encode.go 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "runtime"
  11. "sort"
  12. "strconv"
  13. "time"
  14. )
  15. // defEncByteBufSize is the default size of []byte used
  16. // for bufio buffer or []byte (when nil passed)
  17. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  18. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  19. /*
  20. // encWriter abstracts writing to a byte array or to an io.Writer.
  21. //
  22. //
  23. // Deprecated: Use encWriterSwitch instead.
  24. type encWriter interface {
  25. writeb([]byte)
  26. writestr(string)
  27. writen1(byte)
  28. writen2(byte, byte)
  29. end()
  30. }
  31. */
  32. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  33. type encDriver interface {
  34. EncodeNil()
  35. EncodeInt(i int64)
  36. EncodeUint(i uint64)
  37. EncodeBool(b bool)
  38. EncodeFloat32(f float32)
  39. EncodeFloat64(f float64)
  40. // encodeExtPreamble(xtag byte, length int)
  41. EncodeRawExt(re *RawExt, e *Encoder)
  42. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  43. // Deprecated: try to use EncodeStringEnc instead
  44. EncodeString(c charEncoding, v string)
  45. // c cannot be cRAW
  46. EncodeStringEnc(c charEncoding, v string)
  47. // EncodeSymbol(v string)
  48. // Deprecated: try to use EncodeStringBytesRaw instead
  49. EncodeStringBytes(c charEncoding, v []byte)
  50. EncodeStringBytesRaw(v []byte)
  51. EncodeTime(time.Time)
  52. //encBignum(f *big.Int)
  53. //encStringRunes(c charEncoding, v []rune)
  54. WriteArrayStart(length int)
  55. WriteArrayElem()
  56. WriteArrayEnd()
  57. WriteMapStart(length int)
  58. WriteMapElemKey()
  59. WriteMapElemValue()
  60. WriteMapEnd()
  61. reset()
  62. atEndOfEncode()
  63. }
  64. type encDriverAsis interface {
  65. EncodeAsis(v []byte)
  66. }
  67. type encodeError struct {
  68. codecError
  69. }
  70. func (e encodeError) Error() string {
  71. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  72. }
  73. type encDriverNoopContainerWriter struct{}
  74. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  75. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  76. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  77. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  78. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  79. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  80. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  81. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  82. type encDriverTrackContainerWriter struct {
  83. c containerState
  84. }
  85. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  86. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  87. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  88. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  89. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  90. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  91. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  92. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  93. // type ioEncWriterWriter interface {
  94. // WriteByte(c byte) error
  95. // WriteString(s string) (n int, err error)
  96. // Write(p []byte) (n int, err error)
  97. // }
  98. // EncodeOptions captures configuration options during encode.
  99. type EncodeOptions struct {
  100. // WriterBufferSize is the size of the buffer used when writing.
  101. //
  102. // if > 0, we use a smart buffer internally for performance purposes.
  103. WriterBufferSize int
  104. // ChanRecvTimeout is the timeout used when selecting from a chan.
  105. //
  106. // Configuring this controls how we receive from a chan during the encoding process.
  107. // - If ==0, we only consume the elements currently available in the chan.
  108. // - if <0, we consume until the chan is closed.
  109. // - If >0, we consume until this timeout.
  110. ChanRecvTimeout time.Duration
  111. // StructToArray specifies to encode a struct as an array, and not as a map
  112. StructToArray bool
  113. // Canonical representation means that encoding a value will always result in the same
  114. // sequence of bytes.
  115. //
  116. // This only affects maps, as the iteration order for maps is random.
  117. //
  118. // The implementation MAY use the natural sort order for the map keys if possible:
  119. //
  120. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  121. // then the map keys are first sorted in natural order and then written
  122. // with corresponding map values to the strema.
  123. // - If there is no natural sort order, then the map keys will first be
  124. // encoded into []byte, and then sorted,
  125. // before writing the sorted keys and the corresponding map values to the stream.
  126. //
  127. Canonical bool
  128. // CheckCircularRef controls whether we check for circular references
  129. // and error fast during an encode.
  130. //
  131. // If enabled, an error is received if a pointer to a struct
  132. // references itself either directly or through one of its fields (iteratively).
  133. //
  134. // This is opt-in, as there may be a performance hit to checking circular references.
  135. CheckCircularRef bool
  136. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  137. // when checking if a value is empty.
  138. //
  139. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  140. RecursiveEmptyCheck bool
  141. // Raw controls whether we encode Raw values.
  142. // This is a "dangerous" option and must be explicitly set.
  143. // If set, we blindly encode Raw values as-is, without checking
  144. // if they are a correct representation of a value in that format.
  145. // If unset, we error out.
  146. Raw bool
  147. // // AsSymbols defines what should be encoded as symbols.
  148. // //
  149. // // Encoding as symbols can reduce the encoded size significantly.
  150. // //
  151. // // However, during decoding, each string to be encoded as a symbol must
  152. // // be checked to see if it has been seen before. Consequently, encoding time
  153. // // will increase if using symbols, because string comparisons has a clear cost.
  154. // //
  155. // // Sample values:
  156. // // AsSymbolNone
  157. // // AsSymbolAll
  158. // // AsSymbolMapStringKeys
  159. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  160. // AsSymbols AsSymbolFlag
  161. }
  162. // ---------------------------------------------
  163. /*
  164. type ioEncStringWriter interface {
  165. WriteString(s string) (n int, err error)
  166. }
  167. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  168. type ioEncWriter struct {
  169. w io.Writer
  170. ww io.Writer
  171. bw io.ByteWriter
  172. sw ioEncStringWriter
  173. fw ioFlusher
  174. b [8]byte
  175. }
  176. func (z *ioEncWriter) reset(w io.Writer) {
  177. z.w = w
  178. var ok bool
  179. if z.bw, ok = w.(io.ByteWriter); !ok {
  180. z.bw = z
  181. }
  182. if z.sw, ok = w.(ioEncStringWriter); !ok {
  183. z.sw = z
  184. }
  185. z.fw, _ = w.(ioFlusher)
  186. z.ww = w
  187. }
  188. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  189. z.b[0] = b
  190. _, err = z.w.Write(z.b[:1])
  191. return
  192. }
  193. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  194. return z.w.Write(bytesView(s))
  195. }
  196. func (z *ioEncWriter) writeb(bs []byte) {
  197. if _, err := z.ww.Write(bs); err != nil {
  198. panic(err)
  199. }
  200. }
  201. func (z *ioEncWriter) writestr(s string) {
  202. if _, err := z.sw.WriteString(s); err != nil {
  203. panic(err)
  204. }
  205. }
  206. func (z *ioEncWriter) writen1(b byte) {
  207. if err := z.bw.WriteByte(b); err != nil {
  208. panic(err)
  209. }
  210. }
  211. func (z *ioEncWriter) writen2(b1, b2 byte) {
  212. var err error
  213. if err = z.bw.WriteByte(b1); err == nil {
  214. if err = z.bw.WriteByte(b2); err == nil {
  215. return
  216. }
  217. }
  218. panic(err)
  219. }
  220. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  221. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  222. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  223. // panic(err)
  224. // }
  225. // }
  226. //go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
  227. func (z *ioEncWriter) end() {
  228. if z.fw != nil {
  229. if err := z.fw.Flush(); err != nil {
  230. panic(err)
  231. }
  232. }
  233. }
  234. */
  235. // ---------------------------------------------
  236. // bufioEncWriter
  237. type bufioEncWriter struct {
  238. buf []byte
  239. w io.Writer
  240. n int
  241. sz int // buf size
  242. // Extensions can call Encode() within a current Encode() call.
  243. // We need to know when the top level Encode() call returns,
  244. // so we can decide whether to Release() or not.
  245. calls uint16 // what depth in mustDecode are we in now.
  246. _ [6]uint8 // padding
  247. bytesBufPooler
  248. _ [1]uint64 // padding
  249. // a int
  250. // b [4]byte
  251. // err
  252. }
  253. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  254. z.w = w
  255. z.n = 0
  256. z.calls = 0
  257. if bufsize <= 0 {
  258. bufsize = defEncByteBufSize
  259. }
  260. z.sz = bufsize
  261. if cap(z.buf) >= bufsize {
  262. z.buf = z.buf[:cap(z.buf)]
  263. } else {
  264. z.buf = z.bytesBufPooler.get(bufsize)
  265. // z.buf = make([]byte, bufsize)
  266. }
  267. }
  268. func (z *bufioEncWriter) release() {
  269. z.buf = nil
  270. z.bytesBufPooler.end()
  271. }
  272. //go:noinline - flush only called intermittently
  273. func (z *bufioEncWriter) flushErr() (err error) {
  274. n, err := z.w.Write(z.buf[:z.n])
  275. z.n -= n
  276. if z.n > 0 && err == nil {
  277. err = io.ErrShortWrite
  278. }
  279. if n > 0 && z.n > 0 {
  280. copy(z.buf, z.buf[n:z.n+n])
  281. }
  282. return err
  283. }
  284. func (z *bufioEncWriter) flush() {
  285. if err := z.flushErr(); err != nil {
  286. panic(err)
  287. }
  288. }
  289. func (z *bufioEncWriter) writeb(s []byte) {
  290. LOOP:
  291. a := len(z.buf) - z.n
  292. if len(s) > a {
  293. z.n += copy(z.buf[z.n:], s[:a])
  294. s = s[a:]
  295. z.flush()
  296. goto LOOP
  297. }
  298. z.n += copy(z.buf[z.n:], s)
  299. }
  300. func (z *bufioEncWriter) writestr(s string) {
  301. // z.writeb(bytesView(s)) // inlined below
  302. LOOP:
  303. a := len(z.buf) - z.n
  304. if len(s) > a {
  305. z.n += copy(z.buf[z.n:], s[:a])
  306. s = s[a:]
  307. z.flush()
  308. goto LOOP
  309. }
  310. z.n += copy(z.buf[z.n:], s)
  311. }
  312. func (z *bufioEncWriter) writen1(b1 byte) {
  313. if 1 > len(z.buf)-z.n {
  314. z.flush()
  315. }
  316. z.buf[z.n] = b1
  317. z.n++
  318. }
  319. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  320. if 2 > len(z.buf)-z.n {
  321. z.flush()
  322. }
  323. z.buf[z.n+1] = b2
  324. z.buf[z.n] = b1
  325. z.n += 2
  326. }
  327. func (z *bufioEncWriter) endErr() (err error) {
  328. if z.n > 0 {
  329. err = z.flushErr()
  330. }
  331. return
  332. }
  333. // ---------------------------------------------
  334. // bytesEncAppender implements encWriter and can write to an byte slice.
  335. type bytesEncAppender struct {
  336. b []byte
  337. out *[]byte
  338. }
  339. func (z *bytesEncAppender) writeb(s []byte) {
  340. z.b = append(z.b, s...)
  341. }
  342. func (z *bytesEncAppender) writestr(s string) {
  343. z.b = append(z.b, s...)
  344. }
  345. func (z *bytesEncAppender) writen1(b1 byte) {
  346. z.b = append(z.b, b1)
  347. }
  348. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  349. z.b = append(z.b, b1, b2)
  350. }
  351. func (z *bytesEncAppender) endErr() error {
  352. *(z.out) = z.b
  353. return nil
  354. }
  355. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  356. z.b = in[:0]
  357. z.out = out
  358. }
  359. // ---------------------------------------------
  360. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  361. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  362. }
  363. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  364. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  365. }
  366. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  367. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  368. }
  369. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  370. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  371. e.marshalRaw(bs, fnerr)
  372. }
  373. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  374. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  375. e.marshalUtf8(bs, fnerr)
  376. }
  377. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  378. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  379. e.marshalAsis(bs, fnerr)
  380. }
  381. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  382. e.rawBytes(rv2i(rv).(Raw))
  383. }
  384. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  385. e.e.EncodeNil()
  386. }
  387. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  388. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  389. }
  390. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  391. ti := f.ti
  392. ee := e.e
  393. // array may be non-addressable, so we have to manage with care
  394. // (don't call rv.Bytes, rv.Slice, etc).
  395. // E.g. type struct S{B [2]byte};
  396. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  397. if f.seq != seqTypeArray {
  398. if rv.IsNil() {
  399. ee.EncodeNil()
  400. return
  401. }
  402. // If in this method, then there was no extension function defined.
  403. // So it's okay to treat as []byte.
  404. if ti.rtid == uint8SliceTypId {
  405. ee.EncodeStringBytesRaw(rv.Bytes())
  406. return
  407. }
  408. }
  409. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  410. e.errorf("send-only channel cannot be encoded")
  411. }
  412. elemsep := e.esep
  413. rtelem := ti.elem
  414. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  415. var l int
  416. // if a slice, array or chan of bytes, treat specially
  417. if rtelemIsByte {
  418. switch f.seq {
  419. case seqTypeSlice:
  420. ee.EncodeStringBytesRaw(rv.Bytes())
  421. case seqTypeArray:
  422. l = rv.Len()
  423. if rv.CanAddr() {
  424. ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  425. } else {
  426. var bs []byte
  427. if l <= cap(e.b) {
  428. bs = e.b[:l]
  429. } else {
  430. bs = make([]byte, l)
  431. }
  432. reflect.Copy(reflect.ValueOf(bs), rv)
  433. ee.EncodeStringBytesRaw(bs)
  434. }
  435. case seqTypeChan:
  436. // do not use range, so that the number of elements encoded
  437. // does not change, and encoding does not hang waiting on someone to close chan.
  438. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  439. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  440. if rv.IsNil() {
  441. ee.EncodeNil()
  442. break
  443. }
  444. bs := e.b[:0]
  445. irv := rv2i(rv)
  446. ch, ok := irv.(<-chan byte)
  447. if !ok {
  448. ch = irv.(chan byte)
  449. }
  450. L1:
  451. switch timeout := e.h.ChanRecvTimeout; {
  452. case timeout == 0: // only consume available
  453. for {
  454. select {
  455. case b := <-ch:
  456. bs = append(bs, b)
  457. default:
  458. break L1
  459. }
  460. }
  461. case timeout > 0: // consume until timeout
  462. tt := time.NewTimer(timeout)
  463. for {
  464. select {
  465. case b := <-ch:
  466. bs = append(bs, b)
  467. case <-tt.C:
  468. // close(tt.C)
  469. break L1
  470. }
  471. }
  472. default: // consume until close
  473. for b := range ch {
  474. bs = append(bs, b)
  475. }
  476. }
  477. ee.EncodeStringBytesRaw(bs)
  478. }
  479. return
  480. }
  481. // if chan, consume chan into a slice, and work off that slice.
  482. if f.seq == seqTypeChan {
  483. rvcs := reflect.Zero(reflect.SliceOf(rtelem))
  484. timeout := e.h.ChanRecvTimeout
  485. if timeout < 0 { // consume until close
  486. for {
  487. recv, recvOk := rv.Recv()
  488. if !recvOk {
  489. break
  490. }
  491. rvcs = reflect.Append(rvcs, recv)
  492. }
  493. } else {
  494. cases := make([]reflect.SelectCase, 2)
  495. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  496. if timeout == 0 {
  497. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  498. } else {
  499. tt := time.NewTimer(timeout)
  500. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  501. }
  502. for {
  503. chosen, recv, recvOk := reflect.Select(cases)
  504. if chosen == 1 || !recvOk {
  505. break
  506. }
  507. rvcs = reflect.Append(rvcs, recv)
  508. }
  509. }
  510. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  511. }
  512. l = rv.Len()
  513. if ti.mbs {
  514. if l%2 == 1 {
  515. e.errorf("mapBySlice requires even slice length, but got %v", l)
  516. return
  517. }
  518. ee.WriteMapStart(l / 2)
  519. } else {
  520. ee.WriteArrayStart(l)
  521. }
  522. if l > 0 {
  523. var fn *codecFn
  524. for rtelem.Kind() == reflect.Ptr {
  525. rtelem = rtelem.Elem()
  526. }
  527. // if kind is reflect.Interface, do not pre-determine the
  528. // encoding type, because preEncodeValue may break it down to
  529. // a concrete type and kInterface will bomb.
  530. if rtelem.Kind() != reflect.Interface {
  531. fn = e.h.fn(rtelem, true, true)
  532. }
  533. for j := 0; j < l; j++ {
  534. if elemsep {
  535. if ti.mbs {
  536. if j%2 == 0 {
  537. ee.WriteMapElemKey()
  538. } else {
  539. ee.WriteMapElemValue()
  540. }
  541. } else {
  542. ee.WriteArrayElem()
  543. }
  544. }
  545. e.encodeValue(rv.Index(j), fn, true)
  546. }
  547. }
  548. if ti.mbs {
  549. ee.WriteMapEnd()
  550. } else {
  551. ee.WriteArrayEnd()
  552. }
  553. }
  554. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  555. fti := f.ti
  556. tisfi := fti.sfiSrc
  557. toMap := !(fti.toArray || e.h.StructToArray)
  558. if toMap {
  559. tisfi = fti.sfiSort
  560. }
  561. ee := e.e
  562. sfn := structFieldNode{v: rv, update: false}
  563. if toMap {
  564. ee.WriteMapStart(len(tisfi))
  565. if e.esep {
  566. for _, si := range tisfi {
  567. ee.WriteMapElemKey()
  568. // ee.EncodeStringEnc(cUTF8, si.encName)
  569. e.kStructFieldKey(fti.keyType, si)
  570. ee.WriteMapElemValue()
  571. e.encodeValue(sfn.field(si), nil, true)
  572. }
  573. } else {
  574. for _, si := range tisfi {
  575. // ee.EncodeStringEnc(cUTF8, si.encName)
  576. e.kStructFieldKey(fti.keyType, si)
  577. e.encodeValue(sfn.field(si), nil, true)
  578. }
  579. }
  580. ee.WriteMapEnd()
  581. } else {
  582. ee.WriteArrayStart(len(tisfi))
  583. if e.esep {
  584. for _, si := range tisfi {
  585. ee.WriteArrayElem()
  586. e.encodeValue(sfn.field(si), nil, true)
  587. }
  588. } else {
  589. for _, si := range tisfi {
  590. e.encodeValue(sfn.field(si), nil, true)
  591. }
  592. }
  593. ee.WriteArrayEnd()
  594. }
  595. }
  596. func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
  597. var m must
  598. // use if-else-if, not switch (which compiles to binary-search)
  599. // since keyType is typically valueTypeString, branch prediction is pretty good.
  600. if keyType == valueTypeString {
  601. if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
  602. e.w.writen1('"')
  603. e.w.writestr(s.encName)
  604. e.w.writen1('"')
  605. } else { // keyType == valueTypeString
  606. e.e.EncodeStringEnc(cUTF8, s.encName)
  607. }
  608. } else if keyType == valueTypeInt {
  609. e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
  610. } else if keyType == valueTypeUint {
  611. e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
  612. } else if keyType == valueTypeFloat {
  613. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
  614. }
  615. }
  616. func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
  617. var m must
  618. // use if-else-if, not switch (which compiles to binary-search)
  619. // since keyType is typically valueTypeString, branch prediction is pretty good.
  620. if keyType == valueTypeString {
  621. e.e.EncodeStringEnc(cUTF8, encName)
  622. } else if keyType == valueTypeInt {
  623. e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  624. } else if keyType == valueTypeUint {
  625. e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  626. } else if keyType == valueTypeFloat {
  627. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  628. }
  629. }
  630. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  631. fti := f.ti
  632. elemsep := e.esep
  633. tisfi := fti.sfiSrc
  634. var newlen int
  635. toMap := !(fti.toArray || e.h.StructToArray)
  636. var mf map[string]interface{}
  637. if f.ti.mf {
  638. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  639. toMap = true
  640. newlen += len(mf)
  641. } else if f.ti.mfp {
  642. if rv.CanAddr() {
  643. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  644. } else {
  645. // make a new addressable value of same one, and use it
  646. rv2 := reflect.New(rv.Type())
  647. rv2.Elem().Set(rv)
  648. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  649. }
  650. toMap = true
  651. newlen += len(mf)
  652. }
  653. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  654. if toMap {
  655. tisfi = fti.sfiSort
  656. }
  657. newlen += len(tisfi)
  658. ee := e.e
  659. // Use sync.Pool to reduce allocating slices unnecessarily.
  660. // The cost of sync.Pool is less than the cost of new allocation.
  661. //
  662. // Each element of the array pools one of encStructPool(8|16|32|64).
  663. // It allows the re-use of slices up to 64 in length.
  664. // A performance cost of encoding structs was collecting
  665. // which values were empty and should be omitted.
  666. // We needed slices of reflect.Value and string to collect them.
  667. // This shared pool reduces the amount of unnecessary creation we do.
  668. // The cost is that of locking sometimes, but sync.Pool is efficient
  669. // enough to reduce thread contention.
  670. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  671. var spool sfiRvPooler
  672. var fkvs = spool.get(newlen)
  673. var kv sfiRv
  674. recur := e.h.RecursiveEmptyCheck
  675. sfn := structFieldNode{v: rv, update: false}
  676. newlen = 0
  677. for _, si := range tisfi {
  678. // kv.r = si.field(rv, false)
  679. kv.r = sfn.field(si)
  680. if toMap {
  681. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  682. continue
  683. }
  684. kv.v = si // si.encName
  685. } else {
  686. // use the zero value.
  687. // if a reference or struct, set to nil (so you do not output too much)
  688. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  689. switch kv.r.Kind() {
  690. case reflect.Struct, reflect.Interface, reflect.Ptr,
  691. reflect.Array, reflect.Map, reflect.Slice:
  692. kv.r = reflect.Value{} //encode as nil
  693. }
  694. }
  695. }
  696. fkvs[newlen] = kv
  697. newlen++
  698. }
  699. fkvs = fkvs[:newlen]
  700. var mflen int
  701. for k, v := range mf {
  702. if k == "" {
  703. delete(mf, k)
  704. continue
  705. }
  706. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  707. delete(mf, k)
  708. continue
  709. }
  710. mflen++
  711. }
  712. var j int
  713. if toMap {
  714. ee.WriteMapStart(newlen + mflen)
  715. if elemsep {
  716. for j = 0; j < len(fkvs); j++ {
  717. kv = fkvs[j]
  718. ee.WriteMapElemKey()
  719. // ee.EncodeStringEnc(cUTF8, kv.v)
  720. e.kStructFieldKey(fti.keyType, kv.v)
  721. ee.WriteMapElemValue()
  722. e.encodeValue(kv.r, nil, true)
  723. }
  724. } else {
  725. for j = 0; j < len(fkvs); j++ {
  726. kv = fkvs[j]
  727. // ee.EncodeStringEnc(cUTF8, kv.v)
  728. e.kStructFieldKey(fti.keyType, kv.v)
  729. e.encodeValue(kv.r, nil, true)
  730. }
  731. }
  732. // now, add the others
  733. for k, v := range mf {
  734. ee.WriteMapElemKey()
  735. e.kStructFieldKeyName(fti.keyType, k)
  736. ee.WriteMapElemValue()
  737. e.encode(v)
  738. }
  739. ee.WriteMapEnd()
  740. } else {
  741. ee.WriteArrayStart(newlen)
  742. if elemsep {
  743. for j = 0; j < len(fkvs); j++ {
  744. ee.WriteArrayElem()
  745. e.encodeValue(fkvs[j].r, nil, true)
  746. }
  747. } else {
  748. for j = 0; j < len(fkvs); j++ {
  749. e.encodeValue(fkvs[j].r, nil, true)
  750. }
  751. }
  752. ee.WriteArrayEnd()
  753. }
  754. // do not use defer. Instead, use explicit pool return at end of function.
  755. // defer has a cost we are trying to avoid.
  756. // If there is a panic and these slices are not returned, it is ok.
  757. spool.end()
  758. }
  759. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  760. ee := e.e
  761. if rv.IsNil() {
  762. ee.EncodeNil()
  763. return
  764. }
  765. l := rv.Len()
  766. ee.WriteMapStart(l)
  767. if l == 0 {
  768. ee.WriteMapEnd()
  769. return
  770. }
  771. // var asSymbols bool
  772. // determine the underlying key and val encFn's for the map.
  773. // This eliminates some work which is done for each loop iteration i.e.
  774. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  775. //
  776. // However, if kind is reflect.Interface, do not pre-determine the
  777. // encoding type, because preEncodeValue may break it down to
  778. // a concrete type and kInterface will bomb.
  779. var keyFn, valFn *codecFn
  780. ti := f.ti
  781. rtkey0 := ti.key
  782. rtkey := rtkey0
  783. rtval0 := ti.elem
  784. rtval := rtval0
  785. // rtkeyid := rt2id(rtkey0)
  786. for rtval.Kind() == reflect.Ptr {
  787. rtval = rtval.Elem()
  788. }
  789. if rtval.Kind() != reflect.Interface {
  790. valFn = e.h.fn(rtval, true, true)
  791. }
  792. mks := rv.MapKeys()
  793. if e.h.Canonical {
  794. e.kMapCanonical(rtkey, rv, mks, valFn)
  795. ee.WriteMapEnd()
  796. return
  797. }
  798. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  799. if !keyTypeIsString {
  800. for rtkey.Kind() == reflect.Ptr {
  801. rtkey = rtkey.Elem()
  802. }
  803. if rtkey.Kind() != reflect.Interface {
  804. // rtkeyid = rt2id(rtkey)
  805. keyFn = e.h.fn(rtkey, true, true)
  806. }
  807. }
  808. // for j, lmks := 0, len(mks); j < lmks; j++ {
  809. for j := range mks {
  810. if e.esep {
  811. ee.WriteMapElemKey()
  812. }
  813. if keyTypeIsString {
  814. ee.EncodeStringEnc(cUTF8, mks[j].String())
  815. } else {
  816. e.encodeValue(mks[j], keyFn, true)
  817. }
  818. if e.esep {
  819. ee.WriteMapElemValue()
  820. }
  821. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  822. }
  823. ee.WriteMapEnd()
  824. }
  825. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  826. ee := e.e
  827. elemsep := e.esep
  828. // we previously did out-of-band if an extension was registered.
  829. // This is not necessary, as the natural kind is sufficient for ordering.
  830. switch rtkey.Kind() {
  831. case reflect.Bool:
  832. mksv := make([]boolRv, len(mks))
  833. for i, k := range mks {
  834. v := &mksv[i]
  835. v.r = k
  836. v.v = k.Bool()
  837. }
  838. sort.Sort(boolRvSlice(mksv))
  839. for i := range mksv {
  840. if elemsep {
  841. ee.WriteMapElemKey()
  842. }
  843. ee.EncodeBool(mksv[i].v)
  844. if elemsep {
  845. ee.WriteMapElemValue()
  846. }
  847. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  848. }
  849. case reflect.String:
  850. mksv := make([]stringRv, len(mks))
  851. for i, k := range mks {
  852. v := &mksv[i]
  853. v.r = k
  854. v.v = k.String()
  855. }
  856. sort.Sort(stringRvSlice(mksv))
  857. for i := range mksv {
  858. if elemsep {
  859. ee.WriteMapElemKey()
  860. }
  861. ee.EncodeStringEnc(cUTF8, mksv[i].v)
  862. if elemsep {
  863. ee.WriteMapElemValue()
  864. }
  865. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  866. }
  867. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  868. mksv := make([]uintRv, len(mks))
  869. for i, k := range mks {
  870. v := &mksv[i]
  871. v.r = k
  872. v.v = k.Uint()
  873. }
  874. sort.Sort(uintRvSlice(mksv))
  875. for i := range mksv {
  876. if elemsep {
  877. ee.WriteMapElemKey()
  878. }
  879. ee.EncodeUint(mksv[i].v)
  880. if elemsep {
  881. ee.WriteMapElemValue()
  882. }
  883. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  884. }
  885. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  886. mksv := make([]intRv, len(mks))
  887. for i, k := range mks {
  888. v := &mksv[i]
  889. v.r = k
  890. v.v = k.Int()
  891. }
  892. sort.Sort(intRvSlice(mksv))
  893. for i := range mksv {
  894. if elemsep {
  895. ee.WriteMapElemKey()
  896. }
  897. ee.EncodeInt(mksv[i].v)
  898. if elemsep {
  899. ee.WriteMapElemValue()
  900. }
  901. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  902. }
  903. case reflect.Float32:
  904. mksv := make([]floatRv, len(mks))
  905. for i, k := range mks {
  906. v := &mksv[i]
  907. v.r = k
  908. v.v = k.Float()
  909. }
  910. sort.Sort(floatRvSlice(mksv))
  911. for i := range mksv {
  912. if elemsep {
  913. ee.WriteMapElemKey()
  914. }
  915. ee.EncodeFloat32(float32(mksv[i].v))
  916. if elemsep {
  917. ee.WriteMapElemValue()
  918. }
  919. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  920. }
  921. case reflect.Float64:
  922. mksv := make([]floatRv, len(mks))
  923. for i, k := range mks {
  924. v := &mksv[i]
  925. v.r = k
  926. v.v = k.Float()
  927. }
  928. sort.Sort(floatRvSlice(mksv))
  929. for i := range mksv {
  930. if elemsep {
  931. ee.WriteMapElemKey()
  932. }
  933. ee.EncodeFloat64(mksv[i].v)
  934. if elemsep {
  935. ee.WriteMapElemValue()
  936. }
  937. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  938. }
  939. case reflect.Struct:
  940. if rv.Type() == timeTyp {
  941. mksv := make([]timeRv, len(mks))
  942. for i, k := range mks {
  943. v := &mksv[i]
  944. v.r = k
  945. v.v = rv2i(k).(time.Time)
  946. }
  947. sort.Sort(timeRvSlice(mksv))
  948. for i := range mksv {
  949. if elemsep {
  950. ee.WriteMapElemKey()
  951. }
  952. ee.EncodeTime(mksv[i].v)
  953. if elemsep {
  954. ee.WriteMapElemValue()
  955. }
  956. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  957. }
  958. break
  959. }
  960. fallthrough
  961. default:
  962. // out-of-band
  963. // first encode each key to a []byte first, then sort them, then record
  964. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  965. e2 := NewEncoderBytes(&mksv, e.hh)
  966. mksbv := make([]bytesRv, len(mks))
  967. for i, k := range mks {
  968. v := &mksbv[i]
  969. l := len(mksv)
  970. e2.MustEncode(k)
  971. v.r = k
  972. v.v = mksv[l:]
  973. }
  974. sort.Sort(bytesRvSlice(mksbv))
  975. for j := range mksbv {
  976. if elemsep {
  977. ee.WriteMapElemKey()
  978. }
  979. e.asis(mksbv[j].v)
  980. if elemsep {
  981. ee.WriteMapElemValue()
  982. }
  983. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  984. }
  985. }
  986. }
  987. // // --------------------------------------------------
  988. type encWriterSwitch struct {
  989. // wi *ioEncWriter
  990. wb bytesEncAppender
  991. wf *bufioEncWriter
  992. // typ entryType
  993. bytes bool // encoding to []byte
  994. esep bool // whether it has elem separators
  995. isas bool // whether e.as != nil
  996. js bool // is json encoder?
  997. be bool // is binary encoder?
  998. _ [2]byte // padding
  999. // _ [2]uint64 // padding
  1000. // _ uint64 // padding
  1001. }
  1002. func (z *encWriterSwitch) writeb(s []byte) {
  1003. if z.bytes {
  1004. z.wb.writeb(s)
  1005. } else {
  1006. z.wf.writeb(s)
  1007. }
  1008. }
  1009. func (z *encWriterSwitch) writestr(s string) {
  1010. if z.bytes {
  1011. z.wb.writestr(s)
  1012. } else {
  1013. z.wf.writestr(s)
  1014. }
  1015. }
  1016. func (z *encWriterSwitch) writen1(b1 byte) {
  1017. if z.bytes {
  1018. z.wb.writen1(b1)
  1019. } else {
  1020. z.wf.writen1(b1)
  1021. }
  1022. }
  1023. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1024. if z.bytes {
  1025. z.wb.writen2(b1, b2)
  1026. } else {
  1027. z.wf.writen2(b1, b2)
  1028. }
  1029. }
  1030. func (z *encWriterSwitch) endErr() error {
  1031. if z.bytes {
  1032. return z.wb.endErr()
  1033. }
  1034. return z.wf.endErr()
  1035. }
  1036. func (z *encWriterSwitch) end() {
  1037. if err := z.endErr(); err != nil {
  1038. panic(err)
  1039. }
  1040. }
  1041. /*
  1042. // ------------------------------------------
  1043. func (z *encWriterSwitch) writeb(s []byte) {
  1044. switch z.typ {
  1045. case entryTypeBytes:
  1046. z.wb.writeb(s)
  1047. case entryTypeIo:
  1048. z.wi.writeb(s)
  1049. default:
  1050. z.wf.writeb(s)
  1051. }
  1052. }
  1053. func (z *encWriterSwitch) writestr(s string) {
  1054. switch z.typ {
  1055. case entryTypeBytes:
  1056. z.wb.writestr(s)
  1057. case entryTypeIo:
  1058. z.wi.writestr(s)
  1059. default:
  1060. z.wf.writestr(s)
  1061. }
  1062. }
  1063. func (z *encWriterSwitch) writen1(b1 byte) {
  1064. switch z.typ {
  1065. case entryTypeBytes:
  1066. z.wb.writen1(b1)
  1067. case entryTypeIo:
  1068. z.wi.writen1(b1)
  1069. default:
  1070. z.wf.writen1(b1)
  1071. }
  1072. }
  1073. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1074. switch z.typ {
  1075. case entryTypeBytes:
  1076. z.wb.writen2(b1, b2)
  1077. case entryTypeIo:
  1078. z.wi.writen2(b1, b2)
  1079. default:
  1080. z.wf.writen2(b1, b2)
  1081. }
  1082. }
  1083. func (z *encWriterSwitch) end() {
  1084. switch z.typ {
  1085. case entryTypeBytes:
  1086. z.wb.end()
  1087. case entryTypeIo:
  1088. z.wi.end()
  1089. default:
  1090. z.wf.end()
  1091. }
  1092. }
  1093. // ------------------------------------------
  1094. func (z *encWriterSwitch) writeb(s []byte) {
  1095. if z.bytes {
  1096. z.wb.writeb(s)
  1097. } else {
  1098. z.wi.writeb(s)
  1099. }
  1100. }
  1101. func (z *encWriterSwitch) writestr(s string) {
  1102. if z.bytes {
  1103. z.wb.writestr(s)
  1104. } else {
  1105. z.wi.writestr(s)
  1106. }
  1107. }
  1108. func (z *encWriterSwitch) writen1(b1 byte) {
  1109. if z.bytes {
  1110. z.wb.writen1(b1)
  1111. } else {
  1112. z.wi.writen1(b1)
  1113. }
  1114. }
  1115. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1116. if z.bytes {
  1117. z.wb.writen2(b1, b2)
  1118. } else {
  1119. z.wi.writen2(b1, b2)
  1120. }
  1121. }
  1122. func (z *encWriterSwitch) end() {
  1123. if z.bytes {
  1124. z.wb.end()
  1125. } else {
  1126. z.wi.end()
  1127. }
  1128. }
  1129. */
  1130. // Encoder writes an object to an output stream in a supported format.
  1131. //
  1132. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1133. // concurrently in multiple goroutines.
  1134. //
  1135. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1136. // so its state can be reused to decode new input streams repeatedly.
  1137. // This is the idiomatic way to use.
  1138. type Encoder struct {
  1139. panicHdl
  1140. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1141. e encDriver
  1142. // NOTE: Encoder shouldn't call it's write methods,
  1143. // as the handler MAY need to do some coordination.
  1144. w *encWriterSwitch
  1145. // bw *bufio.Writer
  1146. as encDriverAsis
  1147. err error
  1148. h *BasicHandle
  1149. hh Handle
  1150. // ---- cpu cache line boundary? + 3
  1151. encWriterSwitch
  1152. ci set
  1153. b [(5 * 8)]byte // for encoding chan or (non-addressable) [N]byte
  1154. // ---- writable fields during execution --- *try* to keep in sep cache line
  1155. // ---- cpu cache line boundary?
  1156. // b [scratchByteArrayLen]byte
  1157. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1158. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  1159. }
  1160. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1161. //
  1162. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  1163. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  1164. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1165. e := newEncoder(h)
  1166. e.Reset(w)
  1167. return e
  1168. }
  1169. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1170. // into a byte slice, using zero-copying to temporary slices.
  1171. //
  1172. // It will potentially replace the output byte slice pointed to.
  1173. // After encoding, the out parameter contains the encoded contents.
  1174. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1175. e := newEncoder(h)
  1176. e.ResetBytes(out)
  1177. return e
  1178. }
  1179. func newEncoder(h Handle) *Encoder {
  1180. e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
  1181. e.bytes = true
  1182. if useFinalizers {
  1183. runtime.SetFinalizer(e, (*Encoder).finalize)
  1184. // xdebugf(">>>> new(Encoder) with finalizer")
  1185. }
  1186. e.w = &e.encWriterSwitch
  1187. e.hh = h
  1188. e.esep = h.hasElemSeparators()
  1189. return e
  1190. }
  1191. func (e *Encoder) resetCommon() {
  1192. // e.w = &e.encWriterSwitch
  1193. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1194. e.e = e.hh.newEncDriver(e)
  1195. e.as, e.isas = e.e.(encDriverAsis)
  1196. // e.cr, _ = e.e.(containerStateRecv)
  1197. }
  1198. e.be = e.hh.isBinary()
  1199. _, e.js = e.hh.(*JsonHandle)
  1200. e.e.reset()
  1201. e.err = nil
  1202. }
  1203. // Reset resets the Encoder with a new output stream.
  1204. //
  1205. // This accommodates using the state of the Encoder,
  1206. // where it has "cached" information about sub-engines.
  1207. func (e *Encoder) Reset(w io.Writer) {
  1208. if w == nil {
  1209. return
  1210. }
  1211. // var ok bool
  1212. e.bytes = false
  1213. if e.wf == nil {
  1214. e.wf = new(bufioEncWriter)
  1215. }
  1216. // e.typ = entryTypeUnset
  1217. // if e.h.WriterBufferSize > 0 {
  1218. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1219. // // e.wi.bw = bw
  1220. // // e.wi.sw = bw
  1221. // // e.wi.fw = bw
  1222. // // e.wi.ww = bw
  1223. // if e.wf == nil {
  1224. // e.wf = new(bufioEncWriter)
  1225. // }
  1226. // e.wf.reset(w, e.h.WriterBufferSize)
  1227. // e.typ = entryTypeBufio
  1228. // } else {
  1229. // if e.wi == nil {
  1230. // e.wi = new(ioEncWriter)
  1231. // }
  1232. // e.wi.reset(w)
  1233. // e.typ = entryTypeIo
  1234. // }
  1235. e.wf.reset(w, e.h.WriterBufferSize)
  1236. // e.typ = entryTypeBufio
  1237. // e.w = e.wi
  1238. e.resetCommon()
  1239. }
  1240. // ResetBytes resets the Encoder with a new destination output []byte.
  1241. func (e *Encoder) ResetBytes(out *[]byte) {
  1242. if out == nil {
  1243. return
  1244. }
  1245. var in []byte = *out
  1246. if in == nil {
  1247. in = make([]byte, defEncByteBufSize)
  1248. }
  1249. e.bytes = true
  1250. // e.typ = entryTypeBytes
  1251. e.wb.reset(in, out)
  1252. // e.w = &e.wb
  1253. e.resetCommon()
  1254. }
  1255. // Encode writes an object into a stream.
  1256. //
  1257. // Encoding can be configured via the struct tag for the fields.
  1258. // The key (in the struct tags) that we look at is configurable.
  1259. //
  1260. // By default, we look up the "codec" key in the struct field's tags,
  1261. // and fall bak to the "json" key if "codec" is absent.
  1262. // That key in struct field's tag value is the key name,
  1263. // followed by an optional comma and options.
  1264. //
  1265. // To set an option on all fields (e.g. omitempty on all fields), you
  1266. // can create a field called _struct, and set flags on it. The options
  1267. // which can be set on _struct are:
  1268. // - omitempty: so all fields are omitted if empty
  1269. // - toarray: so struct is encoded as an array
  1270. // - int: so struct key names are encoded as signed integers (instead of strings)
  1271. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1272. // - float: so struct key names are encoded as floats (instead of strings)
  1273. // More details on these below.
  1274. //
  1275. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1276. // - the field's tag is "-", OR
  1277. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1278. //
  1279. // When encoding as a map, the first string in the tag (before the comma)
  1280. // is the map key string to use when encoding.
  1281. // ...
  1282. // This key is typically encoded as a string.
  1283. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1284. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1285. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1286. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1287. // This is done with the int,uint or float option on the _struct field (see above).
  1288. //
  1289. // However, struct values may encode as arrays. This happens when:
  1290. // - StructToArray Encode option is set, OR
  1291. // - the tag on the _struct field sets the "toarray" option
  1292. // Note that omitempty is ignored when encoding struct values as arrays,
  1293. // as an entry must be encoded for each field, to maintain its position.
  1294. //
  1295. // Values with types that implement MapBySlice are encoded as stream maps.
  1296. //
  1297. // The empty values (for omitempty option) are false, 0, any nil pointer
  1298. // or interface value, and any array, slice, map, or string of length zero.
  1299. //
  1300. // Anonymous fields are encoded inline except:
  1301. // - the struct tag specifies a replacement name (first value)
  1302. // - the field is of an interface type
  1303. //
  1304. // Examples:
  1305. //
  1306. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1307. // type MyStruct struct {
  1308. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1309. // Field1 string `codec:"-"` //skip this field
  1310. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1311. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1312. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1313. // io.Reader //use key "Reader".
  1314. // MyStruct `codec:"my1" //use key "my1".
  1315. // MyStruct //inline it
  1316. // ...
  1317. // }
  1318. //
  1319. // type MyStruct struct {
  1320. // _struct bool `codec:",toarray"` //encode struct as an array
  1321. // }
  1322. //
  1323. // type MyStruct struct {
  1324. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1325. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1326. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1327. // }
  1328. //
  1329. // The mode of encoding is based on the type of the value. When a value is seen:
  1330. // - If a Selfer, call its CodecEncodeSelf method
  1331. // - If an extension is registered for it, call that extension function
  1332. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1333. // - Else encode it based on its reflect.Kind
  1334. //
  1335. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1336. // Some formats support symbols (e.g. binc) and will properly encode the string
  1337. // only once in the stream, and use a tag to refer to it thereafter.
  1338. func (e *Encoder) Encode(v interface{}) (err error) {
  1339. // tried to use closure, as runtime optimizes defer with no params.
  1340. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1341. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1342. // defer func() { e.deferred(&err) }() }
  1343. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1344. if e.err != nil {
  1345. return e.err
  1346. }
  1347. if recoverPanicToErr {
  1348. defer func() {
  1349. // if error occurred during encoding, return that error;
  1350. // else if error occurred on end'ing (i.e. during flush), return that error.
  1351. err = e.w.endErr()
  1352. x := recover()
  1353. if x == nil {
  1354. e.err = err
  1355. } else {
  1356. panicValToErr(e, x, &e.err)
  1357. err = e.err
  1358. }
  1359. }()
  1360. }
  1361. // defer e.deferred(&err)
  1362. e.mustEncode(v)
  1363. return
  1364. }
  1365. // MustEncode is like Encode, but panics if unable to Encode.
  1366. // This provides insight to the code location that triggered the error.
  1367. func (e *Encoder) MustEncode(v interface{}) {
  1368. if e.err != nil {
  1369. panic(e.err)
  1370. }
  1371. e.mustEncode(v)
  1372. }
  1373. func (e *Encoder) mustEncode(v interface{}) {
  1374. if e.wf == nil {
  1375. e.encode(v)
  1376. e.e.atEndOfEncode()
  1377. e.w.end()
  1378. return
  1379. }
  1380. if e.wf.buf == nil {
  1381. e.wf.buf = e.wf.bytesBufPooler.get(e.wf.sz)
  1382. }
  1383. e.wf.calls++
  1384. e.encode(v)
  1385. e.e.atEndOfEncode()
  1386. e.w.end()
  1387. e.wf.calls--
  1388. if !e.h.ExplicitRelease && e.wf.calls == 0 {
  1389. e.wf.release()
  1390. }
  1391. }
  1392. // func (e *Encoder) deferred(err1 *error) {
  1393. // e.w.end()
  1394. // if recoverPanicToErr {
  1395. // if x := recover(); x != nil {
  1396. // panicValToErr(e, x, err1)
  1397. // panicValToErr(e, x, &e.err)
  1398. // }
  1399. // }
  1400. // }
  1401. //go:noinline -- as it is run by finalizer
  1402. func (e *Encoder) finalize() {
  1403. // xdebugf("finalizing Encoder")
  1404. e.Release()
  1405. }
  1406. // Release releases shared (pooled) resources.
  1407. //
  1408. // It is important to call Release() when done with an Encoder, so those resources
  1409. // are released instantly for use by subsequently created Encoders.
  1410. func (e *Encoder) Release() {
  1411. if e.wf != nil {
  1412. e.wf.release()
  1413. }
  1414. }
  1415. func (e *Encoder) encode(iv interface{}) {
  1416. // a switch with only concrete types can be optimized.
  1417. // consequently, we deal with nil and interfaces outside the switch.
  1418. if iv == nil || definitelyNil(iv) {
  1419. e.e.EncodeNil()
  1420. return
  1421. }
  1422. switch v := iv.(type) {
  1423. // case nil:
  1424. // case Selfer:
  1425. case Raw:
  1426. e.rawBytes(v)
  1427. case reflect.Value:
  1428. e.encodeValue(v, nil, true)
  1429. case string:
  1430. e.e.EncodeStringEnc(cUTF8, v)
  1431. case bool:
  1432. e.e.EncodeBool(v)
  1433. case int:
  1434. e.e.EncodeInt(int64(v))
  1435. case int8:
  1436. e.e.EncodeInt(int64(v))
  1437. case int16:
  1438. e.e.EncodeInt(int64(v))
  1439. case int32:
  1440. e.e.EncodeInt(int64(v))
  1441. case int64:
  1442. e.e.EncodeInt(v)
  1443. case uint:
  1444. e.e.EncodeUint(uint64(v))
  1445. case uint8:
  1446. e.e.EncodeUint(uint64(v))
  1447. case uint16:
  1448. e.e.EncodeUint(uint64(v))
  1449. case uint32:
  1450. e.e.EncodeUint(uint64(v))
  1451. case uint64:
  1452. e.e.EncodeUint(v)
  1453. case uintptr:
  1454. e.e.EncodeUint(uint64(v))
  1455. case float32:
  1456. e.e.EncodeFloat32(v)
  1457. case float64:
  1458. e.e.EncodeFloat64(v)
  1459. case time.Time:
  1460. e.e.EncodeTime(v)
  1461. case []uint8:
  1462. e.e.EncodeStringBytesRaw(v)
  1463. case *Raw:
  1464. e.rawBytes(*v)
  1465. case *string:
  1466. e.e.EncodeStringEnc(cUTF8, *v)
  1467. case *bool:
  1468. e.e.EncodeBool(*v)
  1469. case *int:
  1470. e.e.EncodeInt(int64(*v))
  1471. case *int8:
  1472. e.e.EncodeInt(int64(*v))
  1473. case *int16:
  1474. e.e.EncodeInt(int64(*v))
  1475. case *int32:
  1476. e.e.EncodeInt(int64(*v))
  1477. case *int64:
  1478. e.e.EncodeInt(*v)
  1479. case *uint:
  1480. e.e.EncodeUint(uint64(*v))
  1481. case *uint8:
  1482. e.e.EncodeUint(uint64(*v))
  1483. case *uint16:
  1484. e.e.EncodeUint(uint64(*v))
  1485. case *uint32:
  1486. e.e.EncodeUint(uint64(*v))
  1487. case *uint64:
  1488. e.e.EncodeUint(*v)
  1489. case *uintptr:
  1490. e.e.EncodeUint(uint64(*v))
  1491. case *float32:
  1492. e.e.EncodeFloat32(*v)
  1493. case *float64:
  1494. e.e.EncodeFloat64(*v)
  1495. case *time.Time:
  1496. e.e.EncodeTime(*v)
  1497. case *[]uint8:
  1498. e.e.EncodeStringBytesRaw(*v)
  1499. default:
  1500. if v, ok := iv.(Selfer); ok {
  1501. v.CodecEncodeSelf(e)
  1502. } else if !fastpathEncodeTypeSwitch(iv, e) {
  1503. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1504. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1505. }
  1506. }
  1507. }
  1508. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1509. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1510. var sptr uintptr
  1511. var rvp reflect.Value
  1512. var rvpValid bool
  1513. TOP:
  1514. switch rv.Kind() {
  1515. case reflect.Ptr:
  1516. if rv.IsNil() {
  1517. e.e.EncodeNil()
  1518. return
  1519. }
  1520. rvpValid = true
  1521. rvp = rv
  1522. rv = rv.Elem()
  1523. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1524. // TODO: Movable pointers will be an issue here. Future problem.
  1525. sptr = rv.UnsafeAddr()
  1526. break TOP
  1527. }
  1528. goto TOP
  1529. case reflect.Interface:
  1530. if rv.IsNil() {
  1531. e.e.EncodeNil()
  1532. return
  1533. }
  1534. rv = rv.Elem()
  1535. goto TOP
  1536. case reflect.Slice, reflect.Map:
  1537. if rv.IsNil() {
  1538. e.e.EncodeNil()
  1539. return
  1540. }
  1541. case reflect.Invalid, reflect.Func:
  1542. e.e.EncodeNil()
  1543. return
  1544. }
  1545. if sptr != 0 && (&e.ci).add(sptr) {
  1546. e.errorf("circular reference found: # %d", sptr)
  1547. }
  1548. if fn == nil {
  1549. rt := rv.Type()
  1550. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1551. fn = e.h.fn(rt, checkFastpath, true)
  1552. }
  1553. if fn.i.addrE {
  1554. if rvpValid {
  1555. fn.fe(e, &fn.i, rvp)
  1556. } else if rv.CanAddr() {
  1557. fn.fe(e, &fn.i, rv.Addr())
  1558. } else {
  1559. rv2 := reflect.New(rv.Type())
  1560. rv2.Elem().Set(rv)
  1561. fn.fe(e, &fn.i, rv2)
  1562. }
  1563. } else {
  1564. fn.fe(e, &fn.i, rv)
  1565. }
  1566. if sptr != 0 {
  1567. (&e.ci).remove(sptr)
  1568. }
  1569. }
  1570. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1571. // if fnerr != nil {
  1572. // panic(fnerr)
  1573. // }
  1574. // if bs == nil {
  1575. // e.e.EncodeNil()
  1576. // } else if asis {
  1577. // e.asis(bs)
  1578. // } else {
  1579. // e.e.EncodeStringBytes(c, bs)
  1580. // }
  1581. // }
  1582. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1583. if fnerr != nil {
  1584. panic(fnerr)
  1585. }
  1586. if bs == nil {
  1587. e.e.EncodeNil()
  1588. } else {
  1589. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1590. }
  1591. }
  1592. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1593. if fnerr != nil {
  1594. panic(fnerr)
  1595. }
  1596. if bs == nil {
  1597. e.e.EncodeNil()
  1598. } else {
  1599. e.asis(bs)
  1600. }
  1601. }
  1602. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1603. if fnerr != nil {
  1604. panic(fnerr)
  1605. }
  1606. if bs == nil {
  1607. e.e.EncodeNil()
  1608. } else {
  1609. e.e.EncodeStringBytesRaw(bs)
  1610. }
  1611. }
  1612. func (e *Encoder) asis(v []byte) {
  1613. if e.isas {
  1614. e.as.EncodeAsis(v)
  1615. } else {
  1616. e.w.writeb(v)
  1617. }
  1618. }
  1619. func (e *Encoder) rawBytes(vv Raw) {
  1620. v := []byte(vv)
  1621. if !e.h.Raw {
  1622. e.errorf("Raw values cannot be encoded: %v", v)
  1623. }
  1624. e.asis(v)
  1625. }
  1626. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1627. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1628. }