encode.go 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "runtime"
  11. "sort"
  12. "strconv"
  13. "time"
  14. )
  15. // defEncByteBufSize is the default size of []byte used
  16. // for bufio buffer or []byte (when nil passed)
  17. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  18. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  19. /*
  20. // encWriter abstracts writing to a byte array or to an io.Writer.
  21. //
  22. //
  23. // Deprecated: Use encWriterSwitch instead.
  24. type encWriter interface {
  25. writeb([]byte)
  26. writestr(string)
  27. writen1(byte)
  28. writen2(byte, byte)
  29. end()
  30. }
  31. */
  32. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  33. type encDriver interface {
  34. EncodeNil()
  35. EncodeInt(i int64)
  36. EncodeUint(i uint64)
  37. EncodeBool(b bool)
  38. EncodeFloat32(f float32)
  39. EncodeFloat64(f float64)
  40. // encodeExtPreamble(xtag byte, length int)
  41. EncodeRawExt(re *RawExt, e *Encoder)
  42. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  43. // Deprecated: use EncodeStringEnc instead
  44. EncodeString(c charEncoding, v string)
  45. // Deprecated: use EncodeStringBytesRaw instead
  46. EncodeStringBytes(c charEncoding, v []byte)
  47. EncodeStringEnc(c charEncoding, v string) // c cannot be cRAW
  48. // EncodeSymbol(v string)
  49. EncodeStringBytesRaw(v []byte)
  50. EncodeTime(time.Time)
  51. //encBignum(f *big.Int)
  52. //encStringRunes(c charEncoding, v []rune)
  53. WriteArrayStart(length int)
  54. WriteArrayElem()
  55. WriteArrayEnd()
  56. WriteMapStart(length int)
  57. WriteMapElemKey()
  58. WriteMapElemValue()
  59. WriteMapEnd()
  60. reset()
  61. atEndOfEncode()
  62. }
  63. type encDriverAsis interface {
  64. EncodeAsis(v []byte)
  65. }
  66. type encodeError struct {
  67. codecError
  68. }
  69. func (e encodeError) Error() string {
  70. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  71. }
  72. type encDriverNoopContainerWriter struct{}
  73. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  74. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  75. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  76. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  77. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  78. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  79. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  80. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  81. type encDriverTrackContainerWriter struct {
  82. c containerState
  83. }
  84. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  85. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  86. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  87. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  88. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  89. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  90. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  91. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  92. // type ioEncWriterWriter interface {
  93. // WriteByte(c byte) error
  94. // WriteString(s string) (n int, err error)
  95. // Write(p []byte) (n int, err error)
  96. // }
  97. // EncodeOptions captures configuration options during encode.
  98. type EncodeOptions struct {
  99. // WriterBufferSize is the size of the buffer used when writing.
  100. //
  101. // if > 0, we use a smart buffer internally for performance purposes.
  102. WriterBufferSize int
  103. // ChanRecvTimeout is the timeout used when selecting from a chan.
  104. //
  105. // Configuring this controls how we receive from a chan during the encoding process.
  106. // - If ==0, we only consume the elements currently available in the chan.
  107. // - if <0, we consume until the chan is closed.
  108. // - If >0, we consume until this timeout.
  109. ChanRecvTimeout time.Duration
  110. // StructToArray specifies to encode a struct as an array, and not as a map
  111. StructToArray bool
  112. // Canonical representation means that encoding a value will always result in the same
  113. // sequence of bytes.
  114. //
  115. // This only affects maps, as the iteration order for maps is random.
  116. //
  117. // The implementation MAY use the natural sort order for the map keys if possible:
  118. //
  119. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  120. // then the map keys are first sorted in natural order and then written
  121. // with corresponding map values to the strema.
  122. // - If there is no natural sort order, then the map keys will first be
  123. // encoded into []byte, and then sorted,
  124. // before writing the sorted keys and the corresponding map values to the stream.
  125. //
  126. Canonical bool
  127. // CheckCircularRef controls whether we check for circular references
  128. // and error fast during an encode.
  129. //
  130. // If enabled, an error is received if a pointer to a struct
  131. // references itself either directly or through one of its fields (iteratively).
  132. //
  133. // This is opt-in, as there may be a performance hit to checking circular references.
  134. CheckCircularRef bool
  135. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  136. // when checking if a value is empty.
  137. //
  138. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  139. RecursiveEmptyCheck bool
  140. // Raw controls whether we encode Raw values.
  141. // This is a "dangerous" option and must be explicitly set.
  142. // If set, we blindly encode Raw values as-is, without checking
  143. // if they are a correct representation of a value in that format.
  144. // If unset, we error out.
  145. Raw bool
  146. // StringToRaw controls how strings are encoded -
  147. // by default, they are encoded as UTF-8,
  148. // but can be treated as []byte during an encode.
  149. StringToRaw bool
  150. // // AsSymbols defines what should be encoded as symbols.
  151. // //
  152. // // Encoding as symbols can reduce the encoded size significantly.
  153. // //
  154. // // However, during decoding, each string to be encoded as a symbol must
  155. // // be checked to see if it has been seen before. Consequently, encoding time
  156. // // will increase if using symbols, because string comparisons has a clear cost.
  157. // //
  158. // // Sample values:
  159. // // AsSymbolNone
  160. // // AsSymbolAll
  161. // // AsSymbolMapStringKeys
  162. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  163. // AsSymbols AsSymbolFlag
  164. }
  165. // ---------------------------------------------
  166. /*
  167. type ioEncStringWriter interface {
  168. WriteString(s string) (n int, err error)
  169. }
  170. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  171. type ioEncWriter struct {
  172. w io.Writer
  173. ww io.Writer
  174. bw io.ByteWriter
  175. sw ioEncStringWriter
  176. fw ioFlusher
  177. b [8]byte
  178. }
  179. func (z *ioEncWriter) reset(w io.Writer) {
  180. z.w = w
  181. var ok bool
  182. if z.bw, ok = w.(io.ByteWriter); !ok {
  183. z.bw = z
  184. }
  185. if z.sw, ok = w.(ioEncStringWriter); !ok {
  186. z.sw = z
  187. }
  188. z.fw, _ = w.(ioFlusher)
  189. z.ww = w
  190. }
  191. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  192. z.b[0] = b
  193. _, err = z.w.Write(z.b[:1])
  194. return
  195. }
  196. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  197. return z.w.Write(bytesView(s))
  198. }
  199. func (z *ioEncWriter) writeb(bs []byte) {
  200. if _, err := z.ww.Write(bs); err != nil {
  201. panic(err)
  202. }
  203. }
  204. func (z *ioEncWriter) writestr(s string) {
  205. if _, err := z.sw.WriteString(s); err != nil {
  206. panic(err)
  207. }
  208. }
  209. func (z *ioEncWriter) writen1(b byte) {
  210. if err := z.bw.WriteByte(b); err != nil {
  211. panic(err)
  212. }
  213. }
  214. func (z *ioEncWriter) writen2(b1, b2 byte) {
  215. var err error
  216. if err = z.bw.WriteByte(b1); err == nil {
  217. if err = z.bw.WriteByte(b2); err == nil {
  218. return
  219. }
  220. }
  221. panic(err)
  222. }
  223. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  224. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  225. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  226. // panic(err)
  227. // }
  228. // }
  229. //go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
  230. func (z *ioEncWriter) end() {
  231. if z.fw != nil {
  232. if err := z.fw.Flush(); err != nil {
  233. panic(err)
  234. }
  235. }
  236. }
  237. */
  238. // ---------------------------------------------
  239. // bufioEncWriter
  240. type bufioEncWriter struct {
  241. buf []byte
  242. w io.Writer
  243. n int
  244. sz int // buf size
  245. // Extensions can call Encode() within a current Encode() call.
  246. // We need to know when the top level Encode() call returns,
  247. // so we can decide whether to Release() or not.
  248. calls uint16 // what depth in mustDecode are we in now.
  249. _ [6]uint8 // padding
  250. bytesBufPooler
  251. _ [1]uint64 // padding
  252. // a int
  253. // b [4]byte
  254. // err
  255. }
  256. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  257. z.w = w
  258. z.n = 0
  259. z.calls = 0
  260. if bufsize <= 0 {
  261. bufsize = defEncByteBufSize
  262. }
  263. z.sz = bufsize
  264. if cap(z.buf) >= bufsize {
  265. z.buf = z.buf[:cap(z.buf)]
  266. } else {
  267. z.buf = z.bytesBufPooler.get(bufsize)
  268. // z.buf = make([]byte, bufsize)
  269. }
  270. }
  271. func (z *bufioEncWriter) release() {
  272. z.buf = nil
  273. z.bytesBufPooler.end()
  274. }
  275. //go:noinline - flush only called intermittently
  276. func (z *bufioEncWriter) flushErr() (err error) {
  277. n, err := z.w.Write(z.buf[:z.n])
  278. z.n -= n
  279. if z.n > 0 && err == nil {
  280. err = io.ErrShortWrite
  281. }
  282. if n > 0 && z.n > 0 {
  283. copy(z.buf, z.buf[n:z.n+n])
  284. }
  285. return err
  286. }
  287. func (z *bufioEncWriter) flush() {
  288. if err := z.flushErr(); err != nil {
  289. panic(err)
  290. }
  291. }
  292. func (z *bufioEncWriter) writeb(s []byte) {
  293. LOOP:
  294. a := len(z.buf) - z.n
  295. if len(s) > a {
  296. z.n += copy(z.buf[z.n:], s[:a])
  297. s = s[a:]
  298. z.flush()
  299. goto LOOP
  300. }
  301. z.n += copy(z.buf[z.n:], s)
  302. }
  303. func (z *bufioEncWriter) writestr(s string) {
  304. // z.writeb(bytesView(s)) // inlined below
  305. LOOP:
  306. a := len(z.buf) - z.n
  307. if len(s) > a {
  308. z.n += copy(z.buf[z.n:], s[:a])
  309. s = s[a:]
  310. z.flush()
  311. goto LOOP
  312. }
  313. z.n += copy(z.buf[z.n:], s)
  314. }
  315. func (z *bufioEncWriter) writen1(b1 byte) {
  316. if 1 > len(z.buf)-z.n {
  317. z.flush()
  318. }
  319. z.buf[z.n] = b1
  320. z.n++
  321. }
  322. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  323. if 2 > len(z.buf)-z.n {
  324. z.flush()
  325. }
  326. z.buf[z.n+1] = b2
  327. z.buf[z.n] = b1
  328. z.n += 2
  329. }
  330. func (z *bufioEncWriter) endErr() (err error) {
  331. if z.n > 0 {
  332. err = z.flushErr()
  333. }
  334. return
  335. }
  336. // ---------------------------------------------
  337. // bytesEncAppender implements encWriter and can write to an byte slice.
  338. type bytesEncAppender struct {
  339. b []byte
  340. out *[]byte
  341. }
  342. func (z *bytesEncAppender) writeb(s []byte) {
  343. z.b = append(z.b, s...)
  344. }
  345. func (z *bytesEncAppender) writestr(s string) {
  346. z.b = append(z.b, s...)
  347. }
  348. func (z *bytesEncAppender) writen1(b1 byte) {
  349. z.b = append(z.b, b1)
  350. }
  351. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  352. z.b = append(z.b, b1, b2)
  353. }
  354. func (z *bytesEncAppender) endErr() error {
  355. *(z.out) = z.b
  356. return nil
  357. }
  358. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  359. z.b = in[:0]
  360. z.out = out
  361. }
  362. // ---------------------------------------------
  363. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  364. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  365. }
  366. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  367. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  368. }
  369. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  370. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  371. }
  372. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  373. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  374. e.marshalRaw(bs, fnerr)
  375. }
  376. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  377. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  378. e.marshalUtf8(bs, fnerr)
  379. }
  380. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  381. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  382. e.marshalAsis(bs, fnerr)
  383. }
  384. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  385. e.rawBytes(rv2i(rv).(Raw))
  386. }
  387. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  388. e.e.EncodeNil()
  389. }
  390. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  391. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  392. }
  393. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  394. ti := f.ti
  395. ee := e.e
  396. // array may be non-addressable, so we have to manage with care
  397. // (don't call rv.Bytes, rv.Slice, etc).
  398. // E.g. type struct S{B [2]byte};
  399. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  400. if f.seq != seqTypeArray {
  401. if rv.IsNil() {
  402. ee.EncodeNil()
  403. return
  404. }
  405. // If in this method, then there was no extension function defined.
  406. // So it's okay to treat as []byte.
  407. if ti.rtid == uint8SliceTypId {
  408. ee.EncodeStringBytesRaw(rv.Bytes())
  409. return
  410. }
  411. }
  412. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  413. e.errorf("send-only channel cannot be encoded")
  414. }
  415. elemsep := e.esep
  416. rtelem := ti.elem
  417. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  418. var l int
  419. // if a slice, array or chan of bytes, treat specially
  420. if rtelemIsByte {
  421. switch f.seq {
  422. case seqTypeSlice:
  423. ee.EncodeStringBytesRaw(rv.Bytes())
  424. case seqTypeArray:
  425. l = rv.Len()
  426. if rv.CanAddr() {
  427. ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  428. } else {
  429. var bs []byte
  430. if l <= cap(e.b) {
  431. bs = e.b[:l]
  432. } else {
  433. bs = make([]byte, l)
  434. }
  435. reflect.Copy(reflect.ValueOf(bs), rv)
  436. ee.EncodeStringBytesRaw(bs)
  437. }
  438. case seqTypeChan:
  439. // do not use range, so that the number of elements encoded
  440. // does not change, and encoding does not hang waiting on someone to close chan.
  441. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  442. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  443. if rv.IsNil() {
  444. ee.EncodeNil()
  445. break
  446. }
  447. bs := e.b[:0]
  448. irv := rv2i(rv)
  449. ch, ok := irv.(<-chan byte)
  450. if !ok {
  451. ch = irv.(chan byte)
  452. }
  453. L1:
  454. switch timeout := e.h.ChanRecvTimeout; {
  455. case timeout == 0: // only consume available
  456. for {
  457. select {
  458. case b := <-ch:
  459. bs = append(bs, b)
  460. default:
  461. break L1
  462. }
  463. }
  464. case timeout > 0: // consume until timeout
  465. tt := time.NewTimer(timeout)
  466. for {
  467. select {
  468. case b := <-ch:
  469. bs = append(bs, b)
  470. case <-tt.C:
  471. // close(tt.C)
  472. break L1
  473. }
  474. }
  475. default: // consume until close
  476. for b := range ch {
  477. bs = append(bs, b)
  478. }
  479. }
  480. ee.EncodeStringBytesRaw(bs)
  481. }
  482. return
  483. }
  484. // if chan, consume chan into a slice, and work off that slice.
  485. if f.seq == seqTypeChan {
  486. rvcs := reflect.Zero(reflect.SliceOf(rtelem))
  487. timeout := e.h.ChanRecvTimeout
  488. if timeout < 0 { // consume until close
  489. for {
  490. recv, recvOk := rv.Recv()
  491. if !recvOk {
  492. break
  493. }
  494. rvcs = reflect.Append(rvcs, recv)
  495. }
  496. } else {
  497. cases := make([]reflect.SelectCase, 2)
  498. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  499. if timeout == 0 {
  500. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  501. } else {
  502. tt := time.NewTimer(timeout)
  503. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  504. }
  505. for {
  506. chosen, recv, recvOk := reflect.Select(cases)
  507. if chosen == 1 || !recvOk {
  508. break
  509. }
  510. rvcs = reflect.Append(rvcs, recv)
  511. }
  512. }
  513. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  514. }
  515. l = rv.Len()
  516. if ti.mbs {
  517. if l%2 == 1 {
  518. e.errorf("mapBySlice requires even slice length, but got %v", l)
  519. return
  520. }
  521. ee.WriteMapStart(l / 2)
  522. } else {
  523. ee.WriteArrayStart(l)
  524. }
  525. if l > 0 {
  526. var fn *codecFn
  527. for rtelem.Kind() == reflect.Ptr {
  528. rtelem = rtelem.Elem()
  529. }
  530. // if kind is reflect.Interface, do not pre-determine the
  531. // encoding type, because preEncodeValue may break it down to
  532. // a concrete type and kInterface will bomb.
  533. if rtelem.Kind() != reflect.Interface {
  534. fn = e.h.fn(rtelem, true, true)
  535. }
  536. for j := 0; j < l; j++ {
  537. if elemsep {
  538. if ti.mbs {
  539. if j%2 == 0 {
  540. ee.WriteMapElemKey()
  541. } else {
  542. ee.WriteMapElemValue()
  543. }
  544. } else {
  545. ee.WriteArrayElem()
  546. }
  547. }
  548. e.encodeValue(rv.Index(j), fn, true)
  549. }
  550. }
  551. if ti.mbs {
  552. ee.WriteMapEnd()
  553. } else {
  554. ee.WriteArrayEnd()
  555. }
  556. }
  557. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  558. fti := f.ti
  559. tisfi := fti.sfiSrc
  560. toMap := !(fti.toArray || e.h.StructToArray)
  561. if toMap {
  562. tisfi = fti.sfiSort
  563. }
  564. ee := e.e
  565. sfn := structFieldNode{v: rv, update: false}
  566. if toMap {
  567. ee.WriteMapStart(len(tisfi))
  568. if e.esep {
  569. for _, si := range tisfi {
  570. ee.WriteMapElemKey()
  571. // ee.EncodeStringEnc(cUTF8, si.encName)
  572. e.kStructFieldKey(fti.keyType, si.encNameAsciiAlphaNum, si.encName)
  573. ee.WriteMapElemValue()
  574. e.encodeValue(sfn.field(si), nil, true)
  575. }
  576. } else {
  577. for _, si := range tisfi {
  578. // ee.EncodeStringEnc(cUTF8, si.encName)
  579. e.kStructFieldKey(fti.keyType, si.encNameAsciiAlphaNum, si.encName)
  580. e.encodeValue(sfn.field(si), nil, true)
  581. }
  582. }
  583. ee.WriteMapEnd()
  584. } else {
  585. ee.WriteArrayStart(len(tisfi))
  586. if e.esep {
  587. for _, si := range tisfi {
  588. ee.WriteArrayElem()
  589. e.encodeValue(sfn.field(si), nil, true)
  590. }
  591. } else {
  592. for _, si := range tisfi {
  593. e.encodeValue(sfn.field(si), nil, true)
  594. }
  595. }
  596. ee.WriteArrayEnd()
  597. }
  598. }
  599. func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
  600. var m must
  601. // use if-else-if, not switch (which compiles to binary-search)
  602. // since keyType is typically valueTypeString, branch prediction is pretty good.
  603. if keyType == valueTypeString {
  604. if e.js && encNameAsciiAlphaNum { // keyType == valueTypeString
  605. e.w.writen1('"')
  606. e.w.writestr(encName)
  607. e.w.writen1('"')
  608. } else { // keyType == valueTypeString
  609. e.e.EncodeStringEnc(cUTF8, encName)
  610. }
  611. } else if keyType == valueTypeInt {
  612. e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  613. } else if keyType == valueTypeUint {
  614. e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  615. } else if keyType == valueTypeFloat {
  616. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  617. }
  618. }
  619. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  620. fti := f.ti
  621. elemsep := e.esep
  622. tisfi := fti.sfiSrc
  623. var newlen int
  624. toMap := !(fti.toArray || e.h.StructToArray)
  625. var mf map[string]interface{}
  626. if f.ti.mf {
  627. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  628. toMap = true
  629. newlen += len(mf)
  630. } else if f.ti.mfp {
  631. if rv.CanAddr() {
  632. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  633. } else {
  634. // make a new addressable value of same one, and use it
  635. rv2 := reflect.New(rv.Type())
  636. rv2.Elem().Set(rv)
  637. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  638. }
  639. toMap = true
  640. newlen += len(mf)
  641. }
  642. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  643. if toMap {
  644. tisfi = fti.sfiSort
  645. }
  646. newlen += len(tisfi)
  647. ee := e.e
  648. // Use sync.Pool to reduce allocating slices unnecessarily.
  649. // The cost of sync.Pool is less than the cost of new allocation.
  650. //
  651. // Each element of the array pools one of encStructPool(8|16|32|64).
  652. // It allows the re-use of slices up to 64 in length.
  653. // A performance cost of encoding structs was collecting
  654. // which values were empty and should be omitted.
  655. // We needed slices of reflect.Value and string to collect them.
  656. // This shared pool reduces the amount of unnecessary creation we do.
  657. // The cost is that of locking sometimes, but sync.Pool is efficient
  658. // enough to reduce thread contention.
  659. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  660. var spool sfiRvPooler
  661. var fkvs = spool.get(newlen)
  662. var kv sfiRv
  663. recur := e.h.RecursiveEmptyCheck
  664. sfn := structFieldNode{v: rv, update: false}
  665. newlen = 0
  666. for _, si := range tisfi {
  667. // kv.r = si.field(rv, false)
  668. kv.r = sfn.field(si)
  669. if toMap {
  670. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  671. continue
  672. }
  673. kv.v = si // si.encName
  674. } else {
  675. // use the zero value.
  676. // if a reference or struct, set to nil (so you do not output too much)
  677. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  678. switch kv.r.Kind() {
  679. case reflect.Struct, reflect.Interface, reflect.Ptr,
  680. reflect.Array, reflect.Map, reflect.Slice:
  681. kv.r = reflect.Value{} //encode as nil
  682. }
  683. }
  684. }
  685. fkvs[newlen] = kv
  686. newlen++
  687. }
  688. fkvs = fkvs[:newlen]
  689. var mflen int
  690. for k, v := range mf {
  691. if k == "" {
  692. delete(mf, k)
  693. continue
  694. }
  695. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  696. delete(mf, k)
  697. continue
  698. }
  699. mflen++
  700. }
  701. var j int
  702. if toMap {
  703. ee.WriteMapStart(newlen + mflen)
  704. if elemsep {
  705. for j = 0; j < len(fkvs); j++ {
  706. kv = fkvs[j]
  707. ee.WriteMapElemKey()
  708. // ee.EncodeStringEnc(cUTF8, kv.v)
  709. e.kStructFieldKey(fti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  710. ee.WriteMapElemValue()
  711. e.encodeValue(kv.r, nil, true)
  712. }
  713. } else {
  714. for j = 0; j < len(fkvs); j++ {
  715. kv = fkvs[j]
  716. // ee.EncodeStringEnc(cUTF8, kv.v)
  717. e.kStructFieldKey(fti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  718. e.encodeValue(kv.r, nil, true)
  719. }
  720. }
  721. // now, add the others
  722. for k, v := range mf {
  723. ee.WriteMapElemKey()
  724. e.kStructFieldKey(fti.keyType, false, k)
  725. ee.WriteMapElemValue()
  726. e.encode(v)
  727. }
  728. ee.WriteMapEnd()
  729. } else {
  730. ee.WriteArrayStart(newlen)
  731. if elemsep {
  732. for j = 0; j < len(fkvs); j++ {
  733. ee.WriteArrayElem()
  734. e.encodeValue(fkvs[j].r, nil, true)
  735. }
  736. } else {
  737. for j = 0; j < len(fkvs); j++ {
  738. e.encodeValue(fkvs[j].r, nil, true)
  739. }
  740. }
  741. ee.WriteArrayEnd()
  742. }
  743. // do not use defer. Instead, use explicit pool return at end of function.
  744. // defer has a cost we are trying to avoid.
  745. // If there is a panic and these slices are not returned, it is ok.
  746. spool.end()
  747. }
  748. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  749. ee := e.e
  750. if rv.IsNil() {
  751. ee.EncodeNil()
  752. return
  753. }
  754. l := rv.Len()
  755. ee.WriteMapStart(l)
  756. if l == 0 {
  757. ee.WriteMapEnd()
  758. return
  759. }
  760. // var asSymbols bool
  761. // determine the underlying key and val encFn's for the map.
  762. // This eliminates some work which is done for each loop iteration i.e.
  763. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  764. //
  765. // However, if kind is reflect.Interface, do not pre-determine the
  766. // encoding type, because preEncodeValue may break it down to
  767. // a concrete type and kInterface will bomb.
  768. var keyFn, valFn *codecFn
  769. ti := f.ti
  770. rtkey0 := ti.key
  771. rtkey := rtkey0
  772. rtval0 := ti.elem
  773. rtval := rtval0
  774. // rtkeyid := rt2id(rtkey0)
  775. for rtval.Kind() == reflect.Ptr {
  776. rtval = rtval.Elem()
  777. }
  778. if rtval.Kind() != reflect.Interface {
  779. valFn = e.h.fn(rtval, true, true)
  780. }
  781. mks := rv.MapKeys()
  782. if e.h.Canonical {
  783. e.kMapCanonical(rtkey, rv, mks, valFn)
  784. ee.WriteMapEnd()
  785. return
  786. }
  787. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  788. if !keyTypeIsString {
  789. for rtkey.Kind() == reflect.Ptr {
  790. rtkey = rtkey.Elem()
  791. }
  792. if rtkey.Kind() != reflect.Interface {
  793. // rtkeyid = rt2id(rtkey)
  794. keyFn = e.h.fn(rtkey, true, true)
  795. }
  796. }
  797. // for j, lmks := 0, len(mks); j < lmks; j++ {
  798. for j := range mks {
  799. if e.esep {
  800. ee.WriteMapElemKey()
  801. }
  802. if keyTypeIsString {
  803. if e.h.StringToRaw {
  804. ee.EncodeStringBytesRaw(bytesView(mks[j].String()))
  805. } else {
  806. ee.EncodeStringEnc(cUTF8, mks[j].String())
  807. }
  808. } else {
  809. e.encodeValue(mks[j], keyFn, true)
  810. }
  811. if e.esep {
  812. ee.WriteMapElemValue()
  813. }
  814. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  815. }
  816. ee.WriteMapEnd()
  817. }
  818. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  819. ee := e.e
  820. elemsep := e.esep
  821. // we previously did out-of-band if an extension was registered.
  822. // This is not necessary, as the natural kind is sufficient for ordering.
  823. switch rtkey.Kind() {
  824. case reflect.Bool:
  825. mksv := make([]boolRv, len(mks))
  826. for i, k := range mks {
  827. v := &mksv[i]
  828. v.r = k
  829. v.v = k.Bool()
  830. }
  831. sort.Sort(boolRvSlice(mksv))
  832. for i := range mksv {
  833. if elemsep {
  834. ee.WriteMapElemKey()
  835. }
  836. ee.EncodeBool(mksv[i].v)
  837. if elemsep {
  838. ee.WriteMapElemValue()
  839. }
  840. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  841. }
  842. case reflect.String:
  843. mksv := make([]stringRv, len(mks))
  844. for i, k := range mks {
  845. v := &mksv[i]
  846. v.r = k
  847. v.v = k.String()
  848. }
  849. sort.Sort(stringRvSlice(mksv))
  850. for i := range mksv {
  851. if elemsep {
  852. ee.WriteMapElemKey()
  853. }
  854. if e.h.StringToRaw {
  855. ee.EncodeStringBytesRaw(bytesView(mksv[i].v))
  856. } else {
  857. ee.EncodeStringEnc(cUTF8, mksv[i].v)
  858. }
  859. if elemsep {
  860. ee.WriteMapElemValue()
  861. }
  862. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  863. }
  864. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  865. mksv := make([]uintRv, len(mks))
  866. for i, k := range mks {
  867. v := &mksv[i]
  868. v.r = k
  869. v.v = k.Uint()
  870. }
  871. sort.Sort(uintRvSlice(mksv))
  872. for i := range mksv {
  873. if elemsep {
  874. ee.WriteMapElemKey()
  875. }
  876. ee.EncodeUint(mksv[i].v)
  877. if elemsep {
  878. ee.WriteMapElemValue()
  879. }
  880. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  881. }
  882. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  883. mksv := make([]intRv, len(mks))
  884. for i, k := range mks {
  885. v := &mksv[i]
  886. v.r = k
  887. v.v = k.Int()
  888. }
  889. sort.Sort(intRvSlice(mksv))
  890. for i := range mksv {
  891. if elemsep {
  892. ee.WriteMapElemKey()
  893. }
  894. ee.EncodeInt(mksv[i].v)
  895. if elemsep {
  896. ee.WriteMapElemValue()
  897. }
  898. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  899. }
  900. case reflect.Float32:
  901. mksv := make([]floatRv, len(mks))
  902. for i, k := range mks {
  903. v := &mksv[i]
  904. v.r = k
  905. v.v = k.Float()
  906. }
  907. sort.Sort(floatRvSlice(mksv))
  908. for i := range mksv {
  909. if elemsep {
  910. ee.WriteMapElemKey()
  911. }
  912. ee.EncodeFloat32(float32(mksv[i].v))
  913. if elemsep {
  914. ee.WriteMapElemValue()
  915. }
  916. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  917. }
  918. case reflect.Float64:
  919. mksv := make([]floatRv, len(mks))
  920. for i, k := range mks {
  921. v := &mksv[i]
  922. v.r = k
  923. v.v = k.Float()
  924. }
  925. sort.Sort(floatRvSlice(mksv))
  926. for i := range mksv {
  927. if elemsep {
  928. ee.WriteMapElemKey()
  929. }
  930. ee.EncodeFloat64(mksv[i].v)
  931. if elemsep {
  932. ee.WriteMapElemValue()
  933. }
  934. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  935. }
  936. case reflect.Struct:
  937. if rv.Type() == timeTyp {
  938. mksv := make([]timeRv, len(mks))
  939. for i, k := range mks {
  940. v := &mksv[i]
  941. v.r = k
  942. v.v = rv2i(k).(time.Time)
  943. }
  944. sort.Sort(timeRvSlice(mksv))
  945. for i := range mksv {
  946. if elemsep {
  947. ee.WriteMapElemKey()
  948. }
  949. ee.EncodeTime(mksv[i].v)
  950. if elemsep {
  951. ee.WriteMapElemValue()
  952. }
  953. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  954. }
  955. break
  956. }
  957. fallthrough
  958. default:
  959. // out-of-band
  960. // first encode each key to a []byte first, then sort them, then record
  961. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  962. e2 := NewEncoderBytes(&mksv, e.hh)
  963. mksbv := make([]bytesRv, len(mks))
  964. for i, k := range mks {
  965. v := &mksbv[i]
  966. l := len(mksv)
  967. e2.MustEncode(k)
  968. v.r = k
  969. v.v = mksv[l:]
  970. }
  971. sort.Sort(bytesRvSlice(mksbv))
  972. for j := range mksbv {
  973. if elemsep {
  974. ee.WriteMapElemKey()
  975. }
  976. e.asis(mksbv[j].v)
  977. if elemsep {
  978. ee.WriteMapElemValue()
  979. }
  980. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  981. }
  982. }
  983. }
  984. // // --------------------------------------------------
  985. type encWriterSwitch struct {
  986. // wi *ioEncWriter
  987. wb bytesEncAppender
  988. wf *bufioEncWriter
  989. // typ entryType
  990. bytes bool // encoding to []byte
  991. esep bool // whether it has elem separators
  992. isas bool // whether e.as != nil
  993. js bool // is json encoder?
  994. be bool // is binary encoder?
  995. _ [2]byte // padding
  996. // _ [2]uint64 // padding
  997. // _ uint64 // padding
  998. }
  999. func (z *encWriterSwitch) writeb(s []byte) {
  1000. if z.bytes {
  1001. z.wb.writeb(s)
  1002. } else {
  1003. z.wf.writeb(s)
  1004. }
  1005. }
  1006. func (z *encWriterSwitch) writestr(s string) {
  1007. if z.bytes {
  1008. z.wb.writestr(s)
  1009. } else {
  1010. z.wf.writestr(s)
  1011. }
  1012. }
  1013. func (z *encWriterSwitch) writen1(b1 byte) {
  1014. if z.bytes {
  1015. z.wb.writen1(b1)
  1016. } else {
  1017. z.wf.writen1(b1)
  1018. }
  1019. }
  1020. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1021. if z.bytes {
  1022. z.wb.writen2(b1, b2)
  1023. } else {
  1024. z.wf.writen2(b1, b2)
  1025. }
  1026. }
  1027. func (z *encWriterSwitch) endErr() error {
  1028. if z.bytes {
  1029. return z.wb.endErr()
  1030. }
  1031. return z.wf.endErr()
  1032. }
  1033. func (z *encWriterSwitch) end() {
  1034. if err := z.endErr(); err != nil {
  1035. panic(err)
  1036. }
  1037. }
  1038. /*
  1039. // ------------------------------------------
  1040. func (z *encWriterSwitch) writeb(s []byte) {
  1041. switch z.typ {
  1042. case entryTypeBytes:
  1043. z.wb.writeb(s)
  1044. case entryTypeIo:
  1045. z.wi.writeb(s)
  1046. default:
  1047. z.wf.writeb(s)
  1048. }
  1049. }
  1050. func (z *encWriterSwitch) writestr(s string) {
  1051. switch z.typ {
  1052. case entryTypeBytes:
  1053. z.wb.writestr(s)
  1054. case entryTypeIo:
  1055. z.wi.writestr(s)
  1056. default:
  1057. z.wf.writestr(s)
  1058. }
  1059. }
  1060. func (z *encWriterSwitch) writen1(b1 byte) {
  1061. switch z.typ {
  1062. case entryTypeBytes:
  1063. z.wb.writen1(b1)
  1064. case entryTypeIo:
  1065. z.wi.writen1(b1)
  1066. default:
  1067. z.wf.writen1(b1)
  1068. }
  1069. }
  1070. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1071. switch z.typ {
  1072. case entryTypeBytes:
  1073. z.wb.writen2(b1, b2)
  1074. case entryTypeIo:
  1075. z.wi.writen2(b1, b2)
  1076. default:
  1077. z.wf.writen2(b1, b2)
  1078. }
  1079. }
  1080. func (z *encWriterSwitch) end() {
  1081. switch z.typ {
  1082. case entryTypeBytes:
  1083. z.wb.end()
  1084. case entryTypeIo:
  1085. z.wi.end()
  1086. default:
  1087. z.wf.end()
  1088. }
  1089. }
  1090. // ------------------------------------------
  1091. func (z *encWriterSwitch) writeb(s []byte) {
  1092. if z.bytes {
  1093. z.wb.writeb(s)
  1094. } else {
  1095. z.wi.writeb(s)
  1096. }
  1097. }
  1098. func (z *encWriterSwitch) writestr(s string) {
  1099. if z.bytes {
  1100. z.wb.writestr(s)
  1101. } else {
  1102. z.wi.writestr(s)
  1103. }
  1104. }
  1105. func (z *encWriterSwitch) writen1(b1 byte) {
  1106. if z.bytes {
  1107. z.wb.writen1(b1)
  1108. } else {
  1109. z.wi.writen1(b1)
  1110. }
  1111. }
  1112. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1113. if z.bytes {
  1114. z.wb.writen2(b1, b2)
  1115. } else {
  1116. z.wi.writen2(b1, b2)
  1117. }
  1118. }
  1119. func (z *encWriterSwitch) end() {
  1120. if z.bytes {
  1121. z.wb.end()
  1122. } else {
  1123. z.wi.end()
  1124. }
  1125. }
  1126. */
  1127. // Encoder writes an object to an output stream in a supported format.
  1128. //
  1129. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1130. // concurrently in multiple goroutines.
  1131. //
  1132. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1133. // so its state can be reused to decode new input streams repeatedly.
  1134. // This is the idiomatic way to use.
  1135. type Encoder struct {
  1136. panicHdl
  1137. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1138. e encDriver
  1139. // NOTE: Encoder shouldn't call it's write methods,
  1140. // as the handler MAY need to do some coordination.
  1141. w *encWriterSwitch
  1142. // bw *bufio.Writer
  1143. as encDriverAsis
  1144. err error
  1145. h *BasicHandle
  1146. hh Handle
  1147. // ---- cpu cache line boundary? + 3
  1148. encWriterSwitch
  1149. ci set
  1150. b [(5 * 8)]byte // for encoding chan or (non-addressable) [N]byte
  1151. // ---- writable fields during execution --- *try* to keep in sep cache line
  1152. // ---- cpu cache line boundary?
  1153. // b [scratchByteArrayLen]byte
  1154. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1155. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  1156. }
  1157. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1158. //
  1159. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  1160. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  1161. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1162. e := newEncoder(h)
  1163. e.Reset(w)
  1164. return e
  1165. }
  1166. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1167. // into a byte slice, using zero-copying to temporary slices.
  1168. //
  1169. // It will potentially replace the output byte slice pointed to.
  1170. // After encoding, the out parameter contains the encoded contents.
  1171. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1172. e := newEncoder(h)
  1173. e.ResetBytes(out)
  1174. return e
  1175. }
  1176. func newEncoder(h Handle) *Encoder {
  1177. e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
  1178. e.bytes = true
  1179. if useFinalizers {
  1180. runtime.SetFinalizer(e, (*Encoder).finalize)
  1181. // xdebugf(">>>> new(Encoder) with finalizer")
  1182. }
  1183. e.w = &e.encWriterSwitch
  1184. e.hh = h
  1185. e.esep = h.hasElemSeparators()
  1186. return e
  1187. }
  1188. func (e *Encoder) resetCommon() {
  1189. // e.w = &e.encWriterSwitch
  1190. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1191. e.e = e.hh.newEncDriver(e)
  1192. e.as, e.isas = e.e.(encDriverAsis)
  1193. // e.cr, _ = e.e.(containerStateRecv)
  1194. }
  1195. e.be = e.hh.isBinary()
  1196. _, e.js = e.hh.(*JsonHandle)
  1197. e.e.reset()
  1198. e.err = nil
  1199. }
  1200. // Reset resets the Encoder with a new output stream.
  1201. //
  1202. // This accommodates using the state of the Encoder,
  1203. // where it has "cached" information about sub-engines.
  1204. func (e *Encoder) Reset(w io.Writer) {
  1205. if w == nil {
  1206. return
  1207. }
  1208. // var ok bool
  1209. e.bytes = false
  1210. if e.wf == nil {
  1211. e.wf = new(bufioEncWriter)
  1212. }
  1213. // e.typ = entryTypeUnset
  1214. // if e.h.WriterBufferSize > 0 {
  1215. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1216. // // e.wi.bw = bw
  1217. // // e.wi.sw = bw
  1218. // // e.wi.fw = bw
  1219. // // e.wi.ww = bw
  1220. // if e.wf == nil {
  1221. // e.wf = new(bufioEncWriter)
  1222. // }
  1223. // e.wf.reset(w, e.h.WriterBufferSize)
  1224. // e.typ = entryTypeBufio
  1225. // } else {
  1226. // if e.wi == nil {
  1227. // e.wi = new(ioEncWriter)
  1228. // }
  1229. // e.wi.reset(w)
  1230. // e.typ = entryTypeIo
  1231. // }
  1232. e.wf.reset(w, e.h.WriterBufferSize)
  1233. // e.typ = entryTypeBufio
  1234. // e.w = e.wi
  1235. e.resetCommon()
  1236. }
  1237. // ResetBytes resets the Encoder with a new destination output []byte.
  1238. func (e *Encoder) ResetBytes(out *[]byte) {
  1239. if out == nil {
  1240. return
  1241. }
  1242. var in []byte = *out
  1243. if in == nil {
  1244. in = make([]byte, defEncByteBufSize)
  1245. }
  1246. e.bytes = true
  1247. // e.typ = entryTypeBytes
  1248. e.wb.reset(in, out)
  1249. // e.w = &e.wb
  1250. e.resetCommon()
  1251. }
  1252. // Encode writes an object into a stream.
  1253. //
  1254. // Encoding can be configured via the struct tag for the fields.
  1255. // The key (in the struct tags) that we look at is configurable.
  1256. //
  1257. // By default, we look up the "codec" key in the struct field's tags,
  1258. // and fall bak to the "json" key if "codec" is absent.
  1259. // That key in struct field's tag value is the key name,
  1260. // followed by an optional comma and options.
  1261. //
  1262. // To set an option on all fields (e.g. omitempty on all fields), you
  1263. // can create a field called _struct, and set flags on it. The options
  1264. // which can be set on _struct are:
  1265. // - omitempty: so all fields are omitted if empty
  1266. // - toarray: so struct is encoded as an array
  1267. // - int: so struct key names are encoded as signed integers (instead of strings)
  1268. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1269. // - float: so struct key names are encoded as floats (instead of strings)
  1270. // More details on these below.
  1271. //
  1272. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1273. // - the field's tag is "-", OR
  1274. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1275. //
  1276. // When encoding as a map, the first string in the tag (before the comma)
  1277. // is the map key string to use when encoding.
  1278. // ...
  1279. // This key is typically encoded as a string.
  1280. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1281. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1282. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1283. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1284. // This is done with the int,uint or float option on the _struct field (see above).
  1285. //
  1286. // However, struct values may encode as arrays. This happens when:
  1287. // - StructToArray Encode option is set, OR
  1288. // - the tag on the _struct field sets the "toarray" option
  1289. // Note that omitempty is ignored when encoding struct values as arrays,
  1290. // as an entry must be encoded for each field, to maintain its position.
  1291. //
  1292. // Values with types that implement MapBySlice are encoded as stream maps.
  1293. //
  1294. // The empty values (for omitempty option) are false, 0, any nil pointer
  1295. // or interface value, and any array, slice, map, or string of length zero.
  1296. //
  1297. // Anonymous fields are encoded inline except:
  1298. // - the struct tag specifies a replacement name (first value)
  1299. // - the field is of an interface type
  1300. //
  1301. // Examples:
  1302. //
  1303. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1304. // type MyStruct struct {
  1305. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1306. // Field1 string `codec:"-"` //skip this field
  1307. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1308. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1309. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1310. // io.Reader //use key "Reader".
  1311. // MyStruct `codec:"my1" //use key "my1".
  1312. // MyStruct //inline it
  1313. // ...
  1314. // }
  1315. //
  1316. // type MyStruct struct {
  1317. // _struct bool `codec:",toarray"` //encode struct as an array
  1318. // }
  1319. //
  1320. // type MyStruct struct {
  1321. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1322. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1323. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1324. // }
  1325. //
  1326. // The mode of encoding is based on the type of the value. When a value is seen:
  1327. // - If a Selfer, call its CodecEncodeSelf method
  1328. // - If an extension is registered for it, call that extension function
  1329. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1330. // - Else encode it based on its reflect.Kind
  1331. //
  1332. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1333. // Some formats support symbols (e.g. binc) and will properly encode the string
  1334. // only once in the stream, and use a tag to refer to it thereafter.
  1335. func (e *Encoder) Encode(v interface{}) (err error) {
  1336. // tried to use closure, as runtime optimizes defer with no params.
  1337. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1338. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1339. // defer func() { e.deferred(&err) }() }
  1340. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1341. if e.err != nil {
  1342. return e.err
  1343. }
  1344. if recoverPanicToErr {
  1345. defer func() {
  1346. // if error occurred during encoding, return that error;
  1347. // else if error occurred on end'ing (i.e. during flush), return that error.
  1348. err = e.w.endErr()
  1349. x := recover()
  1350. if x == nil {
  1351. e.err = err
  1352. } else {
  1353. panicValToErr(e, x, &e.err)
  1354. err = e.err
  1355. }
  1356. }()
  1357. }
  1358. // defer e.deferred(&err)
  1359. e.mustEncode(v)
  1360. return
  1361. }
  1362. // MustEncode is like Encode, but panics if unable to Encode.
  1363. // This provides insight to the code location that triggered the error.
  1364. func (e *Encoder) MustEncode(v interface{}) {
  1365. if e.err != nil {
  1366. panic(e.err)
  1367. }
  1368. e.mustEncode(v)
  1369. }
  1370. func (e *Encoder) mustEncode(v interface{}) {
  1371. if e.wf == nil {
  1372. e.encode(v)
  1373. e.e.atEndOfEncode()
  1374. e.w.end()
  1375. return
  1376. }
  1377. if e.wf.buf == nil {
  1378. e.wf.buf = e.wf.bytesBufPooler.get(e.wf.sz)
  1379. }
  1380. e.wf.calls++
  1381. e.encode(v)
  1382. e.e.atEndOfEncode()
  1383. e.w.end()
  1384. e.wf.calls--
  1385. if !e.h.ExplicitRelease && e.wf.calls == 0 {
  1386. e.wf.release()
  1387. }
  1388. }
  1389. // func (e *Encoder) deferred(err1 *error) {
  1390. // e.w.end()
  1391. // if recoverPanicToErr {
  1392. // if x := recover(); x != nil {
  1393. // panicValToErr(e, x, err1)
  1394. // panicValToErr(e, x, &e.err)
  1395. // }
  1396. // }
  1397. // }
  1398. //go:noinline -- as it is run by finalizer
  1399. func (e *Encoder) finalize() {
  1400. // xdebugf("finalizing Encoder")
  1401. e.Release()
  1402. }
  1403. // Release releases shared (pooled) resources.
  1404. //
  1405. // It is important to call Release() when done with an Encoder, so those resources
  1406. // are released instantly for use by subsequently created Encoders.
  1407. func (e *Encoder) Release() {
  1408. if e.wf != nil {
  1409. e.wf.release()
  1410. }
  1411. }
  1412. func (e *Encoder) encode(iv interface{}) {
  1413. // a switch with only concrete types can be optimized.
  1414. // consequently, we deal with nil and interfaces outside the switch.
  1415. if iv == nil || definitelyNil(iv) {
  1416. e.e.EncodeNil()
  1417. return
  1418. }
  1419. switch v := iv.(type) {
  1420. // case nil:
  1421. // case Selfer:
  1422. case Raw:
  1423. e.rawBytes(v)
  1424. case reflect.Value:
  1425. e.encodeValue(v, nil, true)
  1426. case string:
  1427. if e.h.StringToRaw {
  1428. e.e.EncodeStringBytesRaw(bytesView(v))
  1429. } else {
  1430. e.e.EncodeStringEnc(cUTF8, v)
  1431. }
  1432. case bool:
  1433. e.e.EncodeBool(v)
  1434. case int:
  1435. e.e.EncodeInt(int64(v))
  1436. case int8:
  1437. e.e.EncodeInt(int64(v))
  1438. case int16:
  1439. e.e.EncodeInt(int64(v))
  1440. case int32:
  1441. e.e.EncodeInt(int64(v))
  1442. case int64:
  1443. e.e.EncodeInt(v)
  1444. case uint:
  1445. e.e.EncodeUint(uint64(v))
  1446. case uint8:
  1447. e.e.EncodeUint(uint64(v))
  1448. case uint16:
  1449. e.e.EncodeUint(uint64(v))
  1450. case uint32:
  1451. e.e.EncodeUint(uint64(v))
  1452. case uint64:
  1453. e.e.EncodeUint(v)
  1454. case uintptr:
  1455. e.e.EncodeUint(uint64(v))
  1456. case float32:
  1457. e.e.EncodeFloat32(v)
  1458. case float64:
  1459. e.e.EncodeFloat64(v)
  1460. case time.Time:
  1461. e.e.EncodeTime(v)
  1462. case []uint8:
  1463. e.e.EncodeStringBytesRaw(v)
  1464. case *Raw:
  1465. e.rawBytes(*v)
  1466. case *string:
  1467. if e.h.StringToRaw {
  1468. e.e.EncodeStringBytesRaw(bytesView(*v))
  1469. } else {
  1470. e.e.EncodeStringEnc(cUTF8, *v)
  1471. }
  1472. case *bool:
  1473. e.e.EncodeBool(*v)
  1474. case *int:
  1475. e.e.EncodeInt(int64(*v))
  1476. case *int8:
  1477. e.e.EncodeInt(int64(*v))
  1478. case *int16:
  1479. e.e.EncodeInt(int64(*v))
  1480. case *int32:
  1481. e.e.EncodeInt(int64(*v))
  1482. case *int64:
  1483. e.e.EncodeInt(*v)
  1484. case *uint:
  1485. e.e.EncodeUint(uint64(*v))
  1486. case *uint8:
  1487. e.e.EncodeUint(uint64(*v))
  1488. case *uint16:
  1489. e.e.EncodeUint(uint64(*v))
  1490. case *uint32:
  1491. e.e.EncodeUint(uint64(*v))
  1492. case *uint64:
  1493. e.e.EncodeUint(*v)
  1494. case *uintptr:
  1495. e.e.EncodeUint(uint64(*v))
  1496. case *float32:
  1497. e.e.EncodeFloat32(*v)
  1498. case *float64:
  1499. e.e.EncodeFloat64(*v)
  1500. case *time.Time:
  1501. e.e.EncodeTime(*v)
  1502. case *[]uint8:
  1503. e.e.EncodeStringBytesRaw(*v)
  1504. default:
  1505. if v, ok := iv.(Selfer); ok {
  1506. v.CodecEncodeSelf(e)
  1507. } else if !fastpathEncodeTypeSwitch(iv, e) {
  1508. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1509. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1510. }
  1511. }
  1512. }
  1513. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1514. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1515. var sptr uintptr
  1516. var rvp reflect.Value
  1517. var rvpValid bool
  1518. TOP:
  1519. switch rv.Kind() {
  1520. case reflect.Ptr:
  1521. if rv.IsNil() {
  1522. e.e.EncodeNil()
  1523. return
  1524. }
  1525. rvpValid = true
  1526. rvp = rv
  1527. rv = rv.Elem()
  1528. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1529. // TODO: Movable pointers will be an issue here. Future problem.
  1530. sptr = rv.UnsafeAddr()
  1531. break TOP
  1532. }
  1533. goto TOP
  1534. case reflect.Interface:
  1535. if rv.IsNil() {
  1536. e.e.EncodeNil()
  1537. return
  1538. }
  1539. rv = rv.Elem()
  1540. goto TOP
  1541. case reflect.Slice, reflect.Map:
  1542. if rv.IsNil() {
  1543. e.e.EncodeNil()
  1544. return
  1545. }
  1546. case reflect.Invalid, reflect.Func:
  1547. e.e.EncodeNil()
  1548. return
  1549. }
  1550. if sptr != 0 && (&e.ci).add(sptr) {
  1551. e.errorf("circular reference found: # %d", sptr)
  1552. }
  1553. if fn == nil {
  1554. rt := rv.Type()
  1555. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1556. fn = e.h.fn(rt, checkFastpath, true)
  1557. }
  1558. if fn.i.addrE {
  1559. if rvpValid {
  1560. fn.fe(e, &fn.i, rvp)
  1561. } else if rv.CanAddr() {
  1562. fn.fe(e, &fn.i, rv.Addr())
  1563. } else {
  1564. rv2 := reflect.New(rv.Type())
  1565. rv2.Elem().Set(rv)
  1566. fn.fe(e, &fn.i, rv2)
  1567. }
  1568. } else {
  1569. fn.fe(e, &fn.i, rv)
  1570. }
  1571. if sptr != 0 {
  1572. (&e.ci).remove(sptr)
  1573. }
  1574. }
  1575. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1576. // if fnerr != nil {
  1577. // panic(fnerr)
  1578. // }
  1579. // if bs == nil {
  1580. // e.e.EncodeNil()
  1581. // } else if asis {
  1582. // e.asis(bs)
  1583. // } else {
  1584. // e.e.EncodeStringBytesRaw(bs)
  1585. // }
  1586. // }
  1587. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1588. if fnerr != nil {
  1589. panic(fnerr)
  1590. }
  1591. if bs == nil {
  1592. e.e.EncodeNil()
  1593. } else {
  1594. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1595. }
  1596. }
  1597. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1598. if fnerr != nil {
  1599. panic(fnerr)
  1600. }
  1601. if bs == nil {
  1602. e.e.EncodeNil()
  1603. } else {
  1604. e.asis(bs)
  1605. }
  1606. }
  1607. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1608. if fnerr != nil {
  1609. panic(fnerr)
  1610. }
  1611. if bs == nil {
  1612. e.e.EncodeNil()
  1613. } else {
  1614. e.e.EncodeStringBytesRaw(bs)
  1615. }
  1616. }
  1617. func (e *Encoder) asis(v []byte) {
  1618. if e.isas {
  1619. e.as.EncodeAsis(v)
  1620. } else {
  1621. e.w.writeb(v)
  1622. }
  1623. }
  1624. func (e *Encoder) rawBytes(vv Raw) {
  1625. v := []byte(vv)
  1626. if !e.h.Raw {
  1627. e.errorf("Raw values cannot be encoded: %v", v)
  1628. }
  1629. e.asis(v)
  1630. }
  1631. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1632. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1633. }
  1634. // func encStringAsRawBytesMaybe(ee encDriver, s string, stringToRaw bool) {
  1635. // if stringToRaw {
  1636. // ee.EncodeStringBytesRaw(bytesView(s))
  1637. // } else {
  1638. // ee.EncodeStringEnc(cUTF8, s)
  1639. // }
  1640. // }