encode.go 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "sort"
  11. "strconv"
  12. "sync"
  13. "time"
  14. )
  15. // defEncByteBufSize is the default size of []byte used
  16. // for bufio buffer or []byte (when nil passed)
  17. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  18. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  19. /*
  20. // encWriter abstracts writing to a byte array or to an io.Writer.
  21. //
  22. //
  23. // Deprecated: Use encWriterSwitch instead.
  24. type encWriter interface {
  25. writeb([]byte)
  26. writestr(string)
  27. writen1(byte)
  28. writen2(byte, byte)
  29. atEndOfEncode()
  30. }
  31. */
  32. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  33. type encDriver interface {
  34. EncodeNil()
  35. EncodeInt(i int64)
  36. EncodeUint(i uint64)
  37. EncodeBool(b bool)
  38. EncodeFloat32(f float32)
  39. EncodeFloat64(f float64)
  40. // encodeExtPreamble(xtag byte, length int)
  41. EncodeRawExt(re *RawExt, e *Encoder)
  42. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  43. // Deprecated: try to use EncodeStringEnc instead
  44. EncodeString(c charEncoding, v string)
  45. // c cannot be cRAW
  46. EncodeStringEnc(c charEncoding, v string)
  47. // EncodeSymbol(v string)
  48. // Deprecated: try to use EncodeStringBytesRaw instead
  49. EncodeStringBytes(c charEncoding, v []byte)
  50. EncodeStringBytesRaw(v []byte)
  51. EncodeTime(time.Time)
  52. //encBignum(f *big.Int)
  53. //encStringRunes(c charEncoding, v []rune)
  54. WriteArrayStart(length int)
  55. WriteArrayElem()
  56. WriteArrayEnd()
  57. WriteMapStart(length int)
  58. WriteMapElemKey()
  59. WriteMapElemValue()
  60. WriteMapEnd()
  61. reset()
  62. atEndOfEncode()
  63. }
  64. type encDriverAsis interface {
  65. EncodeAsis(v []byte)
  66. }
  67. type encodeError struct {
  68. codecError
  69. }
  70. func (e encodeError) Error() string {
  71. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  72. }
  73. type encDriverNoopContainerWriter struct{}
  74. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  75. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  76. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  77. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  78. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  79. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  80. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  81. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  82. type encDriverTrackContainerWriter struct {
  83. c containerState
  84. }
  85. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  86. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  87. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  88. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  89. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  90. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  91. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  92. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  93. // type ioEncWriterWriter interface {
  94. // WriteByte(c byte) error
  95. // WriteString(s string) (n int, err error)
  96. // Write(p []byte) (n int, err error)
  97. // }
  98. // EncodeOptions captures configuration options during encode.
  99. type EncodeOptions struct {
  100. // WriterBufferSize is the size of the buffer used when writing.
  101. //
  102. // if > 0, we use a smart buffer internally for performance purposes.
  103. WriterBufferSize int
  104. // ChanRecvTimeout is the timeout used when selecting from a chan.
  105. //
  106. // Configuring this controls how we receive from a chan during the encoding process.
  107. // - If ==0, we only consume the elements currently available in the chan.
  108. // - if <0, we consume until the chan is closed.
  109. // - If >0, we consume until this timeout.
  110. ChanRecvTimeout time.Duration
  111. // StructToArray specifies to encode a struct as an array, and not as a map
  112. StructToArray bool
  113. // Canonical representation means that encoding a value will always result in the same
  114. // sequence of bytes.
  115. //
  116. // This only affects maps, as the iteration order for maps is random.
  117. //
  118. // The implementation MAY use the natural sort order for the map keys if possible:
  119. //
  120. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  121. // then the map keys are first sorted in natural order and then written
  122. // with corresponding map values to the strema.
  123. // - If there is no natural sort order, then the map keys will first be
  124. // encoded into []byte, and then sorted,
  125. // before writing the sorted keys and the corresponding map values to the stream.
  126. //
  127. Canonical bool
  128. // CheckCircularRef controls whether we check for circular references
  129. // and error fast during an encode.
  130. //
  131. // If enabled, an error is received if a pointer to a struct
  132. // references itself either directly or through one of its fields (iteratively).
  133. //
  134. // This is opt-in, as there may be a performance hit to checking circular references.
  135. CheckCircularRef bool
  136. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  137. // when checking if a value is empty.
  138. //
  139. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  140. RecursiveEmptyCheck bool
  141. // Raw controls whether we encode Raw values.
  142. // This is a "dangerous" option and must be explicitly set.
  143. // If set, we blindly encode Raw values as-is, without checking
  144. // if they are a correct representation of a value in that format.
  145. // If unset, we error out.
  146. Raw bool
  147. // // AsSymbols defines what should be encoded as symbols.
  148. // //
  149. // // Encoding as symbols can reduce the encoded size significantly.
  150. // //
  151. // // However, during decoding, each string to be encoded as a symbol must
  152. // // be checked to see if it has been seen before. Consequently, encoding time
  153. // // will increase if using symbols, because string comparisons has a clear cost.
  154. // //
  155. // // Sample values:
  156. // // AsSymbolNone
  157. // // AsSymbolAll
  158. // // AsSymbolMapStringKeys
  159. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  160. // AsSymbols AsSymbolFlag
  161. }
  162. // ---------------------------------------------
  163. /*
  164. type ioEncStringWriter interface {
  165. WriteString(s string) (n int, err error)
  166. }
  167. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  168. type ioEncWriter struct {
  169. w io.Writer
  170. ww io.Writer
  171. bw io.ByteWriter
  172. sw ioEncStringWriter
  173. fw ioFlusher
  174. b [8]byte
  175. }
  176. func (z *ioEncWriter) reset(w io.Writer) {
  177. z.w = w
  178. var ok bool
  179. if z.bw, ok = w.(io.ByteWriter); !ok {
  180. z.bw = z
  181. }
  182. if z.sw, ok = w.(ioEncStringWriter); !ok {
  183. z.sw = z
  184. }
  185. z.fw, _ = w.(ioFlusher)
  186. z.ww = w
  187. }
  188. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  189. z.b[0] = b
  190. _, err = z.w.Write(z.b[:1])
  191. return
  192. }
  193. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  194. return z.w.Write(bytesView(s))
  195. }
  196. func (z *ioEncWriter) writeb(bs []byte) {
  197. if _, err := z.ww.Write(bs); err != nil {
  198. panic(err)
  199. }
  200. }
  201. func (z *ioEncWriter) writestr(s string) {
  202. if _, err := z.sw.WriteString(s); err != nil {
  203. panic(err)
  204. }
  205. }
  206. func (z *ioEncWriter) writen1(b byte) {
  207. if err := z.bw.WriteByte(b); err != nil {
  208. panic(err)
  209. }
  210. }
  211. func (z *ioEncWriter) writen2(b1, b2 byte) {
  212. var err error
  213. if err = z.bw.WriteByte(b1); err == nil {
  214. if err = z.bw.WriteByte(b2); err == nil {
  215. return
  216. }
  217. }
  218. panic(err)
  219. }
  220. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  221. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  222. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  223. // panic(err)
  224. // }
  225. // }
  226. //go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
  227. func (z *ioEncWriter) atEndOfEncode() {
  228. if z.fw != nil {
  229. if err := z.fw.Flush(); err != nil {
  230. panic(err)
  231. }
  232. }
  233. }
  234. */
  235. // ---------------------------------------------
  236. // bufioEncWriter
  237. type bufioEncWriter struct {
  238. buf []byte
  239. w io.Writer
  240. n int
  241. // _ [2]uint64 // padding
  242. // a int
  243. // b [4]byte
  244. // err
  245. }
  246. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  247. z.w = w
  248. z.n = 0
  249. if bufsize == 0 {
  250. bufsize = defEncByteBufSize
  251. }
  252. if cap(z.buf) < bufsize {
  253. z.buf = make([]byte, bufsize)
  254. } else {
  255. z.buf = z.buf[:bufsize]
  256. }
  257. }
  258. //go:noinline - flush only called intermittently
  259. func (z *bufioEncWriter) flush() {
  260. n, err := z.w.Write(z.buf[:z.n])
  261. z.n -= n
  262. if z.n > 0 && err == nil {
  263. err = io.ErrShortWrite
  264. }
  265. if err != nil {
  266. if n > 0 && z.n > 0 {
  267. copy(z.buf, z.buf[n:z.n+n])
  268. }
  269. panic(err)
  270. }
  271. }
  272. func (z *bufioEncWriter) writeb(s []byte) {
  273. LOOP:
  274. a := len(z.buf) - z.n
  275. if len(s) > a {
  276. z.n += copy(z.buf[z.n:], s[:a])
  277. s = s[a:]
  278. z.flush()
  279. goto LOOP
  280. }
  281. z.n += copy(z.buf[z.n:], s)
  282. }
  283. func (z *bufioEncWriter) writestr(s string) {
  284. // z.writeb(bytesView(s)) // inlined below
  285. LOOP:
  286. a := len(z.buf) - z.n
  287. if len(s) > a {
  288. z.n += copy(z.buf[z.n:], s[:a])
  289. s = s[a:]
  290. z.flush()
  291. goto LOOP
  292. }
  293. z.n += copy(z.buf[z.n:], s)
  294. }
  295. func (z *bufioEncWriter) writen1(b1 byte) {
  296. if 1 > len(z.buf)-z.n {
  297. z.flush()
  298. }
  299. z.buf[z.n] = b1
  300. z.n++
  301. }
  302. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  303. if 2 > len(z.buf)-z.n {
  304. z.flush()
  305. }
  306. z.buf[z.n+1] = b2
  307. z.buf[z.n] = b1
  308. z.n += 2
  309. }
  310. func (z *bufioEncWriter) atEndOfEncode() {
  311. if z.n > 0 {
  312. z.flush()
  313. }
  314. }
  315. // ---------------------------------------------
  316. // bytesEncAppender implements encWriter and can write to an byte slice.
  317. type bytesEncAppender struct {
  318. b []byte
  319. out *[]byte
  320. }
  321. func (z *bytesEncAppender) writeb(s []byte) {
  322. z.b = append(z.b, s...)
  323. }
  324. func (z *bytesEncAppender) writestr(s string) {
  325. z.b = append(z.b, s...)
  326. }
  327. func (z *bytesEncAppender) writen1(b1 byte) {
  328. z.b = append(z.b, b1)
  329. }
  330. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  331. z.b = append(z.b, b1, b2)
  332. }
  333. func (z *bytesEncAppender) atEndOfEncode() {
  334. *(z.out) = z.b
  335. }
  336. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  337. z.b = in[:0]
  338. z.out = out
  339. }
  340. // ---------------------------------------------
  341. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  342. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  343. }
  344. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  345. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  346. }
  347. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  348. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  349. }
  350. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  351. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  352. e.marshalRaw(bs, fnerr)
  353. }
  354. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  355. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  356. e.marshalUtf8(bs, fnerr)
  357. }
  358. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  359. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  360. e.marshalAsis(bs, fnerr)
  361. }
  362. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  363. e.rawBytes(rv2i(rv).(Raw))
  364. }
  365. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  366. e.e.EncodeNil()
  367. }
  368. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  369. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  370. }
  371. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  372. ti := f.ti
  373. ee := e.e
  374. // array may be non-addressable, so we have to manage with care
  375. // (don't call rv.Bytes, rv.Slice, etc).
  376. // E.g. type struct S{B [2]byte};
  377. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  378. if f.seq != seqTypeArray {
  379. if rv.IsNil() {
  380. ee.EncodeNil()
  381. return
  382. }
  383. // If in this method, then there was no extension function defined.
  384. // So it's okay to treat as []byte.
  385. if ti.rtid == uint8SliceTypId {
  386. ee.EncodeStringBytesRaw(rv.Bytes())
  387. return
  388. }
  389. }
  390. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  391. e.errorf("send-only channel cannot be encoded")
  392. }
  393. elemsep := e.esep
  394. rtelem := ti.elem
  395. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  396. var l int
  397. // if a slice, array or chan of bytes, treat specially
  398. if rtelemIsByte {
  399. switch f.seq {
  400. case seqTypeSlice:
  401. ee.EncodeStringBytesRaw(rv.Bytes())
  402. case seqTypeArray:
  403. l = rv.Len()
  404. if rv.CanAddr() {
  405. ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  406. } else {
  407. var bs []byte
  408. if l <= cap(e.b) {
  409. bs = e.b[:l]
  410. } else {
  411. bs = make([]byte, l)
  412. }
  413. reflect.Copy(reflect.ValueOf(bs), rv)
  414. ee.EncodeStringBytesRaw(bs)
  415. }
  416. case seqTypeChan:
  417. // do not use range, so that the number of elements encoded
  418. // does not change, and encoding does not hang waiting on someone to close chan.
  419. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  420. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  421. if rv.IsNil() {
  422. ee.EncodeNil()
  423. break
  424. }
  425. bs := e.b[:0]
  426. irv := rv2i(rv)
  427. ch, ok := irv.(<-chan byte)
  428. if !ok {
  429. ch = irv.(chan byte)
  430. }
  431. L1:
  432. switch timeout := e.h.ChanRecvTimeout; {
  433. case timeout == 0: // only consume available
  434. for {
  435. select {
  436. case b := <-ch:
  437. bs = append(bs, b)
  438. default:
  439. break L1
  440. }
  441. }
  442. case timeout > 0: // consume until timeout
  443. tt := time.NewTimer(timeout)
  444. for {
  445. select {
  446. case b := <-ch:
  447. bs = append(bs, b)
  448. case <-tt.C:
  449. // close(tt.C)
  450. break L1
  451. }
  452. }
  453. default: // consume until close
  454. for b := range ch {
  455. bs = append(bs, b)
  456. }
  457. }
  458. ee.EncodeStringBytesRaw(bs)
  459. }
  460. return
  461. }
  462. // if chan, consume chan into a slice, and work off that slice.
  463. var rvcs reflect.Value
  464. if f.seq == seqTypeChan {
  465. rvcs = reflect.Zero(reflect.SliceOf(rtelem))
  466. timeout := e.h.ChanRecvTimeout
  467. if timeout < 0 { // consume until close
  468. for {
  469. recv, recvOk := rv.Recv()
  470. if !recvOk {
  471. break
  472. }
  473. rvcs = reflect.Append(rvcs, recv)
  474. }
  475. } else {
  476. cases := make([]reflect.SelectCase, 2)
  477. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  478. if timeout == 0 {
  479. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  480. } else {
  481. tt := time.NewTimer(timeout)
  482. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  483. }
  484. for {
  485. chosen, recv, recvOk := reflect.Select(cases)
  486. if chosen == 1 || !recvOk {
  487. break
  488. }
  489. rvcs = reflect.Append(rvcs, recv)
  490. }
  491. }
  492. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  493. }
  494. l = rv.Len()
  495. if ti.mbs {
  496. if l%2 == 1 {
  497. e.errorf("mapBySlice requires even slice length, but got %v", l)
  498. return
  499. }
  500. ee.WriteMapStart(l / 2)
  501. } else {
  502. ee.WriteArrayStart(l)
  503. }
  504. if l > 0 {
  505. var fn *codecFn
  506. for rtelem.Kind() == reflect.Ptr {
  507. rtelem = rtelem.Elem()
  508. }
  509. // if kind is reflect.Interface, do not pre-determine the
  510. // encoding type, because preEncodeValue may break it down to
  511. // a concrete type and kInterface will bomb.
  512. if rtelem.Kind() != reflect.Interface {
  513. fn = e.cfer().get(rtelem, true, true)
  514. }
  515. for j := 0; j < l; j++ {
  516. if elemsep {
  517. if ti.mbs {
  518. if j%2 == 0 {
  519. ee.WriteMapElemKey()
  520. } else {
  521. ee.WriteMapElemValue()
  522. }
  523. } else {
  524. ee.WriteArrayElem()
  525. }
  526. }
  527. e.encodeValue(rv.Index(j), fn, true)
  528. }
  529. }
  530. if ti.mbs {
  531. ee.WriteMapEnd()
  532. } else {
  533. ee.WriteArrayEnd()
  534. }
  535. }
  536. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  537. fti := f.ti
  538. elemsep := e.esep
  539. tisfi := fti.sfiSrc
  540. toMap := !(fti.toArray || e.h.StructToArray)
  541. if toMap {
  542. tisfi = fti.sfiSort
  543. }
  544. ee := e.e
  545. sfn := structFieldNode{v: rv, update: false}
  546. if toMap {
  547. ee.WriteMapStart(len(tisfi))
  548. if elemsep {
  549. for _, si := range tisfi {
  550. ee.WriteMapElemKey()
  551. // ee.EncodeStringEnc(cUTF8, si.encName)
  552. e.kStructFieldKey(fti.keyType, si)
  553. ee.WriteMapElemValue()
  554. e.encodeValue(sfn.field(si), nil, true)
  555. }
  556. } else {
  557. for _, si := range tisfi {
  558. // ee.EncodeStringEnc(cUTF8, si.encName)
  559. e.kStructFieldKey(fti.keyType, si)
  560. e.encodeValue(sfn.field(si), nil, true)
  561. }
  562. }
  563. ee.WriteMapEnd()
  564. } else {
  565. ee.WriteArrayStart(len(tisfi))
  566. if elemsep {
  567. for _, si := range tisfi {
  568. ee.WriteArrayElem()
  569. e.encodeValue(sfn.field(si), nil, true)
  570. }
  571. } else {
  572. for _, si := range tisfi {
  573. e.encodeValue(sfn.field(si), nil, true)
  574. }
  575. }
  576. ee.WriteArrayEnd()
  577. }
  578. }
  579. func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
  580. var m must
  581. // use if-else-if, not switch (which compiles to binary-search)
  582. // since keyType is typically valueTypeString, branch prediction is pretty good.
  583. if keyType == valueTypeString {
  584. if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
  585. e.w.writen1('"')
  586. e.w.writestr(s.encName)
  587. e.w.writen1('"')
  588. } else { // keyType == valueTypeString
  589. e.e.EncodeStringEnc(cUTF8, s.encName)
  590. }
  591. } else if keyType == valueTypeInt {
  592. e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
  593. } else if keyType == valueTypeUint {
  594. e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
  595. } else if keyType == valueTypeFloat {
  596. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
  597. }
  598. }
  599. func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
  600. var m must
  601. // use if-else-if, not switch (which compiles to binary-search)
  602. // since keyType is typically valueTypeString, branch prediction is pretty good.
  603. if keyType == valueTypeString {
  604. e.e.EncodeStringEnc(cUTF8, encName)
  605. } else if keyType == valueTypeInt {
  606. e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  607. } else if keyType == valueTypeUint {
  608. e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  609. } else if keyType == valueTypeFloat {
  610. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  611. }
  612. }
  613. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  614. fti := f.ti
  615. elemsep := e.esep
  616. tisfi := fti.sfiSrc
  617. var newlen int
  618. toMap := !(fti.toArray || e.h.StructToArray)
  619. var mf map[string]interface{}
  620. if f.ti.mf {
  621. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  622. toMap = true
  623. newlen += len(mf)
  624. } else if f.ti.mfp {
  625. if rv.CanAddr() {
  626. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  627. } else {
  628. // make a new addressable value of same one, and use it
  629. rv2 := reflect.New(rv.Type())
  630. rv2.Elem().Set(rv)
  631. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  632. }
  633. toMap = true
  634. newlen += len(mf)
  635. }
  636. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  637. if toMap {
  638. tisfi = fti.sfiSort
  639. }
  640. newlen += len(tisfi)
  641. ee := e.e
  642. // Use sync.Pool to reduce allocating slices unnecessarily.
  643. // The cost of sync.Pool is less than the cost of new allocation.
  644. //
  645. // Each element of the array pools one of encStructPool(8|16|32|64).
  646. // It allows the re-use of slices up to 64 in length.
  647. // A performance cost of encoding structs was collecting
  648. // which values were empty and should be omitted.
  649. // We needed slices of reflect.Value and string to collect them.
  650. // This shared pool reduces the amount of unnecessary creation we do.
  651. // The cost is that of locking sometimes, but sync.Pool is efficient
  652. // enough to reduce thread contention.
  653. var spool *sync.Pool
  654. var poolv interface{}
  655. var fkvs []sfiRv
  656. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  657. if newlen < 0 { // bounds-check-elimination
  658. // cannot happen // here for bounds-check-elimination
  659. } else if newlen <= 8 {
  660. spool, poolv = pool.sfiRv8()
  661. fkvs = poolv.(*[8]sfiRv)[:newlen]
  662. } else if newlen <= 16 {
  663. spool, poolv = pool.sfiRv16()
  664. fkvs = poolv.(*[16]sfiRv)[:newlen]
  665. } else if newlen <= 32 {
  666. spool, poolv = pool.sfiRv32()
  667. fkvs = poolv.(*[32]sfiRv)[:newlen]
  668. } else if newlen <= 64 {
  669. spool, poolv = pool.sfiRv64()
  670. fkvs = poolv.(*[64]sfiRv)[:newlen]
  671. } else if newlen <= 128 {
  672. spool, poolv = pool.sfiRv128()
  673. fkvs = poolv.(*[128]sfiRv)[:newlen]
  674. } else {
  675. fkvs = make([]sfiRv, newlen)
  676. }
  677. var kv sfiRv
  678. recur := e.h.RecursiveEmptyCheck
  679. sfn := structFieldNode{v: rv, update: false}
  680. newlen = 0
  681. for _, si := range tisfi {
  682. // kv.r = si.field(rv, false)
  683. kv.r = sfn.field(si)
  684. if toMap {
  685. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  686. continue
  687. }
  688. kv.v = si // si.encName
  689. } else {
  690. // use the zero value.
  691. // if a reference or struct, set to nil (so you do not output too much)
  692. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  693. switch kv.r.Kind() {
  694. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  695. kv.r = reflect.Value{} //encode as nil
  696. }
  697. }
  698. }
  699. fkvs[newlen] = kv
  700. newlen++
  701. }
  702. fkvs = fkvs[:newlen]
  703. var mflen int
  704. for k, v := range mf {
  705. if k == "" {
  706. delete(mf, k)
  707. continue
  708. }
  709. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  710. delete(mf, k)
  711. continue
  712. }
  713. mflen++
  714. }
  715. var j int
  716. if toMap {
  717. ee.WriteMapStart(newlen + mflen)
  718. if elemsep {
  719. for j = 0; j < len(fkvs); j++ {
  720. kv = fkvs[j]
  721. ee.WriteMapElemKey()
  722. // ee.EncodeStringEnc(cUTF8, kv.v)
  723. e.kStructFieldKey(fti.keyType, kv.v)
  724. ee.WriteMapElemValue()
  725. e.encodeValue(kv.r, nil, true)
  726. }
  727. } else {
  728. for j = 0; j < len(fkvs); j++ {
  729. kv = fkvs[j]
  730. // ee.EncodeStringEnc(cUTF8, kv.v)
  731. e.kStructFieldKey(fti.keyType, kv.v)
  732. e.encodeValue(kv.r, nil, true)
  733. }
  734. }
  735. // now, add the others
  736. for k, v := range mf {
  737. ee.WriteMapElemKey()
  738. e.kStructFieldKeyName(fti.keyType, k)
  739. ee.WriteMapElemValue()
  740. e.encode(v)
  741. }
  742. ee.WriteMapEnd()
  743. } else {
  744. ee.WriteArrayStart(newlen)
  745. if elemsep {
  746. for j = 0; j < len(fkvs); j++ {
  747. ee.WriteArrayElem()
  748. e.encodeValue(fkvs[j].r, nil, true)
  749. }
  750. } else {
  751. for j = 0; j < len(fkvs); j++ {
  752. e.encodeValue(fkvs[j].r, nil, true)
  753. }
  754. }
  755. ee.WriteArrayEnd()
  756. }
  757. // do not use defer. Instead, use explicit pool return at end of function.
  758. // defer has a cost we are trying to avoid.
  759. // If there is a panic and these slices are not returned, it is ok.
  760. if spool != nil {
  761. spool.Put(poolv)
  762. }
  763. }
  764. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  765. ee := e.e
  766. if rv.IsNil() {
  767. ee.EncodeNil()
  768. return
  769. }
  770. l := rv.Len()
  771. ee.WriteMapStart(l)
  772. elemsep := e.esep
  773. if l == 0 {
  774. ee.WriteMapEnd()
  775. return
  776. }
  777. // var asSymbols bool
  778. // determine the underlying key and val encFn's for the map.
  779. // This eliminates some work which is done for each loop iteration i.e.
  780. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  781. //
  782. // However, if kind is reflect.Interface, do not pre-determine the
  783. // encoding type, because preEncodeValue may break it down to
  784. // a concrete type and kInterface will bomb.
  785. var keyFn, valFn *codecFn
  786. ti := f.ti
  787. rtkey0 := ti.key
  788. rtkey := rtkey0
  789. rtval0 := ti.elem
  790. rtval := rtval0
  791. // rtkeyid := rt2id(rtkey0)
  792. for rtval.Kind() == reflect.Ptr {
  793. rtval = rtval.Elem()
  794. }
  795. if rtval.Kind() != reflect.Interface {
  796. valFn = e.cfer().get(rtval, true, true)
  797. }
  798. mks := rv.MapKeys()
  799. if e.h.Canonical {
  800. e.kMapCanonical(rtkey, rv, mks, valFn)
  801. ee.WriteMapEnd()
  802. return
  803. }
  804. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  805. if !keyTypeIsString {
  806. for rtkey.Kind() == reflect.Ptr {
  807. rtkey = rtkey.Elem()
  808. }
  809. if rtkey.Kind() != reflect.Interface {
  810. // rtkeyid = rt2id(rtkey)
  811. keyFn = e.cfer().get(rtkey, true, true)
  812. }
  813. }
  814. // for j, lmks := 0, len(mks); j < lmks; j++ {
  815. for j := range mks {
  816. if elemsep {
  817. ee.WriteMapElemKey()
  818. }
  819. if keyTypeIsString {
  820. ee.EncodeStringEnc(cUTF8, mks[j].String())
  821. } else {
  822. e.encodeValue(mks[j], keyFn, true)
  823. }
  824. if elemsep {
  825. ee.WriteMapElemValue()
  826. }
  827. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  828. }
  829. ee.WriteMapEnd()
  830. }
  831. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  832. ee := e.e
  833. elemsep := e.esep
  834. // we previously did out-of-band if an extension was registered.
  835. // This is not necessary, as the natural kind is sufficient for ordering.
  836. switch rtkey.Kind() {
  837. case reflect.Bool:
  838. mksv := make([]boolRv, len(mks))
  839. for i, k := range mks {
  840. v := &mksv[i]
  841. v.r = k
  842. v.v = k.Bool()
  843. }
  844. sort.Sort(boolRvSlice(mksv))
  845. for i := range mksv {
  846. if elemsep {
  847. ee.WriteMapElemKey()
  848. }
  849. ee.EncodeBool(mksv[i].v)
  850. if elemsep {
  851. ee.WriteMapElemValue()
  852. }
  853. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  854. }
  855. case reflect.String:
  856. mksv := make([]stringRv, len(mks))
  857. for i, k := range mks {
  858. v := &mksv[i]
  859. v.r = k
  860. v.v = k.String()
  861. }
  862. sort.Sort(stringRvSlice(mksv))
  863. for i := range mksv {
  864. if elemsep {
  865. ee.WriteMapElemKey()
  866. }
  867. ee.EncodeStringEnc(cUTF8, mksv[i].v)
  868. if elemsep {
  869. ee.WriteMapElemValue()
  870. }
  871. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  872. }
  873. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  874. mksv := make([]uintRv, len(mks))
  875. for i, k := range mks {
  876. v := &mksv[i]
  877. v.r = k
  878. v.v = k.Uint()
  879. }
  880. sort.Sort(uintRvSlice(mksv))
  881. for i := range mksv {
  882. if elemsep {
  883. ee.WriteMapElemKey()
  884. }
  885. ee.EncodeUint(mksv[i].v)
  886. if elemsep {
  887. ee.WriteMapElemValue()
  888. }
  889. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  890. }
  891. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  892. mksv := make([]intRv, len(mks))
  893. for i, k := range mks {
  894. v := &mksv[i]
  895. v.r = k
  896. v.v = k.Int()
  897. }
  898. sort.Sort(intRvSlice(mksv))
  899. for i := range mksv {
  900. if elemsep {
  901. ee.WriteMapElemKey()
  902. }
  903. ee.EncodeInt(mksv[i].v)
  904. if elemsep {
  905. ee.WriteMapElemValue()
  906. }
  907. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  908. }
  909. case reflect.Float32:
  910. mksv := make([]floatRv, len(mks))
  911. for i, k := range mks {
  912. v := &mksv[i]
  913. v.r = k
  914. v.v = k.Float()
  915. }
  916. sort.Sort(floatRvSlice(mksv))
  917. for i := range mksv {
  918. if elemsep {
  919. ee.WriteMapElemKey()
  920. }
  921. ee.EncodeFloat32(float32(mksv[i].v))
  922. if elemsep {
  923. ee.WriteMapElemValue()
  924. }
  925. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  926. }
  927. case reflect.Float64:
  928. mksv := make([]floatRv, len(mks))
  929. for i, k := range mks {
  930. v := &mksv[i]
  931. v.r = k
  932. v.v = k.Float()
  933. }
  934. sort.Sort(floatRvSlice(mksv))
  935. for i := range mksv {
  936. if elemsep {
  937. ee.WriteMapElemKey()
  938. }
  939. ee.EncodeFloat64(mksv[i].v)
  940. if elemsep {
  941. ee.WriteMapElemValue()
  942. }
  943. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  944. }
  945. case reflect.Struct:
  946. if rv.Type() == timeTyp {
  947. mksv := make([]timeRv, len(mks))
  948. for i, k := range mks {
  949. v := &mksv[i]
  950. v.r = k
  951. v.v = rv2i(k).(time.Time)
  952. }
  953. sort.Sort(timeRvSlice(mksv))
  954. for i := range mksv {
  955. if elemsep {
  956. ee.WriteMapElemKey()
  957. }
  958. ee.EncodeTime(mksv[i].v)
  959. if elemsep {
  960. ee.WriteMapElemValue()
  961. }
  962. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  963. }
  964. break
  965. }
  966. fallthrough
  967. default:
  968. // out-of-band
  969. // first encode each key to a []byte first, then sort them, then record
  970. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  971. e2 := NewEncoderBytes(&mksv, e.hh)
  972. mksbv := make([]bytesRv, len(mks))
  973. for i, k := range mks {
  974. v := &mksbv[i]
  975. l := len(mksv)
  976. e2.MustEncode(k)
  977. v.r = k
  978. v.v = mksv[l:]
  979. }
  980. sort.Sort(bytesRvSlice(mksbv))
  981. for j := range mksbv {
  982. if elemsep {
  983. ee.WriteMapElemKey()
  984. }
  985. e.asis(mksbv[j].v)
  986. if elemsep {
  987. ee.WriteMapElemValue()
  988. }
  989. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  990. }
  991. }
  992. }
  993. // // --------------------------------------------------
  994. type encWriterSwitch struct {
  995. // wi *ioEncWriter
  996. wf bufioEncWriter
  997. wb bytesEncAppender
  998. // typ entryType
  999. wx bool // if bytes, wx=true
  1000. esep bool // whether it has elem separators
  1001. isas bool // whether e.as != nil
  1002. js bool // captured here, so that no need to piggy back on *codecFner for this
  1003. be bool // captured here, so that no need to piggy back on *codecFner for this
  1004. _ [2]byte // padding
  1005. // _ [2]uint64 // padding
  1006. // _ uint64 // padding
  1007. }
  1008. func (z *encWriterSwitch) writeb(s []byte) {
  1009. if z.wx {
  1010. z.wb.writeb(s)
  1011. } else {
  1012. z.wf.writeb(s)
  1013. }
  1014. }
  1015. func (z *encWriterSwitch) writestr(s string) {
  1016. if z.wx {
  1017. z.wb.writestr(s)
  1018. } else {
  1019. z.wf.writestr(s)
  1020. }
  1021. }
  1022. func (z *encWriterSwitch) writen1(b1 byte) {
  1023. if z.wx {
  1024. z.wb.writen1(b1)
  1025. } else {
  1026. z.wf.writen1(b1)
  1027. }
  1028. }
  1029. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1030. if z.wx {
  1031. z.wb.writen2(b1, b2)
  1032. } else {
  1033. z.wf.writen2(b1, b2)
  1034. }
  1035. }
  1036. func (z *encWriterSwitch) atEndOfEncode() {
  1037. if z.wx {
  1038. z.wb.atEndOfEncode()
  1039. } else {
  1040. z.wf.atEndOfEncode()
  1041. }
  1042. }
  1043. /*
  1044. // ------------------------------------------
  1045. func (z *encWriterSwitch) writeb(s []byte) {
  1046. switch z.typ {
  1047. case entryTypeBytes:
  1048. z.wb.writeb(s)
  1049. case entryTypeIo:
  1050. z.wi.writeb(s)
  1051. default:
  1052. z.wf.writeb(s)
  1053. }
  1054. }
  1055. func (z *encWriterSwitch) writestr(s string) {
  1056. switch z.typ {
  1057. case entryTypeBytes:
  1058. z.wb.writestr(s)
  1059. case entryTypeIo:
  1060. z.wi.writestr(s)
  1061. default:
  1062. z.wf.writestr(s)
  1063. }
  1064. }
  1065. func (z *encWriterSwitch) writen1(b1 byte) {
  1066. switch z.typ {
  1067. case entryTypeBytes:
  1068. z.wb.writen1(b1)
  1069. case entryTypeIo:
  1070. z.wi.writen1(b1)
  1071. default:
  1072. z.wf.writen1(b1)
  1073. }
  1074. }
  1075. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1076. switch z.typ {
  1077. case entryTypeBytes:
  1078. z.wb.writen2(b1, b2)
  1079. case entryTypeIo:
  1080. z.wi.writen2(b1, b2)
  1081. default:
  1082. z.wf.writen2(b1, b2)
  1083. }
  1084. }
  1085. func (z *encWriterSwitch) atEndOfEncode() {
  1086. switch z.typ {
  1087. case entryTypeBytes:
  1088. z.wb.atEndOfEncode()
  1089. case entryTypeIo:
  1090. z.wi.atEndOfEncode()
  1091. default:
  1092. z.wf.atEndOfEncode()
  1093. }
  1094. }
  1095. // ------------------------------------------
  1096. func (z *encWriterSwitch) writeb(s []byte) {
  1097. if z.wx {
  1098. z.wb.writeb(s)
  1099. } else {
  1100. z.wi.writeb(s)
  1101. }
  1102. }
  1103. func (z *encWriterSwitch) writestr(s string) {
  1104. if z.wx {
  1105. z.wb.writestr(s)
  1106. } else {
  1107. z.wi.writestr(s)
  1108. }
  1109. }
  1110. func (z *encWriterSwitch) writen1(b1 byte) {
  1111. if z.wx {
  1112. z.wb.writen1(b1)
  1113. } else {
  1114. z.wi.writen1(b1)
  1115. }
  1116. }
  1117. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1118. if z.wx {
  1119. z.wb.writen2(b1, b2)
  1120. } else {
  1121. z.wi.writen2(b1, b2)
  1122. }
  1123. }
  1124. func (z *encWriterSwitch) atEndOfEncode() {
  1125. if z.wx {
  1126. z.wb.atEndOfEncode()
  1127. } else {
  1128. z.wi.atEndOfEncode()
  1129. }
  1130. }
  1131. */
  1132. // Encoder writes an object to an output stream in a supported format.
  1133. //
  1134. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1135. // concurrently in multiple goroutines.
  1136. //
  1137. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1138. // so its state can be reused to decode new input streams repeatedly.
  1139. // This is the idiomatic way to use.
  1140. type Encoder struct {
  1141. panicHdl
  1142. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1143. e encDriver
  1144. // NOTE: Encoder shouldn't call it's write methods,
  1145. // as the handler MAY need to do some coordination.
  1146. w *encWriterSwitch
  1147. // bw *bufio.Writer
  1148. as encDriverAsis
  1149. err error
  1150. h *BasicHandle
  1151. // ---- cpu cache line boundary? + 3
  1152. encWriterSwitch
  1153. codecFnPooler
  1154. ci set
  1155. // ---- writable fields during execution --- *try* to keep in sep cache line
  1156. // ---- cpu cache line boundary?
  1157. // b [scratchByteArrayLen]byte
  1158. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1159. b [cacheLineSize - (8 * 2)]byte // used for encoding a chan or (non-addressable) array of bytes
  1160. }
  1161. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1162. //
  1163. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  1164. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  1165. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1166. e := newEncoder(h)
  1167. e.Reset(w)
  1168. return e
  1169. }
  1170. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1171. // into a byte slice, using zero-copying to temporary slices.
  1172. //
  1173. // It will potentially replace the output byte slice pointed to.
  1174. // After encoding, the out parameter contains the encoded contents.
  1175. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1176. e := newEncoder(h)
  1177. e.ResetBytes(out)
  1178. return e
  1179. }
  1180. func newEncoder(h Handle) *Encoder {
  1181. e := &Encoder{h: h.getBasicHandle(), err: errEncoderNotInitialized}
  1182. e.w = &e.encWriterSwitch
  1183. e.hh = h
  1184. e.esep = h.hasElemSeparators()
  1185. return e
  1186. }
  1187. func (e *Encoder) resetCommon() {
  1188. // e.w = &e.encWriterSwitch
  1189. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1190. e.e = e.hh.newEncDriver(e)
  1191. e.as, e.isas = e.e.(encDriverAsis)
  1192. // e.cr, _ = e.e.(containerStateRecv)
  1193. }
  1194. e.be = e.hh.isBinary()
  1195. _, e.js = e.hh.(*JsonHandle)
  1196. e.e.reset()
  1197. e.err = nil
  1198. }
  1199. // Reset resets the Encoder with a new output stream.
  1200. //
  1201. // This accommodates using the state of the Encoder,
  1202. // where it has "cached" information about sub-engines.
  1203. func (e *Encoder) Reset(w io.Writer) {
  1204. if w == nil {
  1205. return
  1206. }
  1207. // var ok bool
  1208. e.wx = false
  1209. // e.typ = entryTypeUnset
  1210. // if e.h.WriterBufferSize > 0 {
  1211. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1212. // // e.wi.bw = bw
  1213. // // e.wi.sw = bw
  1214. // // e.wi.fw = bw
  1215. // // e.wi.ww = bw
  1216. // if e.wf == nil {
  1217. // e.wf = new(bufioEncWriter)
  1218. // }
  1219. // e.wf.reset(w, e.h.WriterBufferSize)
  1220. // e.typ = entryTypeBufio
  1221. // } else {
  1222. // if e.wi == nil {
  1223. // e.wi = new(ioEncWriter)
  1224. // }
  1225. // e.wi.reset(w)
  1226. // e.typ = entryTypeIo
  1227. // }
  1228. e.wf.reset(w, e.h.WriterBufferSize)
  1229. // e.typ = entryTypeBufio
  1230. // e.w = e.wi
  1231. e.resetCommon()
  1232. }
  1233. // ResetBytes resets the Encoder with a new destination output []byte.
  1234. func (e *Encoder) ResetBytes(out *[]byte) {
  1235. if out == nil {
  1236. return
  1237. }
  1238. var in []byte
  1239. if out != nil {
  1240. in = *out
  1241. }
  1242. if in == nil {
  1243. in = make([]byte, defEncByteBufSize)
  1244. }
  1245. e.wx = true
  1246. // e.typ = entryTypeBytes
  1247. e.wb.reset(in, out)
  1248. // e.w = &e.wb
  1249. e.resetCommon()
  1250. }
  1251. // Encode writes an object into a stream.
  1252. //
  1253. // Encoding can be configured via the struct tag for the fields.
  1254. // The key (in the struct tags) that we look at is configurable.
  1255. //
  1256. // By default, we look up the "codec" key in the struct field's tags,
  1257. // and fall bak to the "json" key if "codec" is absent.
  1258. // That key in struct field's tag value is the key name,
  1259. // followed by an optional comma and options.
  1260. //
  1261. // To set an option on all fields (e.g. omitempty on all fields), you
  1262. // can create a field called _struct, and set flags on it. The options
  1263. // which can be set on _struct are:
  1264. // - omitempty: so all fields are omitted if empty
  1265. // - toarray: so struct is encoded as an array
  1266. // - int: so struct key names are encoded as signed integers (instead of strings)
  1267. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1268. // - float: so struct key names are encoded as floats (instead of strings)
  1269. // More details on these below.
  1270. //
  1271. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1272. // - the field's tag is "-", OR
  1273. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1274. //
  1275. // When encoding as a map, the first string in the tag (before the comma)
  1276. // is the map key string to use when encoding.
  1277. // ...
  1278. // This key is typically encoded as a string.
  1279. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1280. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1281. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1282. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1283. // This is done with the int,uint or float option on the _struct field (see above).
  1284. //
  1285. // However, struct values may encode as arrays. This happens when:
  1286. // - StructToArray Encode option is set, OR
  1287. // - the tag on the _struct field sets the "toarray" option
  1288. // Note that omitempty is ignored when encoding struct values as arrays,
  1289. // as an entry must be encoded for each field, to maintain its position.
  1290. //
  1291. // Values with types that implement MapBySlice are encoded as stream maps.
  1292. //
  1293. // The empty values (for omitempty option) are false, 0, any nil pointer
  1294. // or interface value, and any array, slice, map, or string of length zero.
  1295. //
  1296. // Anonymous fields are encoded inline except:
  1297. // - the struct tag specifies a replacement name (first value)
  1298. // - the field is of an interface type
  1299. //
  1300. // Examples:
  1301. //
  1302. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1303. // type MyStruct struct {
  1304. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1305. // Field1 string `codec:"-"` //skip this field
  1306. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1307. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1308. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1309. // io.Reader //use key "Reader".
  1310. // MyStruct `codec:"my1" //use key "my1".
  1311. // MyStruct //inline it
  1312. // ...
  1313. // }
  1314. //
  1315. // type MyStruct struct {
  1316. // _struct bool `codec:",toarray"` //encode struct as an array
  1317. // }
  1318. //
  1319. // type MyStruct struct {
  1320. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1321. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1322. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1323. // }
  1324. //
  1325. // The mode of encoding is based on the type of the value. When a value is seen:
  1326. // - If a Selfer, call its CodecEncodeSelf method
  1327. // - If an extension is registered for it, call that extension function
  1328. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1329. // - Else encode it based on its reflect.Kind
  1330. //
  1331. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1332. // Some formats support symbols (e.g. binc) and will properly encode the string
  1333. // only once in the stream, and use a tag to refer to it thereafter.
  1334. func (e *Encoder) Encode(v interface{}) (err error) {
  1335. // tried to use closure, as runtime optimizes defer with no params.
  1336. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1337. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1338. // defer func() { e.deferred(&err) }() }
  1339. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1340. defer e.deferred(&err)
  1341. e.MustEncode(v)
  1342. return
  1343. }
  1344. // MustEncode is like Encode, but panics if unable to Encode.
  1345. // This provides insight to the code location that triggered the error.
  1346. func (e *Encoder) MustEncode(v interface{}) {
  1347. if e.err != nil {
  1348. panic(e.err)
  1349. }
  1350. e.encode(v)
  1351. e.e.atEndOfEncode()
  1352. e.w.atEndOfEncode()
  1353. e.alwaysAtEnd()
  1354. }
  1355. func (e *Encoder) deferred(err1 *error) {
  1356. e.alwaysAtEnd()
  1357. if recoverPanicToErr {
  1358. if x := recover(); x != nil {
  1359. panicValToErr(e, x, err1)
  1360. panicValToErr(e, x, &e.err)
  1361. }
  1362. }
  1363. }
  1364. // func (e *Encoder) alwaysAtEnd() {
  1365. // e.codecFnPooler.alwaysAtEnd()
  1366. // }
  1367. func (e *Encoder) encode(iv interface{}) {
  1368. if iv == nil || definitelyNil(iv) {
  1369. e.e.EncodeNil()
  1370. return
  1371. }
  1372. if v, ok := iv.(Selfer); ok {
  1373. v.CodecEncodeSelf(e)
  1374. return
  1375. }
  1376. // a switch with only concrete types can be optimized.
  1377. // consequently, we deal with nil and interfaces outside.
  1378. switch v := iv.(type) {
  1379. case Raw:
  1380. e.rawBytes(v)
  1381. case reflect.Value:
  1382. e.encodeValue(v, nil, true)
  1383. case string:
  1384. e.e.EncodeStringEnc(cUTF8, v)
  1385. case bool:
  1386. e.e.EncodeBool(v)
  1387. case int:
  1388. e.e.EncodeInt(int64(v))
  1389. case int8:
  1390. e.e.EncodeInt(int64(v))
  1391. case int16:
  1392. e.e.EncodeInt(int64(v))
  1393. case int32:
  1394. e.e.EncodeInt(int64(v))
  1395. case int64:
  1396. e.e.EncodeInt(v)
  1397. case uint:
  1398. e.e.EncodeUint(uint64(v))
  1399. case uint8:
  1400. e.e.EncodeUint(uint64(v))
  1401. case uint16:
  1402. e.e.EncodeUint(uint64(v))
  1403. case uint32:
  1404. e.e.EncodeUint(uint64(v))
  1405. case uint64:
  1406. e.e.EncodeUint(v)
  1407. case uintptr:
  1408. e.e.EncodeUint(uint64(v))
  1409. case float32:
  1410. e.e.EncodeFloat32(v)
  1411. case float64:
  1412. e.e.EncodeFloat64(v)
  1413. case time.Time:
  1414. e.e.EncodeTime(v)
  1415. case []uint8:
  1416. e.e.EncodeStringBytesRaw(v)
  1417. case *Raw:
  1418. e.rawBytes(*v)
  1419. case *string:
  1420. e.e.EncodeStringEnc(cUTF8, *v)
  1421. case *bool:
  1422. e.e.EncodeBool(*v)
  1423. case *int:
  1424. e.e.EncodeInt(int64(*v))
  1425. case *int8:
  1426. e.e.EncodeInt(int64(*v))
  1427. case *int16:
  1428. e.e.EncodeInt(int64(*v))
  1429. case *int32:
  1430. e.e.EncodeInt(int64(*v))
  1431. case *int64:
  1432. e.e.EncodeInt(*v)
  1433. case *uint:
  1434. e.e.EncodeUint(uint64(*v))
  1435. case *uint8:
  1436. e.e.EncodeUint(uint64(*v))
  1437. case *uint16:
  1438. e.e.EncodeUint(uint64(*v))
  1439. case *uint32:
  1440. e.e.EncodeUint(uint64(*v))
  1441. case *uint64:
  1442. e.e.EncodeUint(*v)
  1443. case *uintptr:
  1444. e.e.EncodeUint(uint64(*v))
  1445. case *float32:
  1446. e.e.EncodeFloat32(*v)
  1447. case *float64:
  1448. e.e.EncodeFloat64(*v)
  1449. case *time.Time:
  1450. e.e.EncodeTime(*v)
  1451. case *[]uint8:
  1452. e.e.EncodeStringBytesRaw(*v)
  1453. default:
  1454. if !fastpathEncodeTypeSwitch(iv, e) {
  1455. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1456. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1457. }
  1458. }
  1459. }
  1460. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1461. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1462. var sptr uintptr
  1463. var rvp reflect.Value
  1464. var rvpValid bool
  1465. TOP:
  1466. switch rv.Kind() {
  1467. case reflect.Ptr:
  1468. if rv.IsNil() {
  1469. e.e.EncodeNil()
  1470. return
  1471. }
  1472. rvpValid = true
  1473. rvp = rv
  1474. rv = rv.Elem()
  1475. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1476. // TODO: Movable pointers will be an issue here. Future problem.
  1477. sptr = rv.UnsafeAddr()
  1478. break TOP
  1479. }
  1480. goto TOP
  1481. case reflect.Interface:
  1482. if rv.IsNil() {
  1483. e.e.EncodeNil()
  1484. return
  1485. }
  1486. rv = rv.Elem()
  1487. goto TOP
  1488. case reflect.Slice, reflect.Map:
  1489. if rv.IsNil() {
  1490. e.e.EncodeNil()
  1491. return
  1492. }
  1493. case reflect.Invalid, reflect.Func:
  1494. e.e.EncodeNil()
  1495. return
  1496. }
  1497. if sptr != 0 && (&e.ci).add(sptr) {
  1498. e.errorf("circular reference found: # %d", sptr)
  1499. }
  1500. if fn == nil {
  1501. rt := rv.Type()
  1502. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1503. fn = e.cfer().get(rt, checkFastpath, true)
  1504. }
  1505. if fn.i.addrE {
  1506. if rvpValid {
  1507. fn.fe(e, &fn.i, rvp)
  1508. } else if rv.CanAddr() {
  1509. fn.fe(e, &fn.i, rv.Addr())
  1510. } else {
  1511. rv2 := reflect.New(rv.Type())
  1512. rv2.Elem().Set(rv)
  1513. fn.fe(e, &fn.i, rv2)
  1514. }
  1515. } else {
  1516. fn.fe(e, &fn.i, rv)
  1517. }
  1518. if sptr != 0 {
  1519. (&e.ci).remove(sptr)
  1520. }
  1521. }
  1522. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1523. // if fnerr != nil {
  1524. // panic(fnerr)
  1525. // }
  1526. // if bs == nil {
  1527. // e.e.EncodeNil()
  1528. // } else if asis {
  1529. // e.asis(bs)
  1530. // } else {
  1531. // e.e.EncodeStringBytes(c, bs)
  1532. // }
  1533. // }
  1534. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1535. if fnerr != nil {
  1536. panic(fnerr)
  1537. }
  1538. if bs == nil {
  1539. e.e.EncodeNil()
  1540. } else {
  1541. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1542. }
  1543. }
  1544. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1545. if fnerr != nil {
  1546. panic(fnerr)
  1547. }
  1548. if bs == nil {
  1549. e.e.EncodeNil()
  1550. } else {
  1551. e.asis(bs)
  1552. }
  1553. }
  1554. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1555. if fnerr != nil {
  1556. panic(fnerr)
  1557. }
  1558. if bs == nil {
  1559. e.e.EncodeNil()
  1560. } else {
  1561. e.e.EncodeStringBytesRaw(bs)
  1562. }
  1563. }
  1564. func (e *Encoder) asis(v []byte) {
  1565. if e.isas {
  1566. e.as.EncodeAsis(v)
  1567. } else {
  1568. e.w.writeb(v)
  1569. }
  1570. }
  1571. func (e *Encoder) rawBytes(vv Raw) {
  1572. v := []byte(vv)
  1573. if !e.h.Raw {
  1574. e.errorf("Raw values cannot be encoded: %v", v)
  1575. }
  1576. e.asis(v)
  1577. }
  1578. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1579. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1580. }