encode.go 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "runtime"
  11. "sort"
  12. "strconv"
  13. "time"
  14. )
  15. // defEncByteBufSize is the default size of []byte used
  16. // for bufio buffer or []byte (when nil passed)
  17. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  18. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  19. /*
  20. // encWriter abstracts writing to a byte array or to an io.Writer.
  21. //
  22. //
  23. // Deprecated: Use encWriterSwitch instead.
  24. type encWriter interface {
  25. writeb([]byte)
  26. writestr(string)
  27. writeqstr(string) // write string wrapped in quotes ie "..."
  28. writen1(byte)
  29. writen2(byte, byte)
  30. end()
  31. }
  32. */
  33. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  34. type encDriver interface {
  35. EncodeNil()
  36. EncodeInt(i int64)
  37. EncodeUint(i uint64)
  38. EncodeBool(b bool)
  39. EncodeFloat32(f float32)
  40. EncodeFloat64(f float64)
  41. // encodeExtPreamble(xtag byte, length int)
  42. EncodeRawExt(re *RawExt, e *Encoder)
  43. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  44. EncodeStringEnc(c charEncoding, v string) // c cannot be cRAW
  45. // EncodeSymbol(v string)
  46. EncodeStringBytesRaw(v []byte)
  47. EncodeTime(time.Time)
  48. //encBignum(f *big.Int)
  49. //encStringRunes(c charEncoding, v []rune)
  50. WriteArrayStart(length int)
  51. WriteArrayElem()
  52. WriteArrayEnd()
  53. WriteMapStart(length int)
  54. WriteMapElemKey()
  55. WriteMapElemValue()
  56. WriteMapEnd()
  57. reset()
  58. atEndOfEncode()
  59. }
  60. type encDriverAsis interface {
  61. EncodeAsis(v []byte)
  62. }
  63. type encodeError struct {
  64. codecError
  65. }
  66. func (e encodeError) Error() string {
  67. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  68. }
  69. type encDriverNoopContainerWriter struct{}
  70. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  71. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  72. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  73. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  74. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  75. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  76. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  77. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  78. type encDriverTrackContainerWriter struct {
  79. c containerState
  80. }
  81. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  82. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  83. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  84. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  85. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  86. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  87. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  88. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  89. // type ioEncWriterWriter interface {
  90. // WriteByte(c byte) error
  91. // WriteString(s string) (n int, err error)
  92. // Write(p []byte) (n int, err error)
  93. // }
  94. // EncodeOptions captures configuration options during encode.
  95. type EncodeOptions struct {
  96. // WriterBufferSize is the size of the buffer used when writing.
  97. //
  98. // if > 0, we use a smart buffer internally for performance purposes.
  99. WriterBufferSize int
  100. // ChanRecvTimeout is the timeout used when selecting from a chan.
  101. //
  102. // Configuring this controls how we receive from a chan during the encoding process.
  103. // - If ==0, we only consume the elements currently available in the chan.
  104. // - if <0, we consume until the chan is closed.
  105. // - If >0, we consume until this timeout.
  106. ChanRecvTimeout time.Duration
  107. // StructToArray specifies to encode a struct as an array, and not as a map
  108. StructToArray bool
  109. // Canonical representation means that encoding a value will always result in the same
  110. // sequence of bytes.
  111. //
  112. // This only affects maps, as the iteration order for maps is random.
  113. //
  114. // The implementation MAY use the natural sort order for the map keys if possible:
  115. //
  116. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  117. // then the map keys are first sorted in natural order and then written
  118. // with corresponding map values to the strema.
  119. // - If there is no natural sort order, then the map keys will first be
  120. // encoded into []byte, and then sorted,
  121. // before writing the sorted keys and the corresponding map values to the stream.
  122. //
  123. Canonical bool
  124. // CheckCircularRef controls whether we check for circular references
  125. // and error fast during an encode.
  126. //
  127. // If enabled, an error is received if a pointer to a struct
  128. // references itself either directly or through one of its fields (iteratively).
  129. //
  130. // This is opt-in, as there may be a performance hit to checking circular references.
  131. CheckCircularRef bool
  132. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  133. // when checking if a value is empty.
  134. //
  135. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  136. RecursiveEmptyCheck bool
  137. // Raw controls whether we encode Raw values.
  138. // This is a "dangerous" option and must be explicitly set.
  139. // If set, we blindly encode Raw values as-is, without checking
  140. // if they are a correct representation of a value in that format.
  141. // If unset, we error out.
  142. Raw bool
  143. // StringToRaw controls how strings are encoded.
  144. //
  145. // As a go string is just an (immutable) sequence of bytes,
  146. // it can be encoded either as raw bytes or as a UTF string.
  147. //
  148. // By default, strings are encoded as UTF-8.
  149. // but can be treated as []byte during an encode.
  150. //
  151. // Note that things which we know (by definition) to be UTF-8
  152. // are ALWAYS encoded as UTF-8 strings.
  153. // These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
  154. StringToRaw bool
  155. // // AsSymbols defines what should be encoded as symbols.
  156. // //
  157. // // Encoding as symbols can reduce the encoded size significantly.
  158. // //
  159. // // However, during decoding, each string to be encoded as a symbol must
  160. // // be checked to see if it has been seen before. Consequently, encoding time
  161. // // will increase if using symbols, because string comparisons has a clear cost.
  162. // //
  163. // // Sample values:
  164. // // AsSymbolNone
  165. // // AsSymbolAll
  166. // // AsSymbolMapStringKeys
  167. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  168. // AsSymbols AsSymbolFlag
  169. }
  170. // ---------------------------------------------
  171. /*
  172. type ioEncStringWriter interface {
  173. WriteString(s string) (n int, err error)
  174. }
  175. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  176. type ioEncWriter struct {
  177. w io.Writer
  178. ww io.Writer
  179. bw io.ByteWriter
  180. sw ioEncStringWriter
  181. fw ioFlusher
  182. b [8]byte
  183. }
  184. func (z *ioEncWriter) reset(w io.Writer) {
  185. z.w = w
  186. var ok bool
  187. if z.bw, ok = w.(io.ByteWriter); !ok {
  188. z.bw = z
  189. }
  190. if z.sw, ok = w.(ioEncStringWriter); !ok {
  191. z.sw = z
  192. }
  193. z.fw, _ = w.(ioFlusher)
  194. z.ww = w
  195. }
  196. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  197. z.b[0] = b
  198. _, err = z.w.Write(z.b[:1])
  199. return
  200. }
  201. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  202. return z.w.Write(bytesView(s))
  203. }
  204. func (z *ioEncWriter) writeb(bs []byte) {
  205. if _, err := z.ww.Write(bs); err != nil {
  206. panic(err)
  207. }
  208. }
  209. func (z *ioEncWriter) writestr(s string) {
  210. if _, err := z.sw.WriteString(s); err != nil {
  211. panic(err)
  212. }
  213. }
  214. func (z *ioEncWriter) writeqstr(s string) {
  215. writestr("\"" + s + "\"")
  216. }
  217. func (z *ioEncWriter) writen1(b byte) {
  218. if err := z.bw.WriteByte(b); err != nil {
  219. panic(err)
  220. }
  221. }
  222. func (z *ioEncWriter) writen2(b1, b2 byte) {
  223. var err error
  224. if err = z.bw.WriteByte(b1); err == nil {
  225. if err = z.bw.WriteByte(b2); err == nil {
  226. return
  227. }
  228. }
  229. panic(err)
  230. }
  231. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  232. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  233. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  234. // panic(err)
  235. // }
  236. // }
  237. //go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
  238. func (z *ioEncWriter) end() {
  239. if z.fw != nil {
  240. if err := z.fw.Flush(); err != nil {
  241. panic(err)
  242. }
  243. }
  244. }
  245. */
  246. // ---------------------------------------------
  247. // bufioEncWriter
  248. type bufioEncWriter struct {
  249. w io.Writer
  250. buf []byte
  251. n int
  252. // Extensions can call Encode() within a current Encode() call.
  253. // We need to know when the top level Encode() call returns,
  254. // so we can decide whether to Release() or not.
  255. calls uint16 // what depth in mustDecode are we in now.
  256. sz int // buf size
  257. // _ uint64 // padding (cache-aligned)
  258. // ---- cache line
  259. // write-most fields below
  260. // less used fields
  261. bytesBufPooler
  262. // a int
  263. // b [4]byte
  264. // err
  265. }
  266. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  267. z.w = w
  268. z.n = 0
  269. z.calls = 0
  270. if bufsize <= 0 {
  271. bufsize = defEncByteBufSize
  272. }
  273. z.sz = bufsize
  274. if cap(z.buf) >= bufsize {
  275. z.buf = z.buf[:cap(z.buf)]
  276. } else {
  277. z.buf = z.bytesBufPooler.get(bufsize)
  278. // z.buf = make([]byte, bufsize)
  279. }
  280. }
  281. func (z *bufioEncWriter) release() {
  282. z.buf = nil
  283. z.bytesBufPooler.end()
  284. }
  285. //go:noinline - flush only called intermittently
  286. func (z *bufioEncWriter) flushErr() (err error) {
  287. n, err := z.w.Write(z.buf[:z.n])
  288. z.n -= n
  289. if z.n > 0 && err == nil {
  290. err = io.ErrShortWrite
  291. }
  292. if n > 0 && z.n > 0 {
  293. copy(z.buf, z.buf[n:z.n+n])
  294. }
  295. return err
  296. }
  297. func (z *bufioEncWriter) flush() {
  298. if err := z.flushErr(); err != nil {
  299. panic(err)
  300. }
  301. }
  302. func (z *bufioEncWriter) writeb(s []byte) {
  303. LOOP:
  304. a := len(z.buf) - z.n
  305. if len(s) > a {
  306. z.n += copy(z.buf[z.n:], s[:a])
  307. s = s[a:]
  308. z.flush()
  309. goto LOOP
  310. }
  311. z.n += copy(z.buf[z.n:], s)
  312. }
  313. func (z *bufioEncWriter) writestr(s string) {
  314. // z.writeb(bytesView(s)) // inlined below
  315. LOOP:
  316. a := len(z.buf) - z.n
  317. if len(s) > a {
  318. z.n += copy(z.buf[z.n:], s[:a])
  319. s = s[a:]
  320. z.flush()
  321. goto LOOP
  322. }
  323. z.n += copy(z.buf[z.n:], s)
  324. }
  325. func (z *bufioEncWriter) writeqstr(s string) {
  326. // z.writen1('"')
  327. // z.writestr(s)
  328. // z.writen1('"')
  329. if z.n+len(s)+2 > len(z.buf) {
  330. z.flush()
  331. }
  332. z.buf[z.n] = '"'
  333. z.n++
  334. LOOP:
  335. a := len(z.buf) - z.n
  336. if len(s)+1 > a {
  337. z.n += copy(z.buf[z.n:], s[:a])
  338. s = s[a:]
  339. z.flush()
  340. goto LOOP
  341. }
  342. z.n += copy(z.buf[z.n:], s)
  343. z.buf[z.n] = '"'
  344. z.n++
  345. }
  346. func (z *bufioEncWriter) writen1(b1 byte) {
  347. if 1 > len(z.buf)-z.n {
  348. z.flush()
  349. }
  350. z.buf[z.n] = b1
  351. z.n++
  352. }
  353. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  354. if 2 > len(z.buf)-z.n {
  355. z.flush()
  356. }
  357. z.buf[z.n+1] = b2
  358. z.buf[z.n] = b1
  359. z.n += 2
  360. }
  361. func (z *bufioEncWriter) endErr() (err error) {
  362. if z.n > 0 {
  363. err = z.flushErr()
  364. }
  365. return
  366. }
  367. // ---------------------------------------------
  368. // bytesEncAppender implements encWriter and can write to an byte slice.
  369. type bytesEncAppender struct {
  370. b []byte
  371. out *[]byte
  372. }
  373. func (z *bytesEncAppender) writeb(s []byte) {
  374. z.b = append(z.b, s...)
  375. }
  376. func (z *bytesEncAppender) writestr(s string) {
  377. z.b = append(z.b, s...)
  378. }
  379. func (z *bytesEncAppender) writeqstr(s string) {
  380. // z.writen1('"')
  381. // z.writestr(s)
  382. // z.writen1('"')
  383. z.b = append(append(append(z.b, '"'), s...), '"')
  384. // z.b = append(z.b, '"')
  385. // z.b = append(z.b, s...)
  386. // z.b = append(z.b, '"')
  387. }
  388. func (z *bytesEncAppender) writen1(b1 byte) {
  389. z.b = append(z.b, b1)
  390. }
  391. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  392. z.b = append(z.b, b1, b2)
  393. }
  394. func (z *bytesEncAppender) endErr() error {
  395. *(z.out) = z.b
  396. return nil
  397. }
  398. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  399. z.b = in[:0]
  400. z.out = out
  401. }
  402. // ---------------------------------------------
  403. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  404. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  405. }
  406. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  407. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  408. }
  409. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  410. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  411. }
  412. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  413. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  414. e.marshalRaw(bs, fnerr)
  415. }
  416. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  417. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  418. e.marshalUtf8(bs, fnerr)
  419. }
  420. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  421. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  422. e.marshalAsis(bs, fnerr)
  423. }
  424. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  425. e.rawBytes(rv2i(rv).(Raw))
  426. }
  427. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  428. e.e.EncodeNil()
  429. }
  430. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  431. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  432. }
  433. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  434. ti := f.ti
  435. ee := e.e
  436. // array may be non-addressable, so we have to manage with care
  437. // (don't call rv.Bytes, rv.Slice, etc).
  438. // E.g. type struct S{B [2]byte};
  439. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  440. if f.seq != seqTypeArray {
  441. if rv.IsNil() {
  442. ee.EncodeNil()
  443. return
  444. }
  445. // If in this method, then there was no extension function defined.
  446. // So it's okay to treat as []byte.
  447. if ti.rtid == uint8SliceTypId {
  448. ee.EncodeStringBytesRaw(rv.Bytes())
  449. return
  450. }
  451. }
  452. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  453. e.errorf("send-only channel cannot be encoded")
  454. }
  455. elemsep := e.esep
  456. rtelem := ti.elem
  457. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  458. var l int
  459. // if a slice, array or chan of bytes, treat specially
  460. if rtelemIsByte {
  461. switch f.seq {
  462. case seqTypeSlice:
  463. ee.EncodeStringBytesRaw(rv.Bytes())
  464. case seqTypeArray:
  465. l = rv.Len()
  466. if rv.CanAddr() {
  467. ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  468. } else {
  469. var bs []byte
  470. if l <= cap(e.b) {
  471. bs = e.b[:l]
  472. } else {
  473. bs = make([]byte, l)
  474. }
  475. reflect.Copy(reflect.ValueOf(bs), rv)
  476. ee.EncodeStringBytesRaw(bs)
  477. }
  478. case seqTypeChan:
  479. // do not use range, so that the number of elements encoded
  480. // does not change, and encoding does not hang waiting on someone to close chan.
  481. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  482. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  483. if rv.IsNil() {
  484. ee.EncodeNil()
  485. break
  486. }
  487. bs := e.b[:0]
  488. irv := rv2i(rv)
  489. ch, ok := irv.(<-chan byte)
  490. if !ok {
  491. ch = irv.(chan byte)
  492. }
  493. L1:
  494. switch timeout := e.h.ChanRecvTimeout; {
  495. case timeout == 0: // only consume available
  496. for {
  497. select {
  498. case b := <-ch:
  499. bs = append(bs, b)
  500. default:
  501. break L1
  502. }
  503. }
  504. case timeout > 0: // consume until timeout
  505. tt := time.NewTimer(timeout)
  506. for {
  507. select {
  508. case b := <-ch:
  509. bs = append(bs, b)
  510. case <-tt.C:
  511. // close(tt.C)
  512. break L1
  513. }
  514. }
  515. default: // consume until close
  516. for b := range ch {
  517. bs = append(bs, b)
  518. }
  519. }
  520. ee.EncodeStringBytesRaw(bs)
  521. }
  522. return
  523. }
  524. // if chan, consume chan into a slice, and work off that slice.
  525. if f.seq == seqTypeChan {
  526. rvcs := reflect.Zero(reflect.SliceOf(rtelem))
  527. timeout := e.h.ChanRecvTimeout
  528. if timeout < 0 { // consume until close
  529. for {
  530. recv, recvOk := rv.Recv()
  531. if !recvOk {
  532. break
  533. }
  534. rvcs = reflect.Append(rvcs, recv)
  535. }
  536. } else {
  537. cases := make([]reflect.SelectCase, 2)
  538. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  539. if timeout == 0 {
  540. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  541. } else {
  542. tt := time.NewTimer(timeout)
  543. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  544. }
  545. for {
  546. chosen, recv, recvOk := reflect.Select(cases)
  547. if chosen == 1 || !recvOk {
  548. break
  549. }
  550. rvcs = reflect.Append(rvcs, recv)
  551. }
  552. }
  553. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  554. }
  555. l = rv.Len()
  556. if ti.mbs {
  557. if l%2 == 1 {
  558. e.errorf("mapBySlice requires even slice length, but got %v", l)
  559. return
  560. }
  561. ee.WriteMapStart(l / 2)
  562. } else {
  563. ee.WriteArrayStart(l)
  564. }
  565. if l > 0 {
  566. var fn *codecFn
  567. for rtelem.Kind() == reflect.Ptr {
  568. rtelem = rtelem.Elem()
  569. }
  570. // if kind is reflect.Interface, do not pre-determine the
  571. // encoding type, because preEncodeValue may break it down to
  572. // a concrete type and kInterface will bomb.
  573. if rtelem.Kind() != reflect.Interface {
  574. fn = e.h.fn(rtelem, true, true)
  575. }
  576. for j := 0; j < l; j++ {
  577. if elemsep {
  578. if ti.mbs {
  579. if j%2 == 0 {
  580. ee.WriteMapElemKey()
  581. } else {
  582. ee.WriteMapElemValue()
  583. }
  584. } else {
  585. ee.WriteArrayElem()
  586. }
  587. }
  588. e.encodeValue(rv.Index(j), fn, true)
  589. }
  590. }
  591. if ti.mbs {
  592. ee.WriteMapEnd()
  593. } else {
  594. ee.WriteArrayEnd()
  595. }
  596. }
  597. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  598. fti := f.ti
  599. tisfi := fti.sfiSrc
  600. toMap := !(fti.toArray || e.h.StructToArray)
  601. if toMap {
  602. tisfi = fti.sfiSort
  603. }
  604. ee := e.e
  605. sfn := structFieldNode{v: rv, update: false}
  606. if toMap {
  607. ee.WriteMapStart(len(tisfi))
  608. if e.esep {
  609. for _, si := range tisfi {
  610. ee.WriteMapElemKey()
  611. e.kStructFieldKey(fti.keyType, si.encNameAsciiAlphaNum, si.encName)
  612. ee.WriteMapElemValue()
  613. e.encodeValue(sfn.field(si), nil, true)
  614. }
  615. } else {
  616. for _, si := range tisfi {
  617. e.kStructFieldKey(fti.keyType, si.encNameAsciiAlphaNum, si.encName)
  618. e.encodeValue(sfn.field(si), nil, true)
  619. }
  620. }
  621. ee.WriteMapEnd()
  622. } else {
  623. ee.WriteArrayStart(len(tisfi))
  624. if e.esep {
  625. for _, si := range tisfi {
  626. ee.WriteArrayElem()
  627. e.encodeValue(sfn.field(si), nil, true)
  628. }
  629. } else {
  630. for _, si := range tisfi {
  631. e.encodeValue(sfn.field(si), nil, true)
  632. }
  633. }
  634. ee.WriteArrayEnd()
  635. }
  636. }
  637. func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
  638. encStructFieldKey(encName, e.e, e.w, keyType, encNameAsciiAlphaNum, e.js)
  639. }
  640. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  641. fti := f.ti
  642. elemsep := e.esep
  643. tisfi := fti.sfiSrc
  644. var newlen int
  645. toMap := !(fti.toArray || e.h.StructToArray)
  646. var mf map[string]interface{}
  647. if f.ti.mf {
  648. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  649. toMap = true
  650. newlen += len(mf)
  651. } else if f.ti.mfp {
  652. if rv.CanAddr() {
  653. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  654. } else {
  655. // make a new addressable value of same one, and use it
  656. rv2 := reflect.New(rv.Type())
  657. rv2.Elem().Set(rv)
  658. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  659. }
  660. toMap = true
  661. newlen += len(mf)
  662. }
  663. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  664. if toMap {
  665. tisfi = fti.sfiSort
  666. }
  667. newlen += len(tisfi)
  668. ee := e.e
  669. // Use sync.Pool to reduce allocating slices unnecessarily.
  670. // The cost of sync.Pool is less than the cost of new allocation.
  671. //
  672. // Each element of the array pools one of encStructPool(8|16|32|64).
  673. // It allows the re-use of slices up to 64 in length.
  674. // A performance cost of encoding structs was collecting
  675. // which values were empty and should be omitted.
  676. // We needed slices of reflect.Value and string to collect them.
  677. // This shared pool reduces the amount of unnecessary creation we do.
  678. // The cost is that of locking sometimes, but sync.Pool is efficient
  679. // enough to reduce thread contention.
  680. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  681. var spool sfiRvPooler
  682. var fkvs = spool.get(newlen)
  683. var kv sfiRv
  684. recur := e.h.RecursiveEmptyCheck
  685. sfn := structFieldNode{v: rv, update: false}
  686. newlen = 0
  687. for _, si := range tisfi {
  688. // kv.r = si.field(rv, false)
  689. kv.r = sfn.field(si)
  690. if toMap {
  691. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  692. continue
  693. }
  694. kv.v = si // si.encName
  695. } else {
  696. // use the zero value.
  697. // if a reference or struct, set to nil (so you do not output too much)
  698. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  699. switch kv.r.Kind() {
  700. case reflect.Struct, reflect.Interface, reflect.Ptr,
  701. reflect.Array, reflect.Map, reflect.Slice:
  702. kv.r = reflect.Value{} //encode as nil
  703. }
  704. }
  705. }
  706. fkvs[newlen] = kv
  707. newlen++
  708. }
  709. fkvs = fkvs[:newlen]
  710. var mflen int
  711. for k, v := range mf {
  712. if k == "" {
  713. delete(mf, k)
  714. continue
  715. }
  716. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  717. delete(mf, k)
  718. continue
  719. }
  720. mflen++
  721. }
  722. var j int
  723. if toMap {
  724. ee.WriteMapStart(newlen + mflen)
  725. if elemsep {
  726. for j = 0; j < len(fkvs); j++ {
  727. kv = fkvs[j]
  728. ee.WriteMapElemKey()
  729. e.kStructFieldKey(fti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  730. ee.WriteMapElemValue()
  731. e.encodeValue(kv.r, nil, true)
  732. }
  733. } else {
  734. for j = 0; j < len(fkvs); j++ {
  735. kv = fkvs[j]
  736. e.kStructFieldKey(fti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  737. e.encodeValue(kv.r, nil, true)
  738. }
  739. }
  740. // now, add the others
  741. for k, v := range mf {
  742. ee.WriteMapElemKey()
  743. e.kStructFieldKey(fti.keyType, false, k)
  744. ee.WriteMapElemValue()
  745. e.encode(v)
  746. }
  747. ee.WriteMapEnd()
  748. } else {
  749. ee.WriteArrayStart(newlen)
  750. if elemsep {
  751. for j = 0; j < len(fkvs); j++ {
  752. ee.WriteArrayElem()
  753. e.encodeValue(fkvs[j].r, nil, true)
  754. }
  755. } else {
  756. for j = 0; j < len(fkvs); j++ {
  757. e.encodeValue(fkvs[j].r, nil, true)
  758. }
  759. }
  760. ee.WriteArrayEnd()
  761. }
  762. // do not use defer. Instead, use explicit pool return at end of function.
  763. // defer has a cost we are trying to avoid.
  764. // If there is a panic and these slices are not returned, it is ok.
  765. spool.end()
  766. }
  767. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  768. ee := e.e
  769. if rv.IsNil() {
  770. ee.EncodeNil()
  771. return
  772. }
  773. l := rv.Len()
  774. ee.WriteMapStart(l)
  775. if l == 0 {
  776. ee.WriteMapEnd()
  777. return
  778. }
  779. // var asSymbols bool
  780. // determine the underlying key and val encFn's for the map.
  781. // This eliminates some work which is done for each loop iteration i.e.
  782. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  783. //
  784. // However, if kind is reflect.Interface, do not pre-determine the
  785. // encoding type, because preEncodeValue may break it down to
  786. // a concrete type and kInterface will bomb.
  787. var keyFn, valFn *codecFn
  788. ti := f.ti
  789. rtkey0 := ti.key
  790. rtkey := rtkey0
  791. rtval0 := ti.elem
  792. rtval := rtval0
  793. // rtkeyid := rt2id(rtkey0)
  794. for rtval.Kind() == reflect.Ptr {
  795. rtval = rtval.Elem()
  796. }
  797. if rtval.Kind() != reflect.Interface {
  798. valFn = e.h.fn(rtval, true, true)
  799. }
  800. mks := rv.MapKeys()
  801. if e.h.Canonical {
  802. e.kMapCanonical(rtkey, rv, mks, valFn)
  803. ee.WriteMapEnd()
  804. return
  805. }
  806. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  807. if !keyTypeIsString {
  808. for rtkey.Kind() == reflect.Ptr {
  809. rtkey = rtkey.Elem()
  810. }
  811. if rtkey.Kind() != reflect.Interface {
  812. // rtkeyid = rt2id(rtkey)
  813. keyFn = e.h.fn(rtkey, true, true)
  814. }
  815. }
  816. // for j, lmks := 0, len(mks); j < lmks; j++ {
  817. for j := range mks {
  818. if e.esep {
  819. ee.WriteMapElemKey()
  820. }
  821. if keyTypeIsString {
  822. if e.h.StringToRaw {
  823. ee.EncodeStringBytesRaw(bytesView(mks[j].String()))
  824. } else {
  825. ee.EncodeStringEnc(cUTF8, mks[j].String())
  826. }
  827. } else {
  828. e.encodeValue(mks[j], keyFn, true)
  829. }
  830. if e.esep {
  831. ee.WriteMapElemValue()
  832. }
  833. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  834. }
  835. ee.WriteMapEnd()
  836. }
  837. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  838. ee := e.e
  839. elemsep := e.esep
  840. // we previously did out-of-band if an extension was registered.
  841. // This is not necessary, as the natural kind is sufficient for ordering.
  842. switch rtkey.Kind() {
  843. case reflect.Bool:
  844. mksv := make([]boolRv, len(mks))
  845. for i, k := range mks {
  846. v := &mksv[i]
  847. v.r = k
  848. v.v = k.Bool()
  849. }
  850. sort.Sort(boolRvSlice(mksv))
  851. for i := range mksv {
  852. if elemsep {
  853. ee.WriteMapElemKey()
  854. }
  855. ee.EncodeBool(mksv[i].v)
  856. if elemsep {
  857. ee.WriteMapElemValue()
  858. }
  859. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  860. }
  861. case reflect.String:
  862. mksv := make([]stringRv, len(mks))
  863. for i, k := range mks {
  864. v := &mksv[i]
  865. v.r = k
  866. v.v = k.String()
  867. }
  868. sort.Sort(stringRvSlice(mksv))
  869. for i := range mksv {
  870. if elemsep {
  871. ee.WriteMapElemKey()
  872. }
  873. if e.h.StringToRaw {
  874. ee.EncodeStringBytesRaw(bytesView(mksv[i].v))
  875. } else {
  876. ee.EncodeStringEnc(cUTF8, mksv[i].v)
  877. }
  878. if elemsep {
  879. ee.WriteMapElemValue()
  880. }
  881. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  882. }
  883. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  884. mksv := make([]uint64Rv, len(mks))
  885. for i, k := range mks {
  886. v := &mksv[i]
  887. v.r = k
  888. v.v = k.Uint()
  889. }
  890. sort.Sort(uint64RvSlice(mksv))
  891. for i := range mksv {
  892. if elemsep {
  893. ee.WriteMapElemKey()
  894. }
  895. ee.EncodeUint(mksv[i].v)
  896. if elemsep {
  897. ee.WriteMapElemValue()
  898. }
  899. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  900. }
  901. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  902. mksv := make([]int64Rv, len(mks))
  903. for i, k := range mks {
  904. v := &mksv[i]
  905. v.r = k
  906. v.v = k.Int()
  907. }
  908. sort.Sort(int64RvSlice(mksv))
  909. for i := range mksv {
  910. if elemsep {
  911. ee.WriteMapElemKey()
  912. }
  913. ee.EncodeInt(mksv[i].v)
  914. if elemsep {
  915. ee.WriteMapElemValue()
  916. }
  917. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  918. }
  919. case reflect.Float32:
  920. mksv := make([]float64Rv, len(mks))
  921. for i, k := range mks {
  922. v := &mksv[i]
  923. v.r = k
  924. v.v = k.Float()
  925. }
  926. sort.Sort(float64RvSlice(mksv))
  927. for i := range mksv {
  928. if elemsep {
  929. ee.WriteMapElemKey()
  930. }
  931. ee.EncodeFloat32(float32(mksv[i].v))
  932. if elemsep {
  933. ee.WriteMapElemValue()
  934. }
  935. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  936. }
  937. case reflect.Float64:
  938. mksv := make([]float64Rv, len(mks))
  939. for i, k := range mks {
  940. v := &mksv[i]
  941. v.r = k
  942. v.v = k.Float()
  943. }
  944. sort.Sort(float64RvSlice(mksv))
  945. for i := range mksv {
  946. if elemsep {
  947. ee.WriteMapElemKey()
  948. }
  949. ee.EncodeFloat64(mksv[i].v)
  950. if elemsep {
  951. ee.WriteMapElemValue()
  952. }
  953. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  954. }
  955. case reflect.Struct:
  956. if rv.Type() == timeTyp {
  957. mksv := make([]timeRv, len(mks))
  958. for i, k := range mks {
  959. v := &mksv[i]
  960. v.r = k
  961. v.v = rv2i(k).(time.Time)
  962. }
  963. sort.Sort(timeRvSlice(mksv))
  964. for i := range mksv {
  965. if elemsep {
  966. ee.WriteMapElemKey()
  967. }
  968. ee.EncodeTime(mksv[i].v)
  969. if elemsep {
  970. ee.WriteMapElemValue()
  971. }
  972. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  973. }
  974. break
  975. }
  976. fallthrough
  977. default:
  978. // out-of-band
  979. // first encode each key to a []byte first, then sort them, then record
  980. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  981. e2 := NewEncoderBytes(&mksv, e.hh)
  982. mksbv := make([]bytesRv, len(mks))
  983. for i, k := range mks {
  984. v := &mksbv[i]
  985. l := len(mksv)
  986. e2.MustEncode(k)
  987. v.r = k
  988. v.v = mksv[l:]
  989. }
  990. sort.Sort(bytesRvSlice(mksbv))
  991. for j := range mksbv {
  992. if elemsep {
  993. ee.WriteMapElemKey()
  994. }
  995. e.asis(mksbv[j].v)
  996. if elemsep {
  997. ee.WriteMapElemValue()
  998. }
  999. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  1000. }
  1001. }
  1002. }
  1003. // // --------------------------------------------------
  1004. type encWriterSwitch struct {
  1005. esep bool // whether it has elem separators
  1006. bytes bool // encoding to []byte
  1007. isas bool // whether e.as != nil
  1008. js bool // is json encoder?
  1009. be bool // is binary encoder?
  1010. // _ [3]byte // padding
  1011. // _ [2]uint64 // padding
  1012. // _ uint64 // padding
  1013. // wi *ioEncWriter
  1014. wb bytesEncAppender
  1015. wf *bufioEncWriter
  1016. // typ entryType
  1017. }
  1018. func (z *encWriterSwitch) writeb(s []byte) {
  1019. if z.bytes {
  1020. z.wb.writeb(s)
  1021. } else {
  1022. z.wf.writeb(s)
  1023. }
  1024. }
  1025. func (z *encWriterSwitch) writeqstr(s string) {
  1026. if z.bytes {
  1027. z.wb.writeqstr(s)
  1028. } else {
  1029. z.wf.writeqstr(s)
  1030. }
  1031. }
  1032. func (z *encWriterSwitch) writestr(s string) {
  1033. if z.bytes {
  1034. z.wb.writestr(s)
  1035. } else {
  1036. z.wf.writestr(s)
  1037. }
  1038. }
  1039. func (z *encWriterSwitch) writen1(b1 byte) {
  1040. if z.bytes {
  1041. z.wb.writen1(b1)
  1042. } else {
  1043. z.wf.writen1(b1)
  1044. }
  1045. }
  1046. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1047. if z.bytes {
  1048. z.wb.writen2(b1, b2)
  1049. } else {
  1050. z.wf.writen2(b1, b2)
  1051. }
  1052. }
  1053. func (z *encWriterSwitch) endErr() error {
  1054. if z.bytes {
  1055. return z.wb.endErr()
  1056. }
  1057. return z.wf.endErr()
  1058. }
  1059. func (z *encWriterSwitch) end() {
  1060. if err := z.endErr(); err != nil {
  1061. panic(err)
  1062. }
  1063. }
  1064. /*
  1065. // ------------------------------------------
  1066. func (z *encWriterSwitch) writeb(s []byte) {
  1067. switch z.typ {
  1068. case entryTypeBytes:
  1069. z.wb.writeb(s)
  1070. case entryTypeIo:
  1071. z.wi.writeb(s)
  1072. default:
  1073. z.wf.writeb(s)
  1074. }
  1075. }
  1076. func (z *encWriterSwitch) writestr(s string) {
  1077. switch z.typ {
  1078. case entryTypeBytes:
  1079. z.wb.writestr(s)
  1080. case entryTypeIo:
  1081. z.wi.writestr(s)
  1082. default:
  1083. z.wf.writestr(s)
  1084. }
  1085. }
  1086. func (z *encWriterSwitch) writen1(b1 byte) {
  1087. switch z.typ {
  1088. case entryTypeBytes:
  1089. z.wb.writen1(b1)
  1090. case entryTypeIo:
  1091. z.wi.writen1(b1)
  1092. default:
  1093. z.wf.writen1(b1)
  1094. }
  1095. }
  1096. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1097. switch z.typ {
  1098. case entryTypeBytes:
  1099. z.wb.writen2(b1, b2)
  1100. case entryTypeIo:
  1101. z.wi.writen2(b1, b2)
  1102. default:
  1103. z.wf.writen2(b1, b2)
  1104. }
  1105. }
  1106. func (z *encWriterSwitch) end() {
  1107. switch z.typ {
  1108. case entryTypeBytes:
  1109. z.wb.end()
  1110. case entryTypeIo:
  1111. z.wi.end()
  1112. default:
  1113. z.wf.end()
  1114. }
  1115. }
  1116. // ------------------------------------------
  1117. func (z *encWriterSwitch) writeb(s []byte) {
  1118. if z.bytes {
  1119. z.wb.writeb(s)
  1120. } else {
  1121. z.wi.writeb(s)
  1122. }
  1123. }
  1124. func (z *encWriterSwitch) writestr(s string) {
  1125. if z.bytes {
  1126. z.wb.writestr(s)
  1127. } else {
  1128. z.wi.writestr(s)
  1129. }
  1130. }
  1131. func (z *encWriterSwitch) writen1(b1 byte) {
  1132. if z.bytes {
  1133. z.wb.writen1(b1)
  1134. } else {
  1135. z.wi.writen1(b1)
  1136. }
  1137. }
  1138. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1139. if z.bytes {
  1140. z.wb.writen2(b1, b2)
  1141. } else {
  1142. z.wi.writen2(b1, b2)
  1143. }
  1144. }
  1145. func (z *encWriterSwitch) end() {
  1146. if z.bytes {
  1147. z.wb.end()
  1148. } else {
  1149. z.wi.end()
  1150. }
  1151. }
  1152. */
  1153. // Encoder writes an object to an output stream in a supported format.
  1154. //
  1155. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1156. // concurrently in multiple goroutines.
  1157. //
  1158. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1159. // so its state can be reused to decode new input streams repeatedly.
  1160. // This is the idiomatic way to use.
  1161. type Encoder struct {
  1162. panicHdl
  1163. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1164. e encDriver
  1165. // NOTE: Encoder shouldn't call it's write methods,
  1166. // as the handler MAY need to do some coordination.
  1167. w *encWriterSwitch
  1168. // bw *bufio.Writer
  1169. as encDriverAsis
  1170. h *BasicHandle
  1171. hh Handle
  1172. // ---- cpu cache line boundary
  1173. encWriterSwitch
  1174. err error
  1175. // ---- cpu cache line boundary
  1176. // ---- writable fields during execution --- *try* to keep in sep cache line
  1177. ci set
  1178. b [(5 * 8)]byte // for encoding chan byte, (non-addressable) [N]byte, etc
  1179. // ---- cpu cache line boundary?
  1180. // b [scratchByteArrayLen]byte
  1181. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1182. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  1183. }
  1184. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1185. //
  1186. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  1187. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  1188. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1189. e := newEncoder(h)
  1190. e.Reset(w)
  1191. return e
  1192. }
  1193. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1194. // into a byte slice, using zero-copying to temporary slices.
  1195. //
  1196. // It will potentially replace the output byte slice pointed to.
  1197. // After encoding, the out parameter contains the encoded contents.
  1198. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1199. e := newEncoder(h)
  1200. e.ResetBytes(out)
  1201. return e
  1202. }
  1203. func newEncoder(h Handle) *Encoder {
  1204. e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
  1205. e.bytes = true
  1206. if useFinalizers {
  1207. runtime.SetFinalizer(e, (*Encoder).finalize)
  1208. // xdebugf(">>>> new(Encoder) with finalizer")
  1209. }
  1210. e.w = &e.encWriterSwitch
  1211. e.hh = h
  1212. e.esep = h.hasElemSeparators()
  1213. return e
  1214. }
  1215. func (e *Encoder) resetCommon() {
  1216. // e.w = &e.encWriterSwitch
  1217. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1218. e.e = e.hh.newEncDriver(e)
  1219. e.as, e.isas = e.e.(encDriverAsis)
  1220. // e.cr, _ = e.e.(containerStateRecv)
  1221. }
  1222. e.be = e.hh.isBinary()
  1223. _, e.js = e.hh.(*JsonHandle)
  1224. e.e.reset()
  1225. e.err = nil
  1226. }
  1227. // Reset resets the Encoder with a new output stream.
  1228. //
  1229. // This accommodates using the state of the Encoder,
  1230. // where it has "cached" information about sub-engines.
  1231. func (e *Encoder) Reset(w io.Writer) {
  1232. if w == nil {
  1233. return
  1234. }
  1235. // var ok bool
  1236. e.bytes = false
  1237. if e.wf == nil {
  1238. e.wf = new(bufioEncWriter)
  1239. }
  1240. // e.typ = entryTypeUnset
  1241. // if e.h.WriterBufferSize > 0 {
  1242. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1243. // // e.wi.bw = bw
  1244. // // e.wi.sw = bw
  1245. // // e.wi.fw = bw
  1246. // // e.wi.ww = bw
  1247. // if e.wf == nil {
  1248. // e.wf = new(bufioEncWriter)
  1249. // }
  1250. // e.wf.reset(w, e.h.WriterBufferSize)
  1251. // e.typ = entryTypeBufio
  1252. // } else {
  1253. // if e.wi == nil {
  1254. // e.wi = new(ioEncWriter)
  1255. // }
  1256. // e.wi.reset(w)
  1257. // e.typ = entryTypeIo
  1258. // }
  1259. e.wf.reset(w, e.h.WriterBufferSize)
  1260. // e.typ = entryTypeBufio
  1261. // e.w = e.wi
  1262. e.resetCommon()
  1263. }
  1264. // ResetBytes resets the Encoder with a new destination output []byte.
  1265. func (e *Encoder) ResetBytes(out *[]byte) {
  1266. if out == nil {
  1267. return
  1268. }
  1269. var in []byte = *out
  1270. if in == nil {
  1271. in = make([]byte, defEncByteBufSize)
  1272. }
  1273. e.bytes = true
  1274. // e.typ = entryTypeBytes
  1275. e.wb.reset(in, out)
  1276. // e.w = &e.wb
  1277. e.resetCommon()
  1278. }
  1279. // Encode writes an object into a stream.
  1280. //
  1281. // Encoding can be configured via the struct tag for the fields.
  1282. // The key (in the struct tags) that we look at is configurable.
  1283. //
  1284. // By default, we look up the "codec" key in the struct field's tags,
  1285. // and fall bak to the "json" key if "codec" is absent.
  1286. // That key in struct field's tag value is the key name,
  1287. // followed by an optional comma and options.
  1288. //
  1289. // To set an option on all fields (e.g. omitempty on all fields), you
  1290. // can create a field called _struct, and set flags on it. The options
  1291. // which can be set on _struct are:
  1292. // - omitempty: so all fields are omitted if empty
  1293. // - toarray: so struct is encoded as an array
  1294. // - int: so struct key names are encoded as signed integers (instead of strings)
  1295. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1296. // - float: so struct key names are encoded as floats (instead of strings)
  1297. // More details on these below.
  1298. //
  1299. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1300. // - the field's tag is "-", OR
  1301. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1302. //
  1303. // When encoding as a map, the first string in the tag (before the comma)
  1304. // is the map key string to use when encoding.
  1305. // ...
  1306. // This key is typically encoded as a string.
  1307. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1308. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1309. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1310. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1311. // This is done with the int,uint or float option on the _struct field (see above).
  1312. //
  1313. // However, struct values may encode as arrays. This happens when:
  1314. // - StructToArray Encode option is set, OR
  1315. // - the tag on the _struct field sets the "toarray" option
  1316. // Note that omitempty is ignored when encoding struct values as arrays,
  1317. // as an entry must be encoded for each field, to maintain its position.
  1318. //
  1319. // Values with types that implement MapBySlice are encoded as stream maps.
  1320. //
  1321. // The empty values (for omitempty option) are false, 0, any nil pointer
  1322. // or interface value, and any array, slice, map, or string of length zero.
  1323. //
  1324. // Anonymous fields are encoded inline except:
  1325. // - the struct tag specifies a replacement name (first value)
  1326. // - the field is of an interface type
  1327. //
  1328. // Examples:
  1329. //
  1330. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1331. // type MyStruct struct {
  1332. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1333. // Field1 string `codec:"-"` //skip this field
  1334. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1335. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1336. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1337. // io.Reader //use key "Reader".
  1338. // MyStruct `codec:"my1" //use key "my1".
  1339. // MyStruct //inline it
  1340. // ...
  1341. // }
  1342. //
  1343. // type MyStruct struct {
  1344. // _struct bool `codec:",toarray"` //encode struct as an array
  1345. // }
  1346. //
  1347. // type MyStruct struct {
  1348. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1349. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1350. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1351. // }
  1352. //
  1353. // The mode of encoding is based on the type of the value. When a value is seen:
  1354. // - If a Selfer, call its CodecEncodeSelf method
  1355. // - If an extension is registered for it, call that extension function
  1356. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1357. // - Else encode it based on its reflect.Kind
  1358. //
  1359. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1360. // Some formats support symbols (e.g. binc) and will properly encode the string
  1361. // only once in the stream, and use a tag to refer to it thereafter.
  1362. func (e *Encoder) Encode(v interface{}) (err error) {
  1363. // tried to use closure, as runtime optimizes defer with no params.
  1364. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1365. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1366. // defer func() { e.deferred(&err) }() }
  1367. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1368. if e.err != nil {
  1369. return e.err
  1370. }
  1371. if recoverPanicToErr {
  1372. defer func() {
  1373. // if error occurred during encoding, return that error;
  1374. // else if error occurred on end'ing (i.e. during flush), return that error.
  1375. err = e.w.endErr()
  1376. x := recover()
  1377. if x == nil {
  1378. if e.err != err {
  1379. e.err = err
  1380. }
  1381. } else {
  1382. panicValToErr(e, x, &e.err)
  1383. if e.err != err {
  1384. err = e.err
  1385. }
  1386. }
  1387. }()
  1388. }
  1389. // defer e.deferred(&err)
  1390. e.mustEncode(v)
  1391. return
  1392. }
  1393. // MustEncode is like Encode, but panics if unable to Encode.
  1394. // This provides insight to the code location that triggered the error.
  1395. func (e *Encoder) MustEncode(v interface{}) {
  1396. if e.err != nil {
  1397. panic(e.err)
  1398. }
  1399. e.mustEncode(v)
  1400. }
  1401. func (e *Encoder) mustEncode(v interface{}) {
  1402. if e.wf == nil {
  1403. e.encode(v)
  1404. e.e.atEndOfEncode()
  1405. e.w.end()
  1406. return
  1407. }
  1408. if e.wf.buf == nil {
  1409. e.wf.buf = e.wf.bytesBufPooler.get(e.wf.sz)
  1410. }
  1411. e.wf.calls++
  1412. e.encode(v)
  1413. e.wf.calls--
  1414. if e.wf.calls == 0 {
  1415. e.e.atEndOfEncode()
  1416. e.w.end()
  1417. if !e.h.ExplicitRelease {
  1418. e.wf.release()
  1419. }
  1420. }
  1421. }
  1422. // func (e *Encoder) deferred(err1 *error) {
  1423. // e.w.end()
  1424. // if recoverPanicToErr {
  1425. // if x := recover(); x != nil {
  1426. // panicValToErr(e, x, err1)
  1427. // panicValToErr(e, x, &e.err)
  1428. // }
  1429. // }
  1430. // }
  1431. //go:noinline -- as it is run by finalizer
  1432. func (e *Encoder) finalize() {
  1433. // xdebugf("finalizing Encoder")
  1434. e.Release()
  1435. }
  1436. // Release releases shared (pooled) resources.
  1437. //
  1438. // It is important to call Release() when done with an Encoder, so those resources
  1439. // are released instantly for use by subsequently created Encoders.
  1440. func (e *Encoder) Release() {
  1441. if e.wf != nil {
  1442. e.wf.release()
  1443. }
  1444. }
  1445. func (e *Encoder) encode(iv interface{}) {
  1446. // a switch with only concrete types can be optimized.
  1447. // consequently, we deal with nil and interfaces outside the switch.
  1448. if iv == nil || definitelyNil(iv) {
  1449. e.e.EncodeNil()
  1450. return
  1451. }
  1452. switch v := iv.(type) {
  1453. // case nil:
  1454. // case Selfer:
  1455. case Raw:
  1456. e.rawBytes(v)
  1457. case reflect.Value:
  1458. e.encodeValue(v, nil, true)
  1459. case string:
  1460. if e.h.StringToRaw {
  1461. e.e.EncodeStringBytesRaw(bytesView(v))
  1462. } else {
  1463. e.e.EncodeStringEnc(cUTF8, v)
  1464. }
  1465. case bool:
  1466. e.e.EncodeBool(v)
  1467. case int:
  1468. e.e.EncodeInt(int64(v))
  1469. case int8:
  1470. e.e.EncodeInt(int64(v))
  1471. case int16:
  1472. e.e.EncodeInt(int64(v))
  1473. case int32:
  1474. e.e.EncodeInt(int64(v))
  1475. case int64:
  1476. e.e.EncodeInt(v)
  1477. case uint:
  1478. e.e.EncodeUint(uint64(v))
  1479. case uint8:
  1480. e.e.EncodeUint(uint64(v))
  1481. case uint16:
  1482. e.e.EncodeUint(uint64(v))
  1483. case uint32:
  1484. e.e.EncodeUint(uint64(v))
  1485. case uint64:
  1486. e.e.EncodeUint(v)
  1487. case uintptr:
  1488. e.e.EncodeUint(uint64(v))
  1489. case float32:
  1490. e.e.EncodeFloat32(v)
  1491. case float64:
  1492. e.e.EncodeFloat64(v)
  1493. case time.Time:
  1494. e.e.EncodeTime(v)
  1495. case []uint8:
  1496. e.e.EncodeStringBytesRaw(v)
  1497. case *Raw:
  1498. e.rawBytes(*v)
  1499. case *string:
  1500. if e.h.StringToRaw {
  1501. e.e.EncodeStringBytesRaw(bytesView(*v))
  1502. } else {
  1503. e.e.EncodeStringEnc(cUTF8, *v)
  1504. }
  1505. case *bool:
  1506. e.e.EncodeBool(*v)
  1507. case *int:
  1508. e.e.EncodeInt(int64(*v))
  1509. case *int8:
  1510. e.e.EncodeInt(int64(*v))
  1511. case *int16:
  1512. e.e.EncodeInt(int64(*v))
  1513. case *int32:
  1514. e.e.EncodeInt(int64(*v))
  1515. case *int64:
  1516. e.e.EncodeInt(*v)
  1517. case *uint:
  1518. e.e.EncodeUint(uint64(*v))
  1519. case *uint8:
  1520. e.e.EncodeUint(uint64(*v))
  1521. case *uint16:
  1522. e.e.EncodeUint(uint64(*v))
  1523. case *uint32:
  1524. e.e.EncodeUint(uint64(*v))
  1525. case *uint64:
  1526. e.e.EncodeUint(*v)
  1527. case *uintptr:
  1528. e.e.EncodeUint(uint64(*v))
  1529. case *float32:
  1530. e.e.EncodeFloat32(*v)
  1531. case *float64:
  1532. e.e.EncodeFloat64(*v)
  1533. case *time.Time:
  1534. e.e.EncodeTime(*v)
  1535. case *[]uint8:
  1536. e.e.EncodeStringBytesRaw(*v)
  1537. default:
  1538. if v, ok := iv.(Selfer); ok {
  1539. v.CodecEncodeSelf(e)
  1540. } else if !fastpathEncodeTypeSwitch(iv, e) {
  1541. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1542. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1543. }
  1544. }
  1545. }
  1546. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1547. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1548. var sptr uintptr
  1549. var rvp reflect.Value
  1550. var rvpValid bool
  1551. TOP:
  1552. switch rv.Kind() {
  1553. case reflect.Ptr:
  1554. if rv.IsNil() {
  1555. e.e.EncodeNil()
  1556. return
  1557. }
  1558. rvpValid = true
  1559. rvp = rv
  1560. rv = rv.Elem()
  1561. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1562. // TODO: Movable pointers will be an issue here. Future problem.
  1563. sptr = rv.UnsafeAddr()
  1564. break TOP
  1565. }
  1566. goto TOP
  1567. case reflect.Interface:
  1568. if rv.IsNil() {
  1569. e.e.EncodeNil()
  1570. return
  1571. }
  1572. rv = rv.Elem()
  1573. goto TOP
  1574. case reflect.Slice, reflect.Map:
  1575. if rv.IsNil() {
  1576. e.e.EncodeNil()
  1577. return
  1578. }
  1579. case reflect.Invalid, reflect.Func:
  1580. e.e.EncodeNil()
  1581. return
  1582. }
  1583. if sptr != 0 && (&e.ci).add(sptr) {
  1584. e.errorf("circular reference found: # %d", sptr)
  1585. }
  1586. if fn == nil {
  1587. rt := rv.Type()
  1588. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1589. fn = e.h.fn(rt, checkFastpath, true)
  1590. }
  1591. if fn.i.addrE {
  1592. if rvpValid {
  1593. fn.fe(e, &fn.i, rvp)
  1594. } else if rv.CanAddr() {
  1595. fn.fe(e, &fn.i, rv.Addr())
  1596. } else {
  1597. rv2 := reflect.New(rv.Type())
  1598. rv2.Elem().Set(rv)
  1599. fn.fe(e, &fn.i, rv2)
  1600. }
  1601. } else {
  1602. fn.fe(e, &fn.i, rv)
  1603. }
  1604. if sptr != 0 {
  1605. (&e.ci).remove(sptr)
  1606. }
  1607. }
  1608. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1609. // if fnerr != nil {
  1610. // panic(fnerr)
  1611. // }
  1612. // if bs == nil {
  1613. // e.e.EncodeNil()
  1614. // } else if asis {
  1615. // e.asis(bs)
  1616. // } else {
  1617. // e.e.EncodeStringBytesRaw(bs)
  1618. // }
  1619. // }
  1620. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1621. if fnerr != nil {
  1622. panic(fnerr)
  1623. }
  1624. if bs == nil {
  1625. e.e.EncodeNil()
  1626. } else {
  1627. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1628. }
  1629. }
  1630. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1631. if fnerr != nil {
  1632. panic(fnerr)
  1633. }
  1634. if bs == nil {
  1635. e.e.EncodeNil()
  1636. } else {
  1637. e.asis(bs)
  1638. }
  1639. }
  1640. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1641. if fnerr != nil {
  1642. panic(fnerr)
  1643. }
  1644. if bs == nil {
  1645. e.e.EncodeNil()
  1646. } else {
  1647. e.e.EncodeStringBytesRaw(bs)
  1648. }
  1649. }
  1650. func (e *Encoder) asis(v []byte) {
  1651. if e.isas {
  1652. e.as.EncodeAsis(v)
  1653. } else {
  1654. e.w.writeb(v)
  1655. }
  1656. }
  1657. func (e *Encoder) rawBytes(vv Raw) {
  1658. v := []byte(vv)
  1659. if !e.h.Raw {
  1660. e.errorf("Raw values cannot be encoded: %v", v)
  1661. }
  1662. e.asis(v)
  1663. }
  1664. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1665. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1666. }
  1667. func encStructFieldKey(encName string, ee encDriver, w *encWriterSwitch,
  1668. keyType valueType, encNameAsciiAlphaNum bool, js bool) {
  1669. var m must
  1670. // use if-else-if, not switch (which compiles to binary-search)
  1671. // since keyType is typically valueTypeString, branch prediction is pretty good.
  1672. if keyType == valueTypeString {
  1673. if js && encNameAsciiAlphaNum { // keyType == valueTypeString
  1674. w.writeqstr(encName)
  1675. // ----
  1676. // w.writen1('"')
  1677. // w.writestr(encName)
  1678. // w.writen1('"')
  1679. // ----
  1680. // w.writestr(`"` + encName + `"`)
  1681. // ----
  1682. // // do concat myself, so it is faster than the generic string concat
  1683. // b := make([]byte, len(encName)+2)
  1684. // copy(b[1:], encName)
  1685. // b[0] = '"'
  1686. // b[len(b)-1] = '"'
  1687. // w.writeb(b)
  1688. } else { // keyType == valueTypeString
  1689. ee.EncodeStringEnc(cUTF8, encName)
  1690. }
  1691. } else if keyType == valueTypeInt {
  1692. ee.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  1693. } else if keyType == valueTypeUint {
  1694. ee.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  1695. } else if keyType == valueTypeFloat {
  1696. ee.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  1697. }
  1698. }
  1699. // func encStringAsRawBytesMaybe(ee encDriver, s string, stringToRaw bool) {
  1700. // if stringToRaw {
  1701. // ee.EncodeStringBytesRaw(bytesView(s))
  1702. // } else {
  1703. // ee.EncodeStringEnc(cUTF8, s)
  1704. // }
  1705. // }