encode.go 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "runtime"
  11. "sort"
  12. "strconv"
  13. "sync"
  14. "time"
  15. )
  16. // defEncByteBufSize is the default size of []byte used
  17. // for bufio buffer or []byte (when nil passed)
  18. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  19. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  20. /*
  21. // encWriter abstracts writing to a byte array or to an io.Writer.
  22. //
  23. //
  24. // Deprecated: Use encWriterSwitch instead.
  25. type encWriter interface {
  26. writeb([]byte)
  27. writestr(string)
  28. writen1(byte)
  29. writen2(byte, byte)
  30. end()
  31. }
  32. */
  33. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  34. type encDriver interface {
  35. EncodeNil()
  36. EncodeInt(i int64)
  37. EncodeUint(i uint64)
  38. EncodeBool(b bool)
  39. EncodeFloat32(f float32)
  40. EncodeFloat64(f float64)
  41. // encodeExtPreamble(xtag byte, length int)
  42. EncodeRawExt(re *RawExt, e *Encoder)
  43. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  44. // Deprecated: try to use EncodeStringEnc instead
  45. EncodeString(c charEncoding, v string)
  46. // c cannot be cRAW
  47. EncodeStringEnc(c charEncoding, v string)
  48. // EncodeSymbol(v string)
  49. // Deprecated: try to use EncodeStringBytesRaw instead
  50. EncodeStringBytes(c charEncoding, v []byte)
  51. EncodeStringBytesRaw(v []byte)
  52. EncodeTime(time.Time)
  53. //encBignum(f *big.Int)
  54. //encStringRunes(c charEncoding, v []rune)
  55. WriteArrayStart(length int)
  56. WriteArrayElem()
  57. WriteArrayEnd()
  58. WriteMapStart(length int)
  59. WriteMapElemKey()
  60. WriteMapElemValue()
  61. WriteMapEnd()
  62. reset()
  63. atEndOfEncode()
  64. }
  65. type encDriverAsis interface {
  66. EncodeAsis(v []byte)
  67. }
  68. type encodeError struct {
  69. codecError
  70. }
  71. func (e encodeError) Error() string {
  72. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  73. }
  74. type encDriverNoopContainerWriter struct{}
  75. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  76. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  77. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  78. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  79. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  80. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  81. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  82. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  83. type encDriverTrackContainerWriter struct {
  84. c containerState
  85. }
  86. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  87. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  88. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  89. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  90. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  91. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  92. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  93. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  94. // type ioEncWriterWriter interface {
  95. // WriteByte(c byte) error
  96. // WriteString(s string) (n int, err error)
  97. // Write(p []byte) (n int, err error)
  98. // }
  99. // EncodeOptions captures configuration options during encode.
  100. type EncodeOptions struct {
  101. // WriterBufferSize is the size of the buffer used when writing.
  102. //
  103. // if > 0, we use a smart buffer internally for performance purposes.
  104. WriterBufferSize int
  105. // ChanRecvTimeout is the timeout used when selecting from a chan.
  106. //
  107. // Configuring this controls how we receive from a chan during the encoding process.
  108. // - If ==0, we only consume the elements currently available in the chan.
  109. // - if <0, we consume until the chan is closed.
  110. // - If >0, we consume until this timeout.
  111. ChanRecvTimeout time.Duration
  112. // StructToArray specifies to encode a struct as an array, and not as a map
  113. StructToArray bool
  114. // Canonical representation means that encoding a value will always result in the same
  115. // sequence of bytes.
  116. //
  117. // This only affects maps, as the iteration order for maps is random.
  118. //
  119. // The implementation MAY use the natural sort order for the map keys if possible:
  120. //
  121. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  122. // then the map keys are first sorted in natural order and then written
  123. // with corresponding map values to the strema.
  124. // - If there is no natural sort order, then the map keys will first be
  125. // encoded into []byte, and then sorted,
  126. // before writing the sorted keys and the corresponding map values to the stream.
  127. //
  128. Canonical bool
  129. // CheckCircularRef controls whether we check for circular references
  130. // and error fast during an encode.
  131. //
  132. // If enabled, an error is received if a pointer to a struct
  133. // references itself either directly or through one of its fields (iteratively).
  134. //
  135. // This is opt-in, as there may be a performance hit to checking circular references.
  136. CheckCircularRef bool
  137. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  138. // when checking if a value is empty.
  139. //
  140. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  141. RecursiveEmptyCheck bool
  142. // Raw controls whether we encode Raw values.
  143. // This is a "dangerous" option and must be explicitly set.
  144. // If set, we blindly encode Raw values as-is, without checking
  145. // if they are a correct representation of a value in that format.
  146. // If unset, we error out.
  147. Raw bool
  148. // // AsSymbols defines what should be encoded as symbols.
  149. // //
  150. // // Encoding as symbols can reduce the encoded size significantly.
  151. // //
  152. // // However, during decoding, each string to be encoded as a symbol must
  153. // // be checked to see if it has been seen before. Consequently, encoding time
  154. // // will increase if using symbols, because string comparisons has a clear cost.
  155. // //
  156. // // Sample values:
  157. // // AsSymbolNone
  158. // // AsSymbolAll
  159. // // AsSymbolMapStringKeys
  160. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  161. // AsSymbols AsSymbolFlag
  162. }
  163. // ---------------------------------------------
  164. /*
  165. type ioEncStringWriter interface {
  166. WriteString(s string) (n int, err error)
  167. }
  168. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  169. type ioEncWriter struct {
  170. w io.Writer
  171. ww io.Writer
  172. bw io.ByteWriter
  173. sw ioEncStringWriter
  174. fw ioFlusher
  175. b [8]byte
  176. }
  177. func (z *ioEncWriter) reset(w io.Writer) {
  178. z.w = w
  179. var ok bool
  180. if z.bw, ok = w.(io.ByteWriter); !ok {
  181. z.bw = z
  182. }
  183. if z.sw, ok = w.(ioEncStringWriter); !ok {
  184. z.sw = z
  185. }
  186. z.fw, _ = w.(ioFlusher)
  187. z.ww = w
  188. }
  189. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  190. z.b[0] = b
  191. _, err = z.w.Write(z.b[:1])
  192. return
  193. }
  194. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  195. return z.w.Write(bytesView(s))
  196. }
  197. func (z *ioEncWriter) writeb(bs []byte) {
  198. if _, err := z.ww.Write(bs); err != nil {
  199. panic(err)
  200. }
  201. }
  202. func (z *ioEncWriter) writestr(s string) {
  203. if _, err := z.sw.WriteString(s); err != nil {
  204. panic(err)
  205. }
  206. }
  207. func (z *ioEncWriter) writen1(b byte) {
  208. if err := z.bw.WriteByte(b); err != nil {
  209. panic(err)
  210. }
  211. }
  212. func (z *ioEncWriter) writen2(b1, b2 byte) {
  213. var err error
  214. if err = z.bw.WriteByte(b1); err == nil {
  215. if err = z.bw.WriteByte(b2); err == nil {
  216. return
  217. }
  218. }
  219. panic(err)
  220. }
  221. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  222. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  223. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  224. // panic(err)
  225. // }
  226. // }
  227. //go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
  228. func (z *ioEncWriter) end() {
  229. if z.fw != nil {
  230. if err := z.fw.Flush(); err != nil {
  231. panic(err)
  232. }
  233. }
  234. }
  235. */
  236. // ---------------------------------------------
  237. // bufioEncWriter
  238. type bufioEncWriter struct {
  239. buf []byte
  240. w io.Writer
  241. n int
  242. bytesBufPooler
  243. _ [3]uint64 // padding
  244. // a int
  245. // b [4]byte
  246. // err
  247. }
  248. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  249. z.w = w
  250. z.n = 0
  251. if bufsize <= 0 {
  252. bufsize = defEncByteBufSize
  253. }
  254. if cap(z.buf) >= bufsize {
  255. z.buf = z.buf[:cap(z.buf)]
  256. } else {
  257. z.bytesBufPooler.end() // potentially return old one to pool
  258. z.buf = z.bytesBufPooler.get(bufsize)
  259. // z.buf = make([]byte, bufsize)
  260. }
  261. }
  262. //go:noinline - flush only called intermittently
  263. func (z *bufioEncWriter) flush() {
  264. n, err := z.w.Write(z.buf[:z.n])
  265. z.n -= n
  266. if z.n > 0 && err == nil {
  267. err = io.ErrShortWrite
  268. }
  269. if err != nil {
  270. if n > 0 && z.n > 0 {
  271. copy(z.buf, z.buf[n:z.n+n])
  272. }
  273. panic(err)
  274. }
  275. }
  276. func (z *bufioEncWriter) writeb(s []byte) {
  277. LOOP:
  278. a := len(z.buf) - z.n
  279. if len(s) > a {
  280. z.n += copy(z.buf[z.n:], s[:a])
  281. s = s[a:]
  282. z.flush()
  283. goto LOOP
  284. }
  285. z.n += copy(z.buf[z.n:], s)
  286. }
  287. func (z *bufioEncWriter) writestr(s string) {
  288. // z.writeb(bytesView(s)) // inlined below
  289. LOOP:
  290. a := len(z.buf) - z.n
  291. if len(s) > a {
  292. z.n += copy(z.buf[z.n:], s[:a])
  293. s = s[a:]
  294. z.flush()
  295. goto LOOP
  296. }
  297. z.n += copy(z.buf[z.n:], s)
  298. }
  299. func (z *bufioEncWriter) writen1(b1 byte) {
  300. if 1 > len(z.buf)-z.n {
  301. z.flush()
  302. }
  303. z.buf[z.n] = b1
  304. z.n++
  305. }
  306. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  307. if 2 > len(z.buf)-z.n {
  308. z.flush()
  309. }
  310. z.buf[z.n+1] = b2
  311. z.buf[z.n] = b1
  312. z.n += 2
  313. }
  314. func (z *bufioEncWriter) end() {
  315. if z.n > 0 {
  316. z.flush()
  317. }
  318. }
  319. // ---------------------------------------------
  320. // bytesEncAppender implements encWriter and can write to an byte slice.
  321. type bytesEncAppender struct {
  322. b []byte
  323. out *[]byte
  324. }
  325. func (z *bytesEncAppender) writeb(s []byte) {
  326. z.b = append(z.b, s...)
  327. }
  328. func (z *bytesEncAppender) writestr(s string) {
  329. z.b = append(z.b, s...)
  330. }
  331. func (z *bytesEncAppender) writen1(b1 byte) {
  332. z.b = append(z.b, b1)
  333. }
  334. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  335. z.b = append(z.b, b1, b2)
  336. }
  337. func (z *bytesEncAppender) end() {
  338. *(z.out) = z.b
  339. }
  340. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  341. z.b = in[:0]
  342. z.out = out
  343. }
  344. // ---------------------------------------------
  345. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  346. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  347. }
  348. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  349. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  350. }
  351. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  352. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  353. }
  354. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  355. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  356. e.marshalRaw(bs, fnerr)
  357. }
  358. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  359. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  360. e.marshalUtf8(bs, fnerr)
  361. }
  362. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  363. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  364. e.marshalAsis(bs, fnerr)
  365. }
  366. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  367. e.rawBytes(rv2i(rv).(Raw))
  368. }
  369. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  370. e.e.EncodeNil()
  371. }
  372. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  373. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  374. }
  375. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  376. ti := f.ti
  377. ee := e.e
  378. // array may be non-addressable, so we have to manage with care
  379. // (don't call rv.Bytes, rv.Slice, etc).
  380. // E.g. type struct S{B [2]byte};
  381. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  382. if f.seq != seqTypeArray {
  383. if rv.IsNil() {
  384. ee.EncodeNil()
  385. return
  386. }
  387. // If in this method, then there was no extension function defined.
  388. // So it's okay to treat as []byte.
  389. if ti.rtid == uint8SliceTypId {
  390. ee.EncodeStringBytesRaw(rv.Bytes())
  391. return
  392. }
  393. }
  394. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  395. e.errorf("send-only channel cannot be encoded")
  396. }
  397. elemsep := e.esep
  398. rtelem := ti.elem
  399. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  400. var l int
  401. // if a slice, array or chan of bytes, treat specially
  402. if rtelemIsByte {
  403. switch f.seq {
  404. case seqTypeSlice:
  405. ee.EncodeStringBytesRaw(rv.Bytes())
  406. case seqTypeArray:
  407. l = rv.Len()
  408. if rv.CanAddr() {
  409. ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  410. } else {
  411. var bs []byte
  412. if l <= cap(e.b) {
  413. bs = e.b[:l]
  414. } else {
  415. bs = make([]byte, l)
  416. }
  417. reflect.Copy(reflect.ValueOf(bs), rv)
  418. ee.EncodeStringBytesRaw(bs)
  419. }
  420. case seqTypeChan:
  421. // do not use range, so that the number of elements encoded
  422. // does not change, and encoding does not hang waiting on someone to close chan.
  423. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  424. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  425. if rv.IsNil() {
  426. ee.EncodeNil()
  427. break
  428. }
  429. bs := e.b[:0]
  430. irv := rv2i(rv)
  431. ch, ok := irv.(<-chan byte)
  432. if !ok {
  433. ch = irv.(chan byte)
  434. }
  435. L1:
  436. switch timeout := e.h.ChanRecvTimeout; {
  437. case timeout == 0: // only consume available
  438. for {
  439. select {
  440. case b := <-ch:
  441. bs = append(bs, b)
  442. default:
  443. break L1
  444. }
  445. }
  446. case timeout > 0: // consume until timeout
  447. tt := time.NewTimer(timeout)
  448. for {
  449. select {
  450. case b := <-ch:
  451. bs = append(bs, b)
  452. case <-tt.C:
  453. // close(tt.C)
  454. break L1
  455. }
  456. }
  457. default: // consume until close
  458. for b := range ch {
  459. bs = append(bs, b)
  460. }
  461. }
  462. ee.EncodeStringBytesRaw(bs)
  463. }
  464. return
  465. }
  466. // if chan, consume chan into a slice, and work off that slice.
  467. if f.seq == seqTypeChan {
  468. rvcs := reflect.Zero(reflect.SliceOf(rtelem))
  469. timeout := e.h.ChanRecvTimeout
  470. if timeout < 0 { // consume until close
  471. for {
  472. recv, recvOk := rv.Recv()
  473. if !recvOk {
  474. break
  475. }
  476. rvcs = reflect.Append(rvcs, recv)
  477. }
  478. } else {
  479. cases := make([]reflect.SelectCase, 2)
  480. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  481. if timeout == 0 {
  482. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  483. } else {
  484. tt := time.NewTimer(timeout)
  485. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  486. }
  487. for {
  488. chosen, recv, recvOk := reflect.Select(cases)
  489. if chosen == 1 || !recvOk {
  490. break
  491. }
  492. rvcs = reflect.Append(rvcs, recv)
  493. }
  494. }
  495. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  496. }
  497. l = rv.Len()
  498. if ti.mbs {
  499. if l%2 == 1 {
  500. e.errorf("mapBySlice requires even slice length, but got %v", l)
  501. return
  502. }
  503. ee.WriteMapStart(l / 2)
  504. } else {
  505. ee.WriteArrayStart(l)
  506. }
  507. if l > 0 {
  508. var fn *codecFn
  509. for rtelem.Kind() == reflect.Ptr {
  510. rtelem = rtelem.Elem()
  511. }
  512. // if kind is reflect.Interface, do not pre-determine the
  513. // encoding type, because preEncodeValue may break it down to
  514. // a concrete type and kInterface will bomb.
  515. if rtelem.Kind() != reflect.Interface {
  516. fn = e.h.fn(rtelem, true, true)
  517. }
  518. for j := 0; j < l; j++ {
  519. if elemsep {
  520. if ti.mbs {
  521. if j%2 == 0 {
  522. ee.WriteMapElemKey()
  523. } else {
  524. ee.WriteMapElemValue()
  525. }
  526. } else {
  527. ee.WriteArrayElem()
  528. }
  529. }
  530. e.encodeValue(rv.Index(j), fn, true)
  531. }
  532. }
  533. if ti.mbs {
  534. ee.WriteMapEnd()
  535. } else {
  536. ee.WriteArrayEnd()
  537. }
  538. }
  539. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  540. fti := f.ti
  541. tisfi := fti.sfiSrc
  542. toMap := !(fti.toArray || e.h.StructToArray)
  543. if toMap {
  544. tisfi = fti.sfiSort
  545. }
  546. ee := e.e
  547. sfn := structFieldNode{v: rv, update: false}
  548. if toMap {
  549. ee.WriteMapStart(len(tisfi))
  550. if e.esep {
  551. for _, si := range tisfi {
  552. ee.WriteMapElemKey()
  553. // ee.EncodeStringEnc(cUTF8, si.encName)
  554. e.kStructFieldKey(fti.keyType, si)
  555. ee.WriteMapElemValue()
  556. e.encodeValue(sfn.field(si), nil, true)
  557. }
  558. } else {
  559. for _, si := range tisfi {
  560. // ee.EncodeStringEnc(cUTF8, si.encName)
  561. e.kStructFieldKey(fti.keyType, si)
  562. e.encodeValue(sfn.field(si), nil, true)
  563. }
  564. }
  565. ee.WriteMapEnd()
  566. } else {
  567. ee.WriteArrayStart(len(tisfi))
  568. if e.esep {
  569. for _, si := range tisfi {
  570. ee.WriteArrayElem()
  571. e.encodeValue(sfn.field(si), nil, true)
  572. }
  573. } else {
  574. for _, si := range tisfi {
  575. e.encodeValue(sfn.field(si), nil, true)
  576. }
  577. }
  578. ee.WriteArrayEnd()
  579. }
  580. }
  581. func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
  582. var m must
  583. // use if-else-if, not switch (which compiles to binary-search)
  584. // since keyType is typically valueTypeString, branch prediction is pretty good.
  585. if keyType == valueTypeString {
  586. if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
  587. e.w.writen1('"')
  588. e.w.writestr(s.encName)
  589. e.w.writen1('"')
  590. } else { // keyType == valueTypeString
  591. e.e.EncodeStringEnc(cUTF8, s.encName)
  592. }
  593. } else if keyType == valueTypeInt {
  594. e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
  595. } else if keyType == valueTypeUint {
  596. e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
  597. } else if keyType == valueTypeFloat {
  598. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
  599. }
  600. }
  601. func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
  602. var m must
  603. // use if-else-if, not switch (which compiles to binary-search)
  604. // since keyType is typically valueTypeString, branch prediction is pretty good.
  605. if keyType == valueTypeString {
  606. e.e.EncodeStringEnc(cUTF8, encName)
  607. } else if keyType == valueTypeInt {
  608. e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  609. } else if keyType == valueTypeUint {
  610. e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  611. } else if keyType == valueTypeFloat {
  612. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  613. }
  614. }
  615. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  616. fti := f.ti
  617. elemsep := e.esep
  618. tisfi := fti.sfiSrc
  619. var newlen int
  620. toMap := !(fti.toArray || e.h.StructToArray)
  621. var mf map[string]interface{}
  622. if f.ti.mf {
  623. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  624. toMap = true
  625. newlen += len(mf)
  626. } else if f.ti.mfp {
  627. if rv.CanAddr() {
  628. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  629. } else {
  630. // make a new addressable value of same one, and use it
  631. rv2 := reflect.New(rv.Type())
  632. rv2.Elem().Set(rv)
  633. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  634. }
  635. toMap = true
  636. newlen += len(mf)
  637. }
  638. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  639. if toMap {
  640. tisfi = fti.sfiSort
  641. }
  642. newlen += len(tisfi)
  643. ee := e.e
  644. // Use sync.Pool to reduce allocating slices unnecessarily.
  645. // The cost of sync.Pool is less than the cost of new allocation.
  646. //
  647. // Each element of the array pools one of encStructPool(8|16|32|64).
  648. // It allows the re-use of slices up to 64 in length.
  649. // A performance cost of encoding structs was collecting
  650. // which values were empty and should be omitted.
  651. // We needed slices of reflect.Value and string to collect them.
  652. // This shared pool reduces the amount of unnecessary creation we do.
  653. // The cost is that of locking sometimes, but sync.Pool is efficient
  654. // enough to reduce thread contention.
  655. var spool *sync.Pool
  656. var poolv interface{}
  657. var fkvs []sfiRv
  658. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  659. if newlen < 0 { // bounds-check-elimination
  660. // cannot happen // here for bounds-check-elimination
  661. } else if newlen <= 8 {
  662. spool, poolv = pool.sfiRv8()
  663. fkvs = poolv.(*[8]sfiRv)[:newlen]
  664. } else if newlen <= 16 {
  665. spool, poolv = pool.sfiRv16()
  666. fkvs = poolv.(*[16]sfiRv)[:newlen]
  667. } else if newlen <= 32 {
  668. spool, poolv = pool.sfiRv32()
  669. fkvs = poolv.(*[32]sfiRv)[:newlen]
  670. } else if newlen <= 64 {
  671. spool, poolv = pool.sfiRv64()
  672. fkvs = poolv.(*[64]sfiRv)[:newlen]
  673. } else if newlen <= 128 {
  674. spool, poolv = pool.sfiRv128()
  675. fkvs = poolv.(*[128]sfiRv)[:newlen]
  676. } else {
  677. fkvs = make([]sfiRv, newlen)
  678. }
  679. var kv sfiRv
  680. recur := e.h.RecursiveEmptyCheck
  681. sfn := structFieldNode{v: rv, update: false}
  682. newlen = 0
  683. for _, si := range tisfi {
  684. // kv.r = si.field(rv, false)
  685. kv.r = sfn.field(si)
  686. if toMap {
  687. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  688. continue
  689. }
  690. kv.v = si // si.encName
  691. } else {
  692. // use the zero value.
  693. // if a reference or struct, set to nil (so you do not output too much)
  694. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  695. switch kv.r.Kind() {
  696. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  697. kv.r = reflect.Value{} //encode as nil
  698. }
  699. }
  700. }
  701. fkvs[newlen] = kv
  702. newlen++
  703. }
  704. fkvs = fkvs[:newlen]
  705. var mflen int
  706. for k, v := range mf {
  707. if k == "" {
  708. delete(mf, k)
  709. continue
  710. }
  711. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  712. delete(mf, k)
  713. continue
  714. }
  715. mflen++
  716. }
  717. var j int
  718. if toMap {
  719. ee.WriteMapStart(newlen + mflen)
  720. if elemsep {
  721. for j = 0; j < len(fkvs); j++ {
  722. kv = fkvs[j]
  723. ee.WriteMapElemKey()
  724. // ee.EncodeStringEnc(cUTF8, kv.v)
  725. e.kStructFieldKey(fti.keyType, kv.v)
  726. ee.WriteMapElemValue()
  727. e.encodeValue(kv.r, nil, true)
  728. }
  729. } else {
  730. for j = 0; j < len(fkvs); j++ {
  731. kv = fkvs[j]
  732. // ee.EncodeStringEnc(cUTF8, kv.v)
  733. e.kStructFieldKey(fti.keyType, kv.v)
  734. e.encodeValue(kv.r, nil, true)
  735. }
  736. }
  737. // now, add the others
  738. for k, v := range mf {
  739. ee.WriteMapElemKey()
  740. e.kStructFieldKeyName(fti.keyType, k)
  741. ee.WriteMapElemValue()
  742. e.encode(v)
  743. }
  744. ee.WriteMapEnd()
  745. } else {
  746. ee.WriteArrayStart(newlen)
  747. if elemsep {
  748. for j = 0; j < len(fkvs); j++ {
  749. ee.WriteArrayElem()
  750. e.encodeValue(fkvs[j].r, nil, true)
  751. }
  752. } else {
  753. for j = 0; j < len(fkvs); j++ {
  754. e.encodeValue(fkvs[j].r, nil, true)
  755. }
  756. }
  757. ee.WriteArrayEnd()
  758. }
  759. // do not use defer. Instead, use explicit pool return at end of function.
  760. // defer has a cost we are trying to avoid.
  761. // If there is a panic and these slices are not returned, it is ok.
  762. if spool != nil {
  763. spool.Put(poolv)
  764. }
  765. }
  766. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  767. ee := e.e
  768. if rv.IsNil() {
  769. ee.EncodeNil()
  770. return
  771. }
  772. l := rv.Len()
  773. ee.WriteMapStart(l)
  774. if l == 0 {
  775. ee.WriteMapEnd()
  776. return
  777. }
  778. // var asSymbols bool
  779. // determine the underlying key and val encFn's for the map.
  780. // This eliminates some work which is done for each loop iteration i.e.
  781. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  782. //
  783. // However, if kind is reflect.Interface, do not pre-determine the
  784. // encoding type, because preEncodeValue may break it down to
  785. // a concrete type and kInterface will bomb.
  786. var keyFn, valFn *codecFn
  787. ti := f.ti
  788. rtkey0 := ti.key
  789. rtkey := rtkey0
  790. rtval0 := ti.elem
  791. rtval := rtval0
  792. // rtkeyid := rt2id(rtkey0)
  793. for rtval.Kind() == reflect.Ptr {
  794. rtval = rtval.Elem()
  795. }
  796. if rtval.Kind() != reflect.Interface {
  797. valFn = e.h.fn(rtval, true, true)
  798. }
  799. mks := rv.MapKeys()
  800. if e.h.Canonical {
  801. e.kMapCanonical(rtkey, rv, mks, valFn)
  802. ee.WriteMapEnd()
  803. return
  804. }
  805. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  806. if !keyTypeIsString {
  807. for rtkey.Kind() == reflect.Ptr {
  808. rtkey = rtkey.Elem()
  809. }
  810. if rtkey.Kind() != reflect.Interface {
  811. // rtkeyid = rt2id(rtkey)
  812. keyFn = e.h.fn(rtkey, true, true)
  813. }
  814. }
  815. // for j, lmks := 0, len(mks); j < lmks; j++ {
  816. for j := range mks {
  817. if e.esep {
  818. ee.WriteMapElemKey()
  819. }
  820. if keyTypeIsString {
  821. ee.EncodeStringEnc(cUTF8, mks[j].String())
  822. } else {
  823. e.encodeValue(mks[j], keyFn, true)
  824. }
  825. if e.esep {
  826. ee.WriteMapElemValue()
  827. }
  828. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  829. }
  830. ee.WriteMapEnd()
  831. }
  832. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  833. ee := e.e
  834. elemsep := e.esep
  835. // we previously did out-of-band if an extension was registered.
  836. // This is not necessary, as the natural kind is sufficient for ordering.
  837. switch rtkey.Kind() {
  838. case reflect.Bool:
  839. mksv := make([]boolRv, len(mks))
  840. for i, k := range mks {
  841. v := &mksv[i]
  842. v.r = k
  843. v.v = k.Bool()
  844. }
  845. sort.Sort(boolRvSlice(mksv))
  846. for i := range mksv {
  847. if elemsep {
  848. ee.WriteMapElemKey()
  849. }
  850. ee.EncodeBool(mksv[i].v)
  851. if elemsep {
  852. ee.WriteMapElemValue()
  853. }
  854. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  855. }
  856. case reflect.String:
  857. mksv := make([]stringRv, len(mks))
  858. for i, k := range mks {
  859. v := &mksv[i]
  860. v.r = k
  861. v.v = k.String()
  862. }
  863. sort.Sort(stringRvSlice(mksv))
  864. for i := range mksv {
  865. if elemsep {
  866. ee.WriteMapElemKey()
  867. }
  868. ee.EncodeStringEnc(cUTF8, mksv[i].v)
  869. if elemsep {
  870. ee.WriteMapElemValue()
  871. }
  872. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  873. }
  874. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  875. mksv := make([]uintRv, len(mks))
  876. for i, k := range mks {
  877. v := &mksv[i]
  878. v.r = k
  879. v.v = k.Uint()
  880. }
  881. sort.Sort(uintRvSlice(mksv))
  882. for i := range mksv {
  883. if elemsep {
  884. ee.WriteMapElemKey()
  885. }
  886. ee.EncodeUint(mksv[i].v)
  887. if elemsep {
  888. ee.WriteMapElemValue()
  889. }
  890. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  891. }
  892. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  893. mksv := make([]intRv, len(mks))
  894. for i, k := range mks {
  895. v := &mksv[i]
  896. v.r = k
  897. v.v = k.Int()
  898. }
  899. sort.Sort(intRvSlice(mksv))
  900. for i := range mksv {
  901. if elemsep {
  902. ee.WriteMapElemKey()
  903. }
  904. ee.EncodeInt(mksv[i].v)
  905. if elemsep {
  906. ee.WriteMapElemValue()
  907. }
  908. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  909. }
  910. case reflect.Float32:
  911. mksv := make([]floatRv, len(mks))
  912. for i, k := range mks {
  913. v := &mksv[i]
  914. v.r = k
  915. v.v = k.Float()
  916. }
  917. sort.Sort(floatRvSlice(mksv))
  918. for i := range mksv {
  919. if elemsep {
  920. ee.WriteMapElemKey()
  921. }
  922. ee.EncodeFloat32(float32(mksv[i].v))
  923. if elemsep {
  924. ee.WriteMapElemValue()
  925. }
  926. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  927. }
  928. case reflect.Float64:
  929. mksv := make([]floatRv, len(mks))
  930. for i, k := range mks {
  931. v := &mksv[i]
  932. v.r = k
  933. v.v = k.Float()
  934. }
  935. sort.Sort(floatRvSlice(mksv))
  936. for i := range mksv {
  937. if elemsep {
  938. ee.WriteMapElemKey()
  939. }
  940. ee.EncodeFloat64(mksv[i].v)
  941. if elemsep {
  942. ee.WriteMapElemValue()
  943. }
  944. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  945. }
  946. case reflect.Struct:
  947. if rv.Type() == timeTyp {
  948. mksv := make([]timeRv, len(mks))
  949. for i, k := range mks {
  950. v := &mksv[i]
  951. v.r = k
  952. v.v = rv2i(k).(time.Time)
  953. }
  954. sort.Sort(timeRvSlice(mksv))
  955. for i := range mksv {
  956. if elemsep {
  957. ee.WriteMapElemKey()
  958. }
  959. ee.EncodeTime(mksv[i].v)
  960. if elemsep {
  961. ee.WriteMapElemValue()
  962. }
  963. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  964. }
  965. break
  966. }
  967. fallthrough
  968. default:
  969. // out-of-band
  970. // first encode each key to a []byte first, then sort them, then record
  971. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  972. e2 := NewEncoderBytes(&mksv, e.hh)
  973. mksbv := make([]bytesRv, len(mks))
  974. for i, k := range mks {
  975. v := &mksbv[i]
  976. l := len(mksv)
  977. e2.MustEncode(k)
  978. v.r = k
  979. v.v = mksv[l:]
  980. }
  981. sort.Sort(bytesRvSlice(mksbv))
  982. for j := range mksbv {
  983. if elemsep {
  984. ee.WriteMapElemKey()
  985. }
  986. e.asis(mksbv[j].v)
  987. if elemsep {
  988. ee.WriteMapElemValue()
  989. }
  990. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  991. }
  992. }
  993. }
  994. // // --------------------------------------------------
  995. type encWriterSwitch struct {
  996. // wi *ioEncWriter
  997. wb bytesEncAppender
  998. wf *bufioEncWriter
  999. // typ entryType
  1000. bytes bool // encoding to []byte
  1001. esep bool // whether it has elem separators
  1002. isas bool // whether e.as != nil
  1003. js bool // is json encoder?
  1004. be bool // is binary encoder?
  1005. _ [2]byte // padding
  1006. // _ [2]uint64 // padding
  1007. // _ uint64 // padding
  1008. }
  1009. func (z *encWriterSwitch) writeb(s []byte) {
  1010. if z.bytes {
  1011. z.wb.writeb(s)
  1012. } else {
  1013. z.wf.writeb(s)
  1014. }
  1015. }
  1016. func (z *encWriterSwitch) writestr(s string) {
  1017. if z.bytes {
  1018. z.wb.writestr(s)
  1019. } else {
  1020. z.wf.writestr(s)
  1021. }
  1022. }
  1023. func (z *encWriterSwitch) writen1(b1 byte) {
  1024. if z.bytes {
  1025. z.wb.writen1(b1)
  1026. } else {
  1027. z.wf.writen1(b1)
  1028. }
  1029. }
  1030. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1031. if z.bytes {
  1032. z.wb.writen2(b1, b2)
  1033. } else {
  1034. z.wf.writen2(b1, b2)
  1035. }
  1036. }
  1037. func (z *encWriterSwitch) end() {
  1038. if z.bytes {
  1039. z.wb.end()
  1040. } else {
  1041. z.wf.end()
  1042. }
  1043. }
  1044. /*
  1045. // ------------------------------------------
  1046. func (z *encWriterSwitch) writeb(s []byte) {
  1047. switch z.typ {
  1048. case entryTypeBytes:
  1049. z.wb.writeb(s)
  1050. case entryTypeIo:
  1051. z.wi.writeb(s)
  1052. default:
  1053. z.wf.writeb(s)
  1054. }
  1055. }
  1056. func (z *encWriterSwitch) writestr(s string) {
  1057. switch z.typ {
  1058. case entryTypeBytes:
  1059. z.wb.writestr(s)
  1060. case entryTypeIo:
  1061. z.wi.writestr(s)
  1062. default:
  1063. z.wf.writestr(s)
  1064. }
  1065. }
  1066. func (z *encWriterSwitch) writen1(b1 byte) {
  1067. switch z.typ {
  1068. case entryTypeBytes:
  1069. z.wb.writen1(b1)
  1070. case entryTypeIo:
  1071. z.wi.writen1(b1)
  1072. default:
  1073. z.wf.writen1(b1)
  1074. }
  1075. }
  1076. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1077. switch z.typ {
  1078. case entryTypeBytes:
  1079. z.wb.writen2(b1, b2)
  1080. case entryTypeIo:
  1081. z.wi.writen2(b1, b2)
  1082. default:
  1083. z.wf.writen2(b1, b2)
  1084. }
  1085. }
  1086. func (z *encWriterSwitch) end() {
  1087. switch z.typ {
  1088. case entryTypeBytes:
  1089. z.wb.end()
  1090. case entryTypeIo:
  1091. z.wi.end()
  1092. default:
  1093. z.wf.end()
  1094. }
  1095. }
  1096. // ------------------------------------------
  1097. func (z *encWriterSwitch) writeb(s []byte) {
  1098. if z.bytes {
  1099. z.wb.writeb(s)
  1100. } else {
  1101. z.wi.writeb(s)
  1102. }
  1103. }
  1104. func (z *encWriterSwitch) writestr(s string) {
  1105. if z.bytes {
  1106. z.wb.writestr(s)
  1107. } else {
  1108. z.wi.writestr(s)
  1109. }
  1110. }
  1111. func (z *encWriterSwitch) writen1(b1 byte) {
  1112. if z.bytes {
  1113. z.wb.writen1(b1)
  1114. } else {
  1115. z.wi.writen1(b1)
  1116. }
  1117. }
  1118. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1119. if z.bytes {
  1120. z.wb.writen2(b1, b2)
  1121. } else {
  1122. z.wi.writen2(b1, b2)
  1123. }
  1124. }
  1125. func (z *encWriterSwitch) end() {
  1126. if z.bytes {
  1127. z.wb.end()
  1128. } else {
  1129. z.wi.end()
  1130. }
  1131. }
  1132. */
  1133. // Encoder writes an object to an output stream in a supported format.
  1134. //
  1135. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1136. // concurrently in multiple goroutines.
  1137. //
  1138. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1139. // so its state can be reused to decode new input streams repeatedly.
  1140. // This is the idiomatic way to use.
  1141. type Encoder struct {
  1142. panicHdl
  1143. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1144. e encDriver
  1145. // NOTE: Encoder shouldn't call it's write methods,
  1146. // as the handler MAY need to do some coordination.
  1147. w *encWriterSwitch
  1148. // bw *bufio.Writer
  1149. as encDriverAsis
  1150. err error
  1151. h *BasicHandle
  1152. hh Handle
  1153. // ---- cpu cache line boundary? + 3
  1154. encWriterSwitch
  1155. ci set
  1156. // Extensions can call Encode() within a current Encode() call.
  1157. // We need to know when the top level Encode() call returns,
  1158. // so we can decide whether to Close() or not.
  1159. calls uint16 // what depth in mustEncode are we in now.
  1160. b [(5 * 8) - 2]byte // for encoding chan or (non-addressable) [N]byte
  1161. // ---- writable fields during execution --- *try* to keep in sep cache line
  1162. // ---- cpu cache line boundary?
  1163. // b [scratchByteArrayLen]byte
  1164. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1165. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  1166. }
  1167. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1168. //
  1169. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  1170. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  1171. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1172. e := newEncoder(h)
  1173. e.Reset(w)
  1174. return e
  1175. }
  1176. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1177. // into a byte slice, using zero-copying to temporary slices.
  1178. //
  1179. // It will potentially replace the output byte slice pointed to.
  1180. // After encoding, the out parameter contains the encoded contents.
  1181. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1182. e := newEncoder(h)
  1183. e.ResetBytes(out)
  1184. return e
  1185. }
  1186. func newEncoder(h Handle) *Encoder {
  1187. e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
  1188. e.bytes = true
  1189. if useFinalizers {
  1190. runtime.SetFinalizer(e, (*Encoder).finalize)
  1191. // xdebugf(">>>> new(Encoder) with finalizer")
  1192. }
  1193. e.w = &e.encWriterSwitch
  1194. e.hh = h
  1195. e.esep = h.hasElemSeparators()
  1196. return e
  1197. }
  1198. func (e *Encoder) resetCommon() {
  1199. // e.w = &e.encWriterSwitch
  1200. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1201. e.e = e.hh.newEncDriver(e)
  1202. e.as, e.isas = e.e.(encDriverAsis)
  1203. // e.cr, _ = e.e.(containerStateRecv)
  1204. }
  1205. e.be = e.hh.isBinary()
  1206. _, e.js = e.hh.(*JsonHandle)
  1207. e.e.reset()
  1208. e.err = nil
  1209. e.calls = 0
  1210. }
  1211. // Reset resets the Encoder with a new output stream.
  1212. //
  1213. // This accommodates using the state of the Encoder,
  1214. // where it has "cached" information about sub-engines.
  1215. func (e *Encoder) Reset(w io.Writer) {
  1216. if w == nil {
  1217. return
  1218. }
  1219. // var ok bool
  1220. e.bytes = false
  1221. if e.wf == nil {
  1222. e.wf = new(bufioEncWriter)
  1223. }
  1224. // e.typ = entryTypeUnset
  1225. // if e.h.WriterBufferSize > 0 {
  1226. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1227. // // e.wi.bw = bw
  1228. // // e.wi.sw = bw
  1229. // // e.wi.fw = bw
  1230. // // e.wi.ww = bw
  1231. // if e.wf == nil {
  1232. // e.wf = new(bufioEncWriter)
  1233. // }
  1234. // e.wf.reset(w, e.h.WriterBufferSize)
  1235. // e.typ = entryTypeBufio
  1236. // } else {
  1237. // if e.wi == nil {
  1238. // e.wi = new(ioEncWriter)
  1239. // }
  1240. // e.wi.reset(w)
  1241. // e.typ = entryTypeIo
  1242. // }
  1243. e.wf.reset(w, e.h.WriterBufferSize)
  1244. // e.typ = entryTypeBufio
  1245. // e.w = e.wi
  1246. e.resetCommon()
  1247. }
  1248. // ResetBytes resets the Encoder with a new destination output []byte.
  1249. func (e *Encoder) ResetBytes(out *[]byte) {
  1250. if out == nil {
  1251. return
  1252. }
  1253. var in []byte = *out
  1254. if in == nil {
  1255. in = make([]byte, defEncByteBufSize)
  1256. }
  1257. e.bytes = true
  1258. // e.typ = entryTypeBytes
  1259. e.wb.reset(in, out)
  1260. // e.w = &e.wb
  1261. e.resetCommon()
  1262. }
  1263. // Encode writes an object into a stream.
  1264. //
  1265. // Encoding can be configured via the struct tag for the fields.
  1266. // The key (in the struct tags) that we look at is configurable.
  1267. //
  1268. // By default, we look up the "codec" key in the struct field's tags,
  1269. // and fall bak to the "json" key if "codec" is absent.
  1270. // That key in struct field's tag value is the key name,
  1271. // followed by an optional comma and options.
  1272. //
  1273. // To set an option on all fields (e.g. omitempty on all fields), you
  1274. // can create a field called _struct, and set flags on it. The options
  1275. // which can be set on _struct are:
  1276. // - omitempty: so all fields are omitted if empty
  1277. // - toarray: so struct is encoded as an array
  1278. // - int: so struct key names are encoded as signed integers (instead of strings)
  1279. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1280. // - float: so struct key names are encoded as floats (instead of strings)
  1281. // More details on these below.
  1282. //
  1283. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1284. // - the field's tag is "-", OR
  1285. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1286. //
  1287. // When encoding as a map, the first string in the tag (before the comma)
  1288. // is the map key string to use when encoding.
  1289. // ...
  1290. // This key is typically encoded as a string.
  1291. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1292. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1293. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1294. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1295. // This is done with the int,uint or float option on the _struct field (see above).
  1296. //
  1297. // However, struct values may encode as arrays. This happens when:
  1298. // - StructToArray Encode option is set, OR
  1299. // - the tag on the _struct field sets the "toarray" option
  1300. // Note that omitempty is ignored when encoding struct values as arrays,
  1301. // as an entry must be encoded for each field, to maintain its position.
  1302. //
  1303. // Values with types that implement MapBySlice are encoded as stream maps.
  1304. //
  1305. // The empty values (for omitempty option) are false, 0, any nil pointer
  1306. // or interface value, and any array, slice, map, or string of length zero.
  1307. //
  1308. // Anonymous fields are encoded inline except:
  1309. // - the struct tag specifies a replacement name (first value)
  1310. // - the field is of an interface type
  1311. //
  1312. // Examples:
  1313. //
  1314. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1315. // type MyStruct struct {
  1316. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1317. // Field1 string `codec:"-"` //skip this field
  1318. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1319. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1320. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1321. // io.Reader //use key "Reader".
  1322. // MyStruct `codec:"my1" //use key "my1".
  1323. // MyStruct //inline it
  1324. // ...
  1325. // }
  1326. //
  1327. // type MyStruct struct {
  1328. // _struct bool `codec:",toarray"` //encode struct as an array
  1329. // }
  1330. //
  1331. // type MyStruct struct {
  1332. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1333. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1334. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1335. // }
  1336. //
  1337. // The mode of encoding is based on the type of the value. When a value is seen:
  1338. // - If a Selfer, call its CodecEncodeSelf method
  1339. // - If an extension is registered for it, call that extension function
  1340. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1341. // - Else encode it based on its reflect.Kind
  1342. //
  1343. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1344. // Some formats support symbols (e.g. binc) and will properly encode the string
  1345. // only once in the stream, and use a tag to refer to it thereafter.
  1346. func (e *Encoder) Encode(v interface{}) (err error) {
  1347. // tried to use closure, as runtime optimizes defer with no params.
  1348. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1349. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1350. // defer func() { e.deferred(&err) }() }
  1351. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1352. if e.err != nil {
  1353. return e.err
  1354. }
  1355. if recoverPanicToErr {
  1356. defer func() {
  1357. e.w.end()
  1358. if x := recover(); x != nil {
  1359. panicValToErr(e, x, &e.err)
  1360. err = e.err
  1361. }
  1362. }()
  1363. }
  1364. // defer e.deferred(&err)
  1365. e.mustEncode(v)
  1366. return
  1367. }
  1368. // MustEncode is like Encode, but panics if unable to Encode.
  1369. // This provides insight to the code location that triggered the error.
  1370. func (e *Encoder) MustEncode(v interface{}) {
  1371. if e.err != nil {
  1372. panic(e.err)
  1373. }
  1374. e.mustEncode(v)
  1375. }
  1376. func (e *Encoder) mustEncode(v interface{}) {
  1377. e.calls++
  1378. e.encode(v)
  1379. e.e.atEndOfEncode()
  1380. e.w.end()
  1381. e.calls--
  1382. if !e.h.DoNotClose && e.calls == 0 {
  1383. e.Close()
  1384. }
  1385. }
  1386. // func (e *Encoder) deferred(err1 *error) {
  1387. // e.w.end()
  1388. // if recoverPanicToErr {
  1389. // if x := recover(); x != nil {
  1390. // panicValToErr(e, x, err1)
  1391. // panicValToErr(e, x, &e.err)
  1392. // }
  1393. // }
  1394. // }
  1395. //go:noinline -- as it is run by finalizer
  1396. func (e *Encoder) finalize() {
  1397. xdebugf("finalizing Encoder")
  1398. e.Close()
  1399. }
  1400. // Close releases shared (pooled) resources.
  1401. //
  1402. // It is important to call Close() when done with an Encoder, so those resources
  1403. // are released instantly for use by subsequently created Encoders.
  1404. func (e *Encoder) Close() {
  1405. if useFinalizers && removeFinalizerOnClose {
  1406. runtime.SetFinalizer(e, nil)
  1407. }
  1408. if e.wf != nil {
  1409. e.wf.buf = nil
  1410. e.wf.bytesBufPooler.end()
  1411. }
  1412. }
  1413. func (e *Encoder) encode(iv interface{}) {
  1414. if iv == nil || definitelyNil(iv) {
  1415. e.e.EncodeNil()
  1416. return
  1417. }
  1418. if v, ok := iv.(Selfer); ok {
  1419. v.CodecEncodeSelf(e)
  1420. return
  1421. }
  1422. // a switch with only concrete types can be optimized.
  1423. // consequently, we deal with nil and interfaces outside.
  1424. switch v := iv.(type) {
  1425. case Raw:
  1426. e.rawBytes(v)
  1427. case reflect.Value:
  1428. e.encodeValue(v, nil, true)
  1429. case string:
  1430. e.e.EncodeStringEnc(cUTF8, v)
  1431. case bool:
  1432. e.e.EncodeBool(v)
  1433. case int:
  1434. e.e.EncodeInt(int64(v))
  1435. case int8:
  1436. e.e.EncodeInt(int64(v))
  1437. case int16:
  1438. e.e.EncodeInt(int64(v))
  1439. case int32:
  1440. e.e.EncodeInt(int64(v))
  1441. case int64:
  1442. e.e.EncodeInt(v)
  1443. case uint:
  1444. e.e.EncodeUint(uint64(v))
  1445. case uint8:
  1446. e.e.EncodeUint(uint64(v))
  1447. case uint16:
  1448. e.e.EncodeUint(uint64(v))
  1449. case uint32:
  1450. e.e.EncodeUint(uint64(v))
  1451. case uint64:
  1452. e.e.EncodeUint(v)
  1453. case uintptr:
  1454. e.e.EncodeUint(uint64(v))
  1455. case float32:
  1456. e.e.EncodeFloat32(v)
  1457. case float64:
  1458. e.e.EncodeFloat64(v)
  1459. case time.Time:
  1460. e.e.EncodeTime(v)
  1461. case []uint8:
  1462. e.e.EncodeStringBytesRaw(v)
  1463. case *Raw:
  1464. e.rawBytes(*v)
  1465. case *string:
  1466. e.e.EncodeStringEnc(cUTF8, *v)
  1467. case *bool:
  1468. e.e.EncodeBool(*v)
  1469. case *int:
  1470. e.e.EncodeInt(int64(*v))
  1471. case *int8:
  1472. e.e.EncodeInt(int64(*v))
  1473. case *int16:
  1474. e.e.EncodeInt(int64(*v))
  1475. case *int32:
  1476. e.e.EncodeInt(int64(*v))
  1477. case *int64:
  1478. e.e.EncodeInt(*v)
  1479. case *uint:
  1480. e.e.EncodeUint(uint64(*v))
  1481. case *uint8:
  1482. e.e.EncodeUint(uint64(*v))
  1483. case *uint16:
  1484. e.e.EncodeUint(uint64(*v))
  1485. case *uint32:
  1486. e.e.EncodeUint(uint64(*v))
  1487. case *uint64:
  1488. e.e.EncodeUint(*v)
  1489. case *uintptr:
  1490. e.e.EncodeUint(uint64(*v))
  1491. case *float32:
  1492. e.e.EncodeFloat32(*v)
  1493. case *float64:
  1494. e.e.EncodeFloat64(*v)
  1495. case *time.Time:
  1496. e.e.EncodeTime(*v)
  1497. case *[]uint8:
  1498. e.e.EncodeStringBytesRaw(*v)
  1499. default:
  1500. if !fastpathEncodeTypeSwitch(iv, e) {
  1501. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1502. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1503. }
  1504. }
  1505. }
  1506. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1507. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1508. var sptr uintptr
  1509. var rvp reflect.Value
  1510. var rvpValid bool
  1511. TOP:
  1512. switch rv.Kind() {
  1513. case reflect.Ptr:
  1514. if rv.IsNil() {
  1515. e.e.EncodeNil()
  1516. return
  1517. }
  1518. rvpValid = true
  1519. rvp = rv
  1520. rv = rv.Elem()
  1521. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1522. // TODO: Movable pointers will be an issue here. Future problem.
  1523. sptr = rv.UnsafeAddr()
  1524. break TOP
  1525. }
  1526. goto TOP
  1527. case reflect.Interface:
  1528. if rv.IsNil() {
  1529. e.e.EncodeNil()
  1530. return
  1531. }
  1532. rv = rv.Elem()
  1533. goto TOP
  1534. case reflect.Slice, reflect.Map:
  1535. if rv.IsNil() {
  1536. e.e.EncodeNil()
  1537. return
  1538. }
  1539. case reflect.Invalid, reflect.Func:
  1540. e.e.EncodeNil()
  1541. return
  1542. }
  1543. if sptr != 0 && (&e.ci).add(sptr) {
  1544. e.errorf("circular reference found: # %d", sptr)
  1545. }
  1546. if fn == nil {
  1547. rt := rv.Type()
  1548. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1549. fn = e.h.fn(rt, checkFastpath, true)
  1550. }
  1551. if fn.i.addrE {
  1552. if rvpValid {
  1553. fn.fe(e, &fn.i, rvp)
  1554. } else if rv.CanAddr() {
  1555. fn.fe(e, &fn.i, rv.Addr())
  1556. } else {
  1557. rv2 := reflect.New(rv.Type())
  1558. rv2.Elem().Set(rv)
  1559. fn.fe(e, &fn.i, rv2)
  1560. }
  1561. } else {
  1562. fn.fe(e, &fn.i, rv)
  1563. }
  1564. if sptr != 0 {
  1565. (&e.ci).remove(sptr)
  1566. }
  1567. }
  1568. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1569. // if fnerr != nil {
  1570. // panic(fnerr)
  1571. // }
  1572. // if bs == nil {
  1573. // e.e.EncodeNil()
  1574. // } else if asis {
  1575. // e.asis(bs)
  1576. // } else {
  1577. // e.e.EncodeStringBytes(c, bs)
  1578. // }
  1579. // }
  1580. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1581. if fnerr != nil {
  1582. panic(fnerr)
  1583. }
  1584. if bs == nil {
  1585. e.e.EncodeNil()
  1586. } else {
  1587. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1588. }
  1589. }
  1590. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1591. if fnerr != nil {
  1592. panic(fnerr)
  1593. }
  1594. if bs == nil {
  1595. e.e.EncodeNil()
  1596. } else {
  1597. e.asis(bs)
  1598. }
  1599. }
  1600. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1601. if fnerr != nil {
  1602. panic(fnerr)
  1603. }
  1604. if bs == nil {
  1605. e.e.EncodeNil()
  1606. } else {
  1607. e.e.EncodeStringBytesRaw(bs)
  1608. }
  1609. }
  1610. func (e *Encoder) asis(v []byte) {
  1611. if e.isas {
  1612. e.as.EncodeAsis(v)
  1613. } else {
  1614. e.w.writeb(v)
  1615. }
  1616. }
  1617. func (e *Encoder) rawBytes(vv Raw) {
  1618. v := []byte(vv)
  1619. if !e.h.Raw {
  1620. e.errorf("Raw values cannot be encoded: %v", v)
  1621. }
  1622. e.asis(v)
  1623. }
  1624. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1625. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1626. }