1141. e.encode(v)
  1142. e.e.atEndOfEncode()
  1143. e.w.atEndOfEncode()
  1144. }
  1145. func (e *Encoder) encode(iv interface{}) {
  1146. if iv == nil || definitelyNil(iv) {
  1147. e.e.EncodeNil()
  1148. return
  1149. }
  1150. if v, ok := iv.(Selfer); ok {
  1151. v.CodecEncodeSelf(e)
  1152. return
  1153. }
  1154. switch v := iv.(type) {
  1155. // case nil:
  1156. // e.e.EncodeNil()
  1157. // case Selfer:
  1158. // v.CodecEncodeSelf(e)
  1159. case Raw:
  1160. e.rawBytes(v)
  1161. case reflect.Value:
  1162. e.encodeValue(v, nil, true)
  1163. case string:
  1164. e.e.EncodeString(cUTF8, v)
  1165. case bool:
  1166. e.e.EncodeBool(v)
  1167. case int:
  1168. e.e.EncodeInt(int64(v))
  1169. case int8:
  1170. e.e.EncodeInt(int64(v))
  1171. case int16:
  1172. e.e.EncodeInt(int64(v))
  1173. case int32:
  1174. e.e.EncodeInt(int64(v))
  1175. case int64:
  1176. e.e.EncodeInt(v)
  1177. case uint:
  1178. e.e.EncodeUint(uint64(v))
  1179. case uint8:
  1180. e.e.EncodeUint(uint64(v))
  1181. case uint16:
  1182. e.e.EncodeUint(uint64(v))
  1183. case uint32:
  1184. e.e.EncodeUint(uint64(v))
  1185. case uint64:
  1186. e.e.EncodeUint(v)
  1187. case uintptr:
  1188. e.e.EncodeUint(uint64(v))
  1189. case float32:
  1190. e.e.EncodeFloat32(v)
  1191. case float64:
  1192. e.e.EncodeFloat64(v)
  1193. case time.Time:
  1194. e.e.EncodeTime(v)
  1195. case []uint8:
  1196. e.e.EncodeStringBytes(cRAW, v)
  1197. case *Raw:
  1198. e.rawBytes(*v)
  1199. case *string:
  1200. e.e.EncodeString(cUTF8, *v)
  1201. case *bool:
  1202. e.e.EncodeBool(*v)
  1203. case *int:
  1204. e.e.EncodeInt(int64(*v))
  1205. case *int8:
  1206. e.e.EncodeInt(int64(*v))
  1207. case *int16:
  1208. e.e.EncodeInt(int64(*v))
  1209. case *int32:
  1210. e.e.EncodeInt(int64(*v))
  1211. case *int64:
  1212. e.e.EncodeInt(*v)
  1213. case *uint:
  1214. e.e.EncodeUint(uint64(*v))
  1215. case *uint8:
  1216. e.e.EncodeUint(uint64(*v))
  1217. case *uint16:
  1218. e.e.EncodeUint(uint64(*v))
  1219. case *uint32:
  1220. e.e.EncodeUint(uint64(*v))
  1221. case *uint64:
  1222. e.e.EncodeUint(*v)
  1223. case *uintptr:
  1224. e.e.EncodeUint(uint64(*v))
  1225. case *float32:
  1226. e.e.EncodeFloat32(*v)
  1227. case *float64:
  1228. e.e.EncodeFloat64(*v)
  1229. case *time.Time:
  1230. e.e.EncodeTime(*v)
  1231. case *[]uint8:
  1232. e.e.EncodeStringBytes(cRAW, *v)
  1233. default:
  1234. if !fastpathEncodeTypeSwitch(iv, e) {
  1235. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1236. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1237. }
  1238. }
  1239. }
  1240. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1241. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1242. var sptr uintptr
  1243. var rvp reflect.Value
  1244. var rvpValid bool
  1245. TOP:
  1246. switch rv.Kind() {
  1247. case reflect.Ptr:
  1248. if rv.IsNil() {
  1249. e.e.EncodeNil()
  1250. return
  1251. }
  1252. rvpValid = true
  1253. rvp = rv
  1254. rv = rv.Elem()
  1255. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1256. // TODO: Movable pointers will be an issue here. Future problem.
  1257. sptr = rv.UnsafeAddr()
  1258. break TOP
  1259. }
  1260. goto TOP
  1261. case reflect.Interface:
  1262. if rv.IsNil() {
  1263. e.e.EncodeNil()
  1264. return
  1265. }
  1266. rv = rv.Elem()
  1267. goto TOP
  1268. case reflect.Slice, reflect.Map:
  1269. if rv.IsNil() {
  1270. e.e.EncodeNil()
  1271. return
  1272. }
  1273. case reflect.Invalid, reflect.Func:
  1274. e.e.EncodeNil()
  1275. return
  1276. }
  1277. if sptr != 0 && (&e.ci).add(sptr) {
  1278. e.errorf("circular reference found: # %d", sptr)
  1279. }
  1280. if fn == nil {
  1281. rt := rv.Type()
  1282. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1283. fn = e.cf.get(rt, checkFastpath, true)
  1284. }
  1285. if fn.i.addrE {
  1286. if rvpValid {
  1287. fn.fe(e, &fn.i, rvp)
  1288. } else if rv.CanAddr() {
  1289. fn.fe(e, &fn.i, rv.Addr())
  1290. } else {
  1291. rv2 := reflect.New(rv.Type())
  1292. rv2.Elem().Set(rv)
  1293. fn.fe(e, &fn.i, rv2)
  1294. }
  1295. } else {
  1296. fn.fe(e, &fn.i, rv)
  1297. }
  1298. if sptr != 0 {
  1299. (&e.ci).remove(sptr)
  1300. }
  1301. }
  1302. func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1303. if fnerr != nil {
  1304. panic(fnerr)
  1305. }
  1306. if bs == nil {
  1307. e.e.EncodeNil()
  1308. } else if asis {
  1309. e.asis(bs)
  1310. } else {
  1311. e.e.EncodeStringBytes(c, bs)
  1312. }
  1313. }
  1314. func (e *Encoder) asis(v []byte) {
  1315. if e.isas {
  1316. e.as.EncodeAsis(v)
  1317. } else {
  1318. e.w.writeb(v)
  1319. }
  1320. }
  1321. func (e *Encoder) rawBytes(vv Raw) {
  1322. v := []byte(vv)
  1323. if !e.h.Raw {
  1324. e.errorf("Raw values cannot be encoded: %v", v)
  1325. }
  1326. e.asis(v)
  1327. }
  1328. func (e *Encoder) errorf(format string, params ...interface{}) {
  1329. err := fmt.Errorf(format, params...)
  1330. panic(err)
  1331. }
  1332. func (e *Encoder) error(err error) {
  1333. panic(err)
  1334. }