encode.go 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "runtime"
  11. "sort"
  12. "strconv"
  13. "time"
  14. )
  15. // defEncByteBufSize is the default size of []byte used
  16. // for bufio buffer or []byte (when nil passed)
  17. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  18. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  19. /*
  20. // encWriter abstracts writing to a byte array or to an io.Writer.
  21. //
  22. //
  23. // Deprecated: Use encWriterSwitch instead.
  24. type encWriter interface {
  25. writeb([]byte)
  26. writestr(string)
  27. writeqstr(string) // write string wrapped in quotes ie "..."
  28. writen1(byte)
  29. writen2(byte, byte)
  30. end()
  31. }
  32. */
  33. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  34. type encDriver interface {
  35. EncodeNil()
  36. EncodeInt(i int64)
  37. EncodeUint(i uint64)
  38. EncodeBool(b bool)
  39. EncodeFloat32(f float32)
  40. EncodeFloat64(f float64)
  41. // encodeExtPreamble(xtag byte, length int)
  42. EncodeRawExt(re *RawExt)
  43. EncodeExt(v interface{}, xtag uint64, ext Ext)
  44. EncodeStringEnc(c charEncoding, v string) // c cannot be cRAW
  45. // EncodeSymbol(v string)
  46. EncodeStringBytesRaw(v []byte)
  47. EncodeTime(time.Time)
  48. //encBignum(f *big.Int)
  49. //encStringRunes(c charEncoding, v []rune)
  50. WriteArrayStart(length int)
  51. WriteArrayEnd()
  52. WriteMapStart(length int)
  53. WriteMapEnd()
  54. reset()
  55. atEndOfEncode()
  56. }
  57. type encDriverContainerTracker interface {
  58. WriteArrayElem()
  59. WriteMapElemKey()
  60. WriteMapElemValue()
  61. }
  62. type encDriverAsis interface {
  63. EncodeAsis(v []byte)
  64. }
  65. type encodeError struct {
  66. codecError
  67. }
  68. func (e encodeError) Error() string {
  69. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  70. }
  71. type encDriverNoopContainerWriter struct{}
  72. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  73. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  74. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  75. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  76. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  77. // func (encDriverNoopContainerWriter) WriteArrayElem() {}
  78. // func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  79. // func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  80. // type encDriverTrackContainerWriter struct {
  81. // c containerState
  82. // }
  83. // func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  84. // func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  85. // func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  86. // func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  87. // func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  88. // func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  89. // func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  90. // func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  91. // type ioEncWriterWriter interface {
  92. // WriteByte(c byte) error
  93. // WriteString(s string) (n int, err error)
  94. // Write(p []byte) (n int, err error)
  95. // }
  96. // EncodeOptions captures configuration options during encode.
  97. type EncodeOptions struct {
  98. // WriterBufferSize is the size of the buffer used when writing.
  99. //
  100. // if > 0, we use a smart buffer internally for performance purposes.
  101. WriterBufferSize int
  102. // ChanRecvTimeout is the timeout used when selecting from a chan.
  103. //
  104. // Configuring this controls how we receive from a chan during the encoding process.
  105. // - If ==0, we only consume the elements currently available in the chan.
  106. // - if <0, we consume until the chan is closed.
  107. // - If >0, we consume until this timeout.
  108. ChanRecvTimeout time.Duration
  109. // StructToArray specifies to encode a struct as an array, and not as a map
  110. StructToArray bool
  111. // Canonical representation means that encoding a value will always result in the same
  112. // sequence of bytes.
  113. //
  114. // This only affects maps, as the iteration order for maps is random.
  115. //
  116. // The implementation MAY use the natural sort order for the map keys if possible:
  117. //
  118. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  119. // then the map keys are first sorted in natural order and then written
  120. // with corresponding map values to the strema.
  121. // - If there is no natural sort order, then the map keys will first be
  122. // encoded into []byte, and then sorted,
  123. // before writing the sorted keys and the corresponding map values to the stream.
  124. //
  125. Canonical bool
  126. // CheckCircularRef controls whether we check for circular references
  127. // and error fast during an encode.
  128. //
  129. // If enabled, an error is received if a pointer to a struct
  130. // references itself either directly or through one of its fields (iteratively).
  131. //
  132. // This is opt-in, as there may be a performance hit to checking circular references.
  133. CheckCircularRef bool
  134. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  135. // when checking if a value is empty.
  136. //
  137. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  138. RecursiveEmptyCheck bool
  139. // Raw controls whether we encode Raw values.
  140. // This is a "dangerous" option and must be explicitly set.
  141. // If set, we blindly encode Raw values as-is, without checking
  142. // if they are a correct representation of a value in that format.
  143. // If unset, we error out.
  144. Raw bool
  145. // StringToRaw controls how strings are encoded.
  146. //
  147. // As a go string is just an (immutable) sequence of bytes,
  148. // it can be encoded either as raw bytes or as a UTF string.
  149. //
  150. // By default, strings are encoded as UTF-8.
  151. // but can be treated as []byte during an encode.
  152. //
  153. // Note that things which we know (by definition) to be UTF-8
  154. // are ALWAYS encoded as UTF-8 strings.
  155. // These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
  156. StringToRaw bool
  157. // // AsSymbols defines what should be encoded as symbols.
  158. // //
  159. // // Encoding as symbols can reduce the encoded size significantly.
  160. // //
  161. // // However, during decoding, each string to be encoded as a symbol must
  162. // // be checked to see if it has been seen before. Consequently, encoding time
  163. // // will increase if using symbols, because string comparisons has a clear cost.
  164. // //
  165. // // Sample values:
  166. // // AsSymbolNone
  167. // // AsSymbolAll
  168. // // AsSymbolMapStringKeys
  169. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  170. // AsSymbols AsSymbolFlag
  171. }
  172. // ---------------------------------------------
  173. /*
  174. type ioEncStringWriter interface {
  175. WriteString(s string) (n int, err error)
  176. }
  177. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  178. type ioEncWriter struct {
  179. w io.Writer
  180. ww io.Writer
  181. bw io.ByteWriter
  182. sw ioEncStringWriter
  183. fw ioFlusher
  184. b [8]byte
  185. }
  186. func (z *ioEncWriter) reset(w io.Writer) {
  187. z.w = w
  188. var ok bool
  189. if z.bw, ok = w.(io.ByteWriter); !ok {
  190. z.bw = z
  191. }
  192. if z.sw, ok = w.(ioEncStringWriter); !ok {
  193. z.sw = z
  194. }
  195. z.fw, _ = w.(ioFlusher)
  196. z.ww = w
  197. }
  198. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  199. z.b[0] = b
  200. _, err = z.w.Write(z.b[:1])
  201. return
  202. }
  203. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  204. return z.w.Write(bytesView(s))
  205. }
  206. func (z *ioEncWriter) writeb(bs []byte) {
  207. if _, err := z.ww.Write(bs); err != nil {
  208. panic(err)
  209. }
  210. }
  211. func (z *ioEncWriter) writestr(s string) {
  212. if _, err := z.sw.WriteString(s); err != nil {
  213. panic(err)
  214. }
  215. }
  216. func (z *ioEncWriter) writeqstr(s string) {
  217. writestr("\"" + s + "\"")
  218. }
  219. func (z *ioEncWriter) writen1(b byte) {
  220. if err := z.bw.WriteByte(b); err != nil {
  221. panic(err)
  222. }
  223. }
  224. func (z *ioEncWriter) writen2(b1, b2 byte) {
  225. var err error
  226. if err = z.bw.WriteByte(b1); err == nil {
  227. if err = z.bw.WriteByte(b2); err == nil {
  228. return
  229. }
  230. }
  231. panic(err)
  232. }
  233. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  234. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  235. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  236. // panic(err)
  237. // }
  238. // }
  239. //go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
  240. func (z *ioEncWriter) end() {
  241. if z.fw != nil {
  242. if err := z.fw.Flush(); err != nil {
  243. panic(err)
  244. }
  245. }
  246. }
  247. */
  248. // ---------------------------------------------
  249. // bufioEncWriter
  250. type bufioEncWriter struct {
  251. w io.Writer
  252. buf []byte
  253. n int
  254. // Extensions can call Encode() within a current Encode() call.
  255. // We need to know when the top level Encode() call returns,
  256. // so we can decide whether to Release() or not.
  257. calls uint16 // what depth in mustDecode are we in now.
  258. sz int // buf size
  259. // _ uint64 // padding (cache-aligned)
  260. // ---- cache line
  261. // write-most fields below
  262. // less used fields
  263. bytesBufPooler
  264. b [40]byte // scratch buffer and padding (cache-aligned)
  265. // a int
  266. // b [4]byte
  267. // err
  268. }
  269. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  270. z.w = w
  271. z.n = 0
  272. z.calls = 0
  273. if bufsize <= 0 {
  274. bufsize = defEncByteBufSize
  275. }
  276. z.sz = bufsize
  277. if cap(z.buf) >= bufsize {
  278. z.buf = z.buf[:cap(z.buf)]
  279. } else if bufsize <= len(z.b) {
  280. z.buf = z.b[:]
  281. } else {
  282. z.buf = z.bytesBufPooler.get(bufsize)
  283. // z.buf = make([]byte, bufsize)
  284. }
  285. }
  286. func (z *bufioEncWriter) release() {
  287. z.buf = nil
  288. z.bytesBufPooler.end()
  289. }
  290. //go:noinline - flush only called intermittently
  291. func (z *bufioEncWriter) flushErr() (err error) {
  292. n, err := z.w.Write(z.buf[:z.n])
  293. z.n -= n
  294. if z.n > 0 && err == nil {
  295. err = io.ErrShortWrite
  296. }
  297. if n > 0 && z.n > 0 {
  298. copy(z.buf, z.buf[n:z.n+n])
  299. }
  300. return err
  301. }
  302. func (z *bufioEncWriter) flush() {
  303. if err := z.flushErr(); err != nil {
  304. panic(err)
  305. }
  306. }
  307. func (z *bufioEncWriter) writeb(s []byte) {
  308. LOOP:
  309. a := len(z.buf) - z.n
  310. if len(s) > a {
  311. z.n += copy(z.buf[z.n:], s[:a])
  312. s = s[a:]
  313. z.flush()
  314. goto LOOP
  315. }
  316. z.n += copy(z.buf[z.n:], s)
  317. }
  318. func (z *bufioEncWriter) writestr(s string) {
  319. // z.writeb(bytesView(s)) // inlined below
  320. LOOP:
  321. a := len(z.buf) - z.n
  322. if len(s) > a {
  323. z.n += copy(z.buf[z.n:], s[:a])
  324. s = s[a:]
  325. z.flush()
  326. goto LOOP
  327. }
  328. z.n += copy(z.buf[z.n:], s)
  329. }
  330. func (z *bufioEncWriter) writeqstr(s string) {
  331. // z.writen1('"')
  332. // z.writestr(s)
  333. // z.writen1('"')
  334. if z.n+len(s)+2 > len(z.buf) {
  335. z.flush()
  336. }
  337. z.buf[z.n] = '"'
  338. z.n++
  339. LOOP:
  340. a := len(z.buf) - z.n
  341. if len(s)+1 > a {
  342. z.n += copy(z.buf[z.n:], s[:a])
  343. s = s[a:]
  344. z.flush()
  345. goto LOOP
  346. }
  347. z.n += copy(z.buf[z.n:], s)
  348. z.buf[z.n] = '"'
  349. z.n++
  350. }
  351. func (z *bufioEncWriter) writen1(b1 byte) {
  352. if 1 > len(z.buf)-z.n {
  353. z.flush()
  354. }
  355. z.buf[z.n] = b1
  356. z.n++
  357. }
  358. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  359. if 2 > len(z.buf)-z.n {
  360. z.flush()
  361. }
  362. z.buf[z.n+1] = b2
  363. z.buf[z.n] = b1
  364. z.n += 2
  365. }
  366. func (z *bufioEncWriter) endErr() (err error) {
  367. if z.n > 0 {
  368. err = z.flushErr()
  369. }
  370. return
  371. }
  372. // ---------------------------------------------
  373. // bytesEncAppender implements encWriter and can write to an byte slice.
  374. type bytesEncAppender struct {
  375. b []byte
  376. out *[]byte
  377. }
  378. func (z *bytesEncAppender) writeb(s []byte) {
  379. z.b = append(z.b, s...)
  380. }
  381. func (z *bytesEncAppender) writestr(s string) {
  382. z.b = append(z.b, s...)
  383. }
  384. func (z *bytesEncAppender) writeqstr(s string) {
  385. // z.writen1('"')
  386. // z.writestr(s)
  387. // z.writen1('"')
  388. z.b = append(append(append(z.b, '"'), s...), '"')
  389. // z.b = append(z.b, '"')
  390. // z.b = append(z.b, s...)
  391. // z.b = append(z.b, '"')
  392. }
  393. func (z *bytesEncAppender) writen1(b1 byte) {
  394. z.b = append(z.b, b1)
  395. }
  396. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  397. z.b = append(z.b, b1, b2)
  398. }
  399. func (z *bytesEncAppender) endErr() error {
  400. *(z.out) = z.b
  401. return nil
  402. }
  403. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  404. z.b = in[:0]
  405. z.out = out
  406. }
  407. // ---------------------------------------------
  408. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  409. e.e.EncodeRawExt(rv2i(rv).(*RawExt))
  410. }
  411. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  412. // xdebugf("*Encoder.ext: rv: %v, rv2i: %T, %v", rv, rv2i(rv), rv2i(rv))
  413. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn)
  414. }
  415. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  416. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  417. }
  418. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  419. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  420. e.marshalRaw(bs, fnerr)
  421. }
  422. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  423. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  424. e.marshalUtf8(bs, fnerr)
  425. }
  426. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  427. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  428. e.marshalAsis(bs, fnerr)
  429. }
  430. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  431. e.rawBytes(rv2i(rv).(Raw))
  432. }
  433. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  434. e.e.EncodeNil()
  435. }
  436. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  437. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  438. }
  439. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  440. // array may be non-addressable, so we have to manage with care
  441. // (don't call rv.Bytes, rv.Slice, etc).
  442. // E.g. type struct S{B [2]byte};
  443. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  444. if f.seq != seqTypeArray {
  445. if rv.IsNil() {
  446. e.e.EncodeNil()
  447. return
  448. }
  449. // If in this method, then there was no extension function defined.
  450. // So it's okay to treat as []byte.
  451. if f.ti.rtid == uint8SliceTypId {
  452. e.e.EncodeStringBytesRaw(rv.Bytes())
  453. return
  454. }
  455. }
  456. if f.seq == seqTypeChan && f.ti.chandir&uint8(reflect.RecvDir) == 0 {
  457. e.errorf("send-only channel cannot be encoded")
  458. }
  459. mbs := f.ti.mbs
  460. rtelem := f.ti.elem
  461. // if a slice, array or chan of bytes, treat specially
  462. if !mbs && uint8TypId == rt2id(rtelem) { // NOT rtelem.Kind() == reflect.Uint8
  463. e.kSliceBytes(rv, f.seq)
  464. return
  465. }
  466. // if chan, consume chan into a slice, and work off that slice.
  467. if f.seq == seqTypeChan {
  468. rvcs := reflect.Zero(reflect.SliceOf(rtelem))
  469. timeout := e.h.ChanRecvTimeout
  470. if timeout < 0 { // consume until close
  471. for {
  472. recv, recvOk := rv.Recv()
  473. if !recvOk {
  474. break
  475. }
  476. rvcs = reflect.Append(rvcs, recv)
  477. }
  478. } else {
  479. cases := make([]reflect.SelectCase, 2)
  480. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  481. if timeout == 0 {
  482. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  483. } else {
  484. tt := time.NewTimer(timeout)
  485. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  486. }
  487. for {
  488. chosen, recv, recvOk := reflect.Select(cases)
  489. if chosen == 1 || !recvOk {
  490. break
  491. }
  492. rvcs = reflect.Append(rvcs, recv)
  493. }
  494. }
  495. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  496. }
  497. var l = rv.Len()
  498. if mbs {
  499. if l%2 == 1 {
  500. e.errorf("mapBySlice requires even slice length, but got %v", l)
  501. return
  502. }
  503. e.mapStart(l / 2)
  504. } else {
  505. e.arrayStart(l)
  506. }
  507. if l > 0 {
  508. var fn *codecFn
  509. for rtelem.Kind() == reflect.Ptr {
  510. rtelem = rtelem.Elem()
  511. }
  512. // if kind is reflect.Interface, do not pre-determine the
  513. // encoding type, because preEncodeValue may break it down to
  514. // a concrete type and kInterface will bomb.
  515. if rtelem.Kind() != reflect.Interface {
  516. fn = e.h.fn(rtelem)
  517. }
  518. for j := 0; j < l; j++ {
  519. if mbs {
  520. if j%2 == 0 {
  521. e.mapElemKey()
  522. } else {
  523. e.mapElemValue()
  524. }
  525. } else {
  526. e.arrayElem()
  527. }
  528. e.encodeValue(rv.Index(j), fn)
  529. }
  530. }
  531. if mbs {
  532. e.mapEnd()
  533. } else {
  534. e.arrayEnd()
  535. }
  536. }
  537. func (e *Encoder) kSliceBytes(rv reflect.Value, seq seqType) {
  538. // xdebugf("kSliceBytes: seq: %d, rvType: %v", seq, rv.Type())
  539. switch seq {
  540. case seqTypeSlice:
  541. e.e.EncodeStringBytesRaw(rv.Bytes())
  542. case seqTypeArray:
  543. var l = rv.Len()
  544. if rv.CanAddr() {
  545. e.e.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  546. } else {
  547. var bs []byte
  548. if l <= cap(e.b) {
  549. bs = e.b[:l]
  550. } else {
  551. bs = make([]byte, l)
  552. }
  553. reflect.Copy(reflect.ValueOf(bs), rv)
  554. e.e.EncodeStringBytesRaw(bs)
  555. }
  556. case seqTypeChan:
  557. // do not use range, so that the number of elements encoded
  558. // does not change, and encoding does not hang waiting on someone to close chan.
  559. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  560. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  561. if rv.IsNil() {
  562. e.e.EncodeNil()
  563. break
  564. }
  565. bs := e.b[:0]
  566. irv := rv2i(rv)
  567. ch, ok := irv.(<-chan byte)
  568. if !ok {
  569. ch = irv.(chan byte)
  570. }
  571. L1:
  572. switch timeout := e.h.ChanRecvTimeout; {
  573. case timeout == 0: // only consume available
  574. for {
  575. select {
  576. case b := <-ch:
  577. bs = append(bs, b)
  578. default:
  579. break L1
  580. }
  581. }
  582. case timeout > 0: // consume until timeout
  583. tt := time.NewTimer(timeout)
  584. for {
  585. select {
  586. case b := <-ch:
  587. bs = append(bs, b)
  588. case <-tt.C:
  589. // close(tt.C)
  590. break L1
  591. }
  592. }
  593. default: // consume until close
  594. for b := range ch {
  595. bs = append(bs, b)
  596. }
  597. }
  598. e.e.EncodeStringBytesRaw(bs)
  599. }
  600. }
  601. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  602. sfn := structFieldNode{v: rv, update: false}
  603. if f.ti.toArray || e.h.StructToArray { // toArray
  604. e.arrayStart(len(f.ti.sfiSrc))
  605. for _, si := range f.ti.sfiSrc {
  606. e.arrayElem()
  607. e.encodeValue(sfn.field(si), nil)
  608. }
  609. e.arrayEnd()
  610. } else {
  611. e.mapStart(len(f.ti.sfiSort))
  612. for _, si := range f.ti.sfiSort {
  613. e.mapElemKey()
  614. e.kStructFieldKey(f.ti.keyType, si.encNameAsciiAlphaNum, si.encName)
  615. e.mapElemValue()
  616. e.encodeValue(sfn.field(si), nil)
  617. }
  618. e.mapEnd()
  619. }
  620. }
  621. func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
  622. encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
  623. }
  624. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  625. var newlen int
  626. toMap := !(f.ti.toArray || e.h.StructToArray)
  627. var mf map[string]interface{}
  628. if f.ti.mf {
  629. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  630. toMap = true
  631. newlen += len(mf)
  632. } else if f.ti.mfp {
  633. if rv.CanAddr() {
  634. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  635. } else {
  636. // make a new addressable value of same one, and use it
  637. rv2 := reflect.New(rv.Type())
  638. rv2.Elem().Set(rv)
  639. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  640. }
  641. toMap = true
  642. newlen += len(mf)
  643. }
  644. newlen += len(f.ti.sfiSrc)
  645. // Use sync.Pool to reduce allocating slices unnecessarily.
  646. // The cost of sync.Pool is less than the cost of new allocation.
  647. //
  648. // Each element of the array pools one of encStructPool(8|16|32|64).
  649. // It allows the re-use of slices up to 64 in length.
  650. // A performance cost of encoding structs was collecting
  651. // which values were empty and should be omitted.
  652. // We needed slices of reflect.Value and string to collect them.
  653. // This shared pool reduces the amount of unnecessary creation we do.
  654. // The cost is that of locking sometimes, but sync.Pool is efficient
  655. // enough to reduce thread contention.
  656. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  657. var spool sfiRvPooler
  658. var fkvs = spool.get(newlen)
  659. recur := e.h.RecursiveEmptyCheck
  660. sfn := structFieldNode{v: rv, update: false}
  661. var kv sfiRv
  662. var j int
  663. if toMap {
  664. newlen = 0
  665. for _, si := range f.ti.sfiSort { // use sorted array
  666. // kv.r = si.field(rv, false)
  667. kv.r = sfn.field(si)
  668. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  669. continue
  670. }
  671. kv.v = si // si.encName
  672. fkvs[newlen] = kv
  673. newlen++
  674. }
  675. var mflen int
  676. for k, v := range mf {
  677. if k == "" {
  678. delete(mf, k)
  679. continue
  680. }
  681. if f.ti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  682. delete(mf, k)
  683. continue
  684. }
  685. mflen++
  686. }
  687. // encode it all
  688. e.mapStart(newlen + mflen)
  689. for j = 0; j < newlen; j++ {
  690. kv = fkvs[j]
  691. e.mapElemKey()
  692. e.kStructFieldKey(f.ti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  693. e.mapElemValue()
  694. e.encodeValue(kv.r, nil)
  695. }
  696. // now, add the others
  697. for k, v := range mf {
  698. e.mapElemKey()
  699. e.kStructFieldKey(f.ti.keyType, false, k)
  700. e.mapElemValue()
  701. e.encode(v)
  702. }
  703. e.mapEnd()
  704. } else {
  705. newlen = len(f.ti.sfiSrc)
  706. // kv.v = nil
  707. for i, si := range f.ti.sfiSrc { // use unsorted array (to match sequence in struct)
  708. // kv.r = si.field(rv, false)
  709. kv.r = sfn.field(si)
  710. // use the zero value.
  711. // if a reference or struct, set to nil (so you do not output too much)
  712. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  713. switch kv.r.Kind() {
  714. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  715. kv.r = reflect.Value{} //encode as nil
  716. }
  717. }
  718. fkvs[i] = kv
  719. }
  720. // encode it all
  721. e.arrayStart(newlen)
  722. for j = 0; j < newlen; j++ {
  723. e.arrayElem()
  724. e.encodeValue(fkvs[j].r, nil)
  725. }
  726. e.arrayEnd()
  727. }
  728. // do not use defer. Instead, use explicit pool return at end of function.
  729. // defer has a cost we are trying to avoid.
  730. // If there is a panic and these slices are not returned, it is ok.
  731. spool.end()
  732. }
  733. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  734. if rv.IsNil() {
  735. e.e.EncodeNil()
  736. return
  737. }
  738. l := rv.Len()
  739. e.mapStart(l)
  740. if l == 0 {
  741. e.mapEnd()
  742. return
  743. }
  744. // var asSymbols bool
  745. // determine the underlying key and val encFn's for the map.
  746. // This eliminates some work which is done for each loop iteration i.e.
  747. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  748. //
  749. // However, if kind is reflect.Interface, do not pre-determine the
  750. // encoding type, because preEncodeValue may break it down to
  751. // a concrete type and kInterface will bomb.
  752. var keyFn, valFn *codecFn
  753. rtval := f.ti.elem
  754. // rtkeyid := rt2id(f.ti.key)
  755. for rtval.Kind() == reflect.Ptr {
  756. rtval = rtval.Elem()
  757. }
  758. if rtval.Kind() != reflect.Interface {
  759. valFn = e.h.fn(rtval)
  760. }
  761. mks := rv.MapKeys()
  762. if e.h.Canonical {
  763. e.kMapCanonical(f.ti.key, rv, mks, valFn)
  764. e.mapEnd()
  765. return
  766. }
  767. rtkey := f.ti.key
  768. var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
  769. if !keyTypeIsString {
  770. for rtkey.Kind() == reflect.Ptr {
  771. rtkey = rtkey.Elem()
  772. }
  773. if rtkey.Kind() != reflect.Interface {
  774. // rtkeyid = rt2id(rtkey)
  775. keyFn = e.h.fn(rtkey)
  776. }
  777. }
  778. // for j, lmks := 0, len(mks); j < lmks; j++ {
  779. for j := range mks {
  780. e.mapElemKey()
  781. if keyTypeIsString {
  782. if e.h.StringToRaw {
  783. e.e.EncodeStringBytesRaw(bytesView(mks[j].String()))
  784. } else {
  785. e.e.EncodeStringEnc(cUTF8, mks[j].String())
  786. }
  787. } else {
  788. e.encodeValue(mks[j], keyFn)
  789. }
  790. e.mapElemValue()
  791. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  792. }
  793. e.mapEnd()
  794. }
  795. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  796. // we previously did out-of-band if an extension was registered.
  797. // This is not necessary, as the natural kind is sufficient for ordering.
  798. switch rtkey.Kind() {
  799. case reflect.Bool:
  800. mksv := make([]boolRv, len(mks))
  801. for i, k := range mks {
  802. v := &mksv[i]
  803. v.r = k
  804. v.v = k.Bool()
  805. }
  806. sort.Sort(boolRvSlice(mksv))
  807. for i := range mksv {
  808. e.mapElemKey()
  809. e.e.EncodeBool(mksv[i].v)
  810. e.mapElemValue()
  811. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  812. }
  813. case reflect.String:
  814. mksv := make([]stringRv, len(mks))
  815. for i, k := range mks {
  816. v := &mksv[i]
  817. v.r = k
  818. v.v = k.String()
  819. }
  820. sort.Sort(stringRvSlice(mksv))
  821. for i := range mksv {
  822. e.mapElemKey()
  823. if e.h.StringToRaw {
  824. e.e.EncodeStringBytesRaw(bytesView(mksv[i].v))
  825. } else {
  826. e.e.EncodeStringEnc(cUTF8, mksv[i].v)
  827. }
  828. e.mapElemValue()
  829. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  830. }
  831. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  832. mksv := make([]uint64Rv, len(mks))
  833. for i, k := range mks {
  834. v := &mksv[i]
  835. v.r = k
  836. v.v = k.Uint()
  837. }
  838. sort.Sort(uint64RvSlice(mksv))
  839. for i := range mksv {
  840. e.mapElemKey()
  841. e.e.EncodeUint(mksv[i].v)
  842. e.mapElemValue()
  843. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  844. }
  845. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  846. mksv := make([]int64Rv, len(mks))
  847. for i, k := range mks {
  848. v := &mksv[i]
  849. v.r = k
  850. v.v = k.Int()
  851. }
  852. sort.Sort(int64RvSlice(mksv))
  853. for i := range mksv {
  854. e.mapElemKey()
  855. e.e.EncodeInt(mksv[i].v)
  856. e.mapElemValue()
  857. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  858. }
  859. case reflect.Float32:
  860. mksv := make([]float64Rv, len(mks))
  861. for i, k := range mks {
  862. v := &mksv[i]
  863. v.r = k
  864. v.v = k.Float()
  865. }
  866. sort.Sort(float64RvSlice(mksv))
  867. for i := range mksv {
  868. e.mapElemKey()
  869. e.e.EncodeFloat32(float32(mksv[i].v))
  870. e.mapElemValue()
  871. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  872. }
  873. case reflect.Float64:
  874. mksv := make([]float64Rv, len(mks))
  875. for i, k := range mks {
  876. v := &mksv[i]
  877. v.r = k
  878. v.v = k.Float()
  879. }
  880. sort.Sort(float64RvSlice(mksv))
  881. for i := range mksv {
  882. e.mapElemKey()
  883. e.e.EncodeFloat64(mksv[i].v)
  884. e.mapElemValue()
  885. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  886. }
  887. case reflect.Struct:
  888. if rv.Type() == timeTyp {
  889. mksv := make([]timeRv, len(mks))
  890. for i, k := range mks {
  891. v := &mksv[i]
  892. v.r = k
  893. v.v = rv2i(k).(time.Time)
  894. }
  895. sort.Sort(timeRvSlice(mksv))
  896. for i := range mksv {
  897. e.mapElemKey()
  898. e.e.EncodeTime(mksv[i].v)
  899. e.mapElemValue()
  900. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  901. }
  902. break
  903. }
  904. fallthrough
  905. default:
  906. // out-of-band
  907. // first encode each key to a []byte first, then sort them, then record
  908. var bufp bytesBufPooler
  909. var mksv []byte = bufp.get(len(mks) * 16)[:0]
  910. e2 := NewEncoderBytes(&mksv, e.hh)
  911. mksbv := make([]bytesRv, len(mks))
  912. for i, k := range mks {
  913. v := &mksbv[i]
  914. l := len(mksv)
  915. e2.MustEncode(k)
  916. v.r = k
  917. v.v = mksv[l:]
  918. }
  919. sort.Sort(bytesRvSlice(mksbv))
  920. for j := range mksbv {
  921. e.mapElemKey()
  922. e.asis(mksbv[j].v)
  923. e.mapElemValue()
  924. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn)
  925. }
  926. bufp.end()
  927. }
  928. }
  929. // // --------------------------------------------------
  930. type encWriterSwitch struct {
  931. esep bool // whether it has elem separators
  932. bytes bool // encoding to []byte
  933. isas bool // whether e.as != nil
  934. js bool // is json encoder?
  935. be bool // is binary encoder?
  936. c containerState
  937. // _ [3]byte // padding
  938. // _ [2]uint64 // padding
  939. // _ uint64 // padding
  940. // wi *ioEncWriter
  941. wb bytesEncAppender
  942. wf *bufioEncWriter
  943. // typ entryType
  944. }
  945. func (z *encWriterSwitch) writeb(s []byte) {
  946. if z.bytes {
  947. z.wb.writeb(s)
  948. } else {
  949. z.wf.writeb(s)
  950. }
  951. }
  952. func (z *encWriterSwitch) writeqstr(s string) {
  953. if z.bytes {
  954. z.wb.writeqstr(s)
  955. } else {
  956. z.wf.writeqstr(s)
  957. }
  958. }
  959. func (z *encWriterSwitch) writestr(s string) {
  960. if z.bytes {
  961. z.wb.writestr(s)
  962. } else {
  963. z.wf.writestr(s)
  964. }
  965. }
  966. func (z *encWriterSwitch) writen1(b1 byte) {
  967. if z.bytes {
  968. z.wb.writen1(b1)
  969. } else {
  970. z.wf.writen1(b1)
  971. }
  972. }
  973. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  974. if z.bytes {
  975. z.wb.writen2(b1, b2)
  976. } else {
  977. z.wf.writen2(b1, b2)
  978. }
  979. }
  980. func (z *encWriterSwitch) endErr() error {
  981. if z.bytes {
  982. return z.wb.endErr()
  983. }
  984. return z.wf.endErr()
  985. }
  986. func (z *encWriterSwitch) end() {
  987. if err := z.endErr(); err != nil {
  988. panic(err)
  989. }
  990. }
  991. /*
  992. // ------------------------------------------
  993. func (z *encWriterSwitch) writeb(s []byte) {
  994. switch z.typ {
  995. case entryTypeBytes:
  996. z.wb.writeb(s)
  997. case entryTypeIo:
  998. z.wi.writeb(s)
  999. default:
  1000. z.wf.writeb(s)
  1001. }
  1002. }
  1003. func (z *encWriterSwitch) writestr(s string) {
  1004. switch z.typ {
  1005. case entryTypeBytes:
  1006. z.wb.writestr(s)
  1007. case entryTypeIo:
  1008. z.wi.writestr(s)
  1009. default:
  1010. z.wf.writestr(s)
  1011. }
  1012. }
  1013. func (z *encWriterSwitch) writen1(b1 byte) {
  1014. switch z.typ {
  1015. case entryTypeBytes:
  1016. z.wb.writen1(b1)
  1017. case entryTypeIo:
  1018. z.wi.writen1(b1)
  1019. default:
  1020. z.wf.writen1(b1)
  1021. }
  1022. }
  1023. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1024. switch z.typ {
  1025. case entryTypeBytes:
  1026. z.wb.writen2(b1, b2)
  1027. case entryTypeIo:
  1028. z.wi.writen2(b1, b2)
  1029. default:
  1030. z.wf.writen2(b1, b2)
  1031. }
  1032. }
  1033. func (z *encWriterSwitch) end() {
  1034. switch z.typ {
  1035. case entryTypeBytes:
  1036. z.wb.end()
  1037. case entryTypeIo:
  1038. z.wi.end()
  1039. default:
  1040. z.wf.end()
  1041. }
  1042. }
  1043. // ------------------------------------------
  1044. func (z *encWriterSwitch) writeb(s []byte) {
  1045. if z.bytes {
  1046. z.wb.writeb(s)
  1047. } else {
  1048. z.wi.writeb(s)
  1049. }
  1050. }
  1051. func (z *encWriterSwitch) writestr(s string) {
  1052. if z.bytes {
  1053. z.wb.writestr(s)
  1054. } else {
  1055. z.wi.writestr(s)
  1056. }
  1057. }
  1058. func (z *encWriterSwitch) writen1(b1 byte) {
  1059. if z.bytes {
  1060. z.wb.writen1(b1)
  1061. } else {
  1062. z.wi.writen1(b1)
  1063. }
  1064. }
  1065. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1066. if z.bytes {
  1067. z.wb.writen2(b1, b2)
  1068. } else {
  1069. z.wi.writen2(b1, b2)
  1070. }
  1071. }
  1072. func (z *encWriterSwitch) end() {
  1073. if z.bytes {
  1074. z.wb.end()
  1075. } else {
  1076. z.wi.end()
  1077. }
  1078. }
  1079. */
  1080. // Encoder writes an object to an output stream in a supported format.
  1081. //
  1082. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1083. // concurrently in multiple goroutines.
  1084. //
  1085. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1086. // so its state can be reused to decode new input streams repeatedly.
  1087. // This is the idiomatic way to use.
  1088. type Encoder struct {
  1089. panicHdl
  1090. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1091. e encDriver
  1092. // NOTE: Encoder shouldn't call it's write methods,
  1093. // as the handler MAY need to do some coordination.
  1094. // w *encWriterSwitch
  1095. // bw *bufio.Writer
  1096. as encDriverAsis
  1097. jenc *jsonEncDriver
  1098. h *BasicHandle
  1099. hh Handle
  1100. // ---- cpu cache line boundary
  1101. encWriterSwitch
  1102. err error
  1103. // ---- cpu cache line boundary
  1104. // ---- writable fields during execution --- *try* to keep in sep cache line
  1105. ci set // holds set of addresses found during an encoding (if CheckCircularRef=true)
  1106. // cidef [1]interface{} // default ci
  1107. b [(5 * 8)]byte // for encoding chan byte, (non-addressable) [N]byte, etc
  1108. // ---- cpu cache line boundary?
  1109. // b [scratchByteArrayLen]byte
  1110. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1111. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  1112. }
  1113. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1114. //
  1115. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  1116. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  1117. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1118. e := newEncoder(h)
  1119. e.Reset(w)
  1120. return e
  1121. }
  1122. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1123. // into a byte slice, using zero-copying to temporary slices.
  1124. //
  1125. // It will potentially replace the output byte slice pointed to.
  1126. // After encoding, the out parameter contains the encoded contents.
  1127. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1128. e := newEncoder(h)
  1129. e.ResetBytes(out)
  1130. return e
  1131. }
  1132. func newEncoder(h Handle) *Encoder {
  1133. e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
  1134. e.bytes = true
  1135. if useFinalizers {
  1136. runtime.SetFinalizer(e, (*Encoder).finalize)
  1137. // xdebugf(">>>> new(Encoder) with finalizer")
  1138. }
  1139. // e.w = &e.encWriterSwitch
  1140. e.hh = h
  1141. e.esep = h.hasElemSeparators()
  1142. return e
  1143. }
  1144. func (e *Encoder) w() *encWriterSwitch {
  1145. return &e.encWriterSwitch
  1146. }
  1147. func (e *Encoder) resetCommon() {
  1148. // e.w = &e.encWriterSwitch
  1149. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1150. e.e = e.hh.newEncDriver(e)
  1151. e.as, e.isas = e.e.(encDriverAsis)
  1152. // e.cr, _ = e.e.(containerStateRecv)
  1153. }
  1154. if e.ci == nil {
  1155. // e.ci = (set)(e.cidef[:0])
  1156. } else {
  1157. e.ci = e.ci[:0]
  1158. }
  1159. e.be = e.hh.isBinary()
  1160. e.jenc = nil
  1161. _, e.js = e.hh.(*JsonHandle)
  1162. if e.js {
  1163. e.jenc = e.e.(interface{ getJsonEncDriver() *jsonEncDriver }).getJsonEncDriver()
  1164. }
  1165. e.e.reset()
  1166. e.c = 0
  1167. e.err = nil
  1168. }
  1169. // Reset resets the Encoder with a new output stream.
  1170. //
  1171. // This accommodates using the state of the Encoder,
  1172. // where it has "cached" information about sub-engines.
  1173. func (e *Encoder) Reset(w io.Writer) {
  1174. if w == nil {
  1175. return
  1176. }
  1177. // var ok bool
  1178. e.bytes = false
  1179. if e.wf == nil {
  1180. e.wf = new(bufioEncWriter)
  1181. }
  1182. // e.typ = entryTypeUnset
  1183. // if e.h.WriterBufferSize > 0 {
  1184. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1185. // // e.wi.bw = bw
  1186. // // e.wi.sw = bw
  1187. // // e.wi.fw = bw
  1188. // // e.wi.ww = bw
  1189. // if e.wf == nil {
  1190. // e.wf = new(bufioEncWriter)
  1191. // }
  1192. // e.wf.reset(w, e.h.WriterBufferSize)
  1193. // e.typ = entryTypeBufio
  1194. // } else {
  1195. // if e.wi == nil {
  1196. // e.wi = new(ioEncWriter)
  1197. // }
  1198. // e.wi.reset(w)
  1199. // e.typ = entryTypeIo
  1200. // }
  1201. e.wf.reset(w, e.h.WriterBufferSize)
  1202. // e.typ = entryTypeBufio
  1203. // e.w = e.wi
  1204. e.resetCommon()
  1205. }
  1206. // ResetBytes resets the Encoder with a new destination output []byte.
  1207. func (e *Encoder) ResetBytes(out *[]byte) {
  1208. if out == nil {
  1209. return
  1210. }
  1211. var in []byte = *out
  1212. if in == nil {
  1213. in = make([]byte, defEncByteBufSize)
  1214. }
  1215. e.bytes = true
  1216. // e.typ = entryTypeBytes
  1217. e.wb.reset(in, out)
  1218. // e.w = &e.wb
  1219. e.resetCommon()
  1220. }
  1221. // Encode writes an object into a stream.
  1222. //
  1223. // Encoding can be configured via the struct tag for the fields.
  1224. // The key (in the struct tags) that we look at is configurable.
  1225. //
  1226. // By default, we look up the "codec" key in the struct field's tags,
  1227. // and fall bak to the "json" key if "codec" is absent.
  1228. // That key in struct field's tag value is the key name,
  1229. // followed by an optional comma and options.
  1230. //
  1231. // To set an option on all fields (e.g. omitempty on all fields), you
  1232. // can create a field called _struct, and set flags on it. The options
  1233. // which can be set on _struct are:
  1234. // - omitempty: so all fields are omitted if empty
  1235. // - toarray: so struct is encoded as an array
  1236. // - int: so struct key names are encoded as signed integers (instead of strings)
  1237. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1238. // - float: so struct key names are encoded as floats (instead of strings)
  1239. // More details on these below.
  1240. //
  1241. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1242. // - the field's tag is "-", OR
  1243. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1244. //
  1245. // When encoding as a map, the first string in the tag (before the comma)
  1246. // is the map key string to use when encoding.
  1247. // ...
  1248. // This key is typically encoded as a string.
  1249. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1250. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1251. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1252. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1253. // This is done with the int,uint or float option on the _struct field (see above).
  1254. //
  1255. // However, struct values may encode as arrays. This happens when:
  1256. // - StructToArray Encode option is set, OR
  1257. // - the tag on the _struct field sets the "toarray" option
  1258. // Note that omitempty is ignored when encoding struct values as arrays,
  1259. // as an entry must be encoded for each field, to maintain its position.
  1260. //
  1261. // Values with types that implement MapBySlice are encoded as stream maps.
  1262. //
  1263. // The empty values (for omitempty option) are false, 0, any nil pointer
  1264. // or interface value, and any array, slice, map, or string of length zero.
  1265. //
  1266. // Anonymous fields are encoded inline except:
  1267. // - the struct tag specifies a replacement name (first value)
  1268. // - the field is of an interface type
  1269. //
  1270. // Examples:
  1271. //
  1272. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1273. // type MyStruct struct {
  1274. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1275. // Field1 string `codec:"-"` //skip this field
  1276. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1277. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1278. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1279. // io.Reader //use key "Reader".
  1280. // MyStruct `codec:"my1" //use key "my1".
  1281. // MyStruct //inline it
  1282. // ...
  1283. // }
  1284. //
  1285. // type MyStruct struct {
  1286. // _struct bool `codec:",toarray"` //encode struct as an array
  1287. // }
  1288. //
  1289. // type MyStruct struct {
  1290. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1291. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1292. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1293. // }
  1294. //
  1295. // The mode of encoding is based on the type of the value. When a value is seen:
  1296. // - If a Selfer, call its CodecEncodeSelf method
  1297. // - If an extension is registered for it, call that extension function
  1298. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1299. // - Else encode it based on its reflect.Kind
  1300. //
  1301. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1302. // Some formats support symbols (e.g. binc) and will properly encode the string
  1303. // only once in the stream, and use a tag to refer to it thereafter.
  1304. func (e *Encoder) Encode(v interface{}) (err error) {
  1305. // tried to use closure, as runtime optimizes defer with no params.
  1306. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1307. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1308. // defer func() { e.deferred(&err) }() }
  1309. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1310. if e.err != nil {
  1311. return e.err
  1312. }
  1313. if recoverPanicToErr {
  1314. defer func() {
  1315. // if error occurred during encoding, return that error;
  1316. // else if error occurred on end'ing (i.e. during flush), return that error.
  1317. err = e.w().endErr()
  1318. x := recover()
  1319. if x == nil {
  1320. if e.err != err {
  1321. e.err = err
  1322. }
  1323. } else {
  1324. panicValToErr(e, x, &e.err)
  1325. if e.err != err {
  1326. err = e.err
  1327. }
  1328. }
  1329. }()
  1330. }
  1331. // defer e.deferred(&err)
  1332. e.mustEncode(v)
  1333. return
  1334. }
  1335. // MustEncode is like Encode, but panics if unable to Encode.
  1336. // This provides insight to the code location that triggered the error.
  1337. func (e *Encoder) MustEncode(v interface{}) {
  1338. if e.err != nil {
  1339. panic(e.err)
  1340. }
  1341. e.mustEncode(v)
  1342. }
  1343. func (e *Encoder) mustEncode(v interface{}) {
  1344. if e.wf == nil {
  1345. e.encode(v)
  1346. e.e.atEndOfEncode()
  1347. e.w().end()
  1348. return
  1349. }
  1350. if e.wf.buf == nil {
  1351. e.wf.buf = e.wf.bytesBufPooler.get(e.wf.sz)
  1352. }
  1353. e.wf.calls++
  1354. e.encode(v)
  1355. e.wf.calls--
  1356. if e.wf.calls == 0 {
  1357. e.e.atEndOfEncode()
  1358. e.w().end()
  1359. if !e.h.ExplicitRelease {
  1360. e.wf.release()
  1361. }
  1362. }
  1363. }
  1364. // func (e *Encoder) deferred(err1 *error) {
  1365. // e.w().end()
  1366. // if recoverPanicToErr {
  1367. // if x := recover(); x != nil {
  1368. // panicValToErr(e, x, err1)
  1369. // panicValToErr(e, x, &e.err)
  1370. // }
  1371. // }
  1372. // }
  1373. //go:noinline -- as it is run by finalizer
  1374. func (e *Encoder) finalize() {
  1375. // xdebugf("finalizing Encoder")
  1376. e.Release()
  1377. }
  1378. // Release releases shared (pooled) resources.
  1379. //
  1380. // It is important to call Release() when done with an Encoder, so those resources
  1381. // are released instantly for use by subsequently created Encoders.
  1382. func (e *Encoder) Release() {
  1383. if e.wf != nil {
  1384. e.wf.release()
  1385. }
  1386. }
  1387. func (e *Encoder) encode(iv interface{}) {
  1388. // a switch with only concrete types can be optimized.
  1389. // consequently, we deal with nil and interfaces outside the switch.
  1390. if iv == nil || definitelyNil(iv) {
  1391. e.e.EncodeNil()
  1392. return
  1393. }
  1394. switch v := iv.(type) {
  1395. // case nil:
  1396. // case Selfer:
  1397. case Raw:
  1398. e.rawBytes(v)
  1399. case reflect.Value:
  1400. e.encodeValue(v, nil)
  1401. case string:
  1402. if e.h.StringToRaw {
  1403. e.e.EncodeStringBytesRaw(bytesView(v))
  1404. } else {
  1405. e.e.EncodeStringEnc(cUTF8, v)
  1406. }
  1407. case bool:
  1408. e.e.EncodeBool(v)
  1409. case int:
  1410. e.e.EncodeInt(int64(v))
  1411. case int8:
  1412. e.e.EncodeInt(int64(v))
  1413. case int16:
  1414. e.e.EncodeInt(int64(v))
  1415. case int32:
  1416. e.e.EncodeInt(int64(v))
  1417. case int64:
  1418. e.e.EncodeInt(v)
  1419. case uint:
  1420. e.e.EncodeUint(uint64(v))
  1421. case uint8:
  1422. e.e.EncodeUint(uint64(v))
  1423. case uint16:
  1424. e.e.EncodeUint(uint64(v))
  1425. case uint32:
  1426. e.e.EncodeUint(uint64(v))
  1427. case uint64:
  1428. e.e.EncodeUint(v)
  1429. case uintptr:
  1430. e.e.EncodeUint(uint64(v))
  1431. case float32:
  1432. e.e.EncodeFloat32(v)
  1433. case float64:
  1434. e.e.EncodeFloat64(v)
  1435. case time.Time:
  1436. e.e.EncodeTime(v)
  1437. case []uint8:
  1438. e.e.EncodeStringBytesRaw(v)
  1439. case *Raw:
  1440. e.rawBytes(*v)
  1441. case *string:
  1442. if e.h.StringToRaw {
  1443. e.e.EncodeStringBytesRaw(bytesView(*v))
  1444. } else {
  1445. e.e.EncodeStringEnc(cUTF8, *v)
  1446. }
  1447. case *bool:
  1448. e.e.EncodeBool(*v)
  1449. case *int:
  1450. e.e.EncodeInt(int64(*v))
  1451. case *int8:
  1452. e.e.EncodeInt(int64(*v))
  1453. case *int16:
  1454. e.e.EncodeInt(int64(*v))
  1455. case *int32:
  1456. e.e.EncodeInt(int64(*v))
  1457. case *int64:
  1458. e.e.EncodeInt(*v)
  1459. case *uint:
  1460. e.e.EncodeUint(uint64(*v))
  1461. case *uint8:
  1462. e.e.EncodeUint(uint64(*v))
  1463. case *uint16:
  1464. e.e.EncodeUint(uint64(*v))
  1465. case *uint32:
  1466. e.e.EncodeUint(uint64(*v))
  1467. case *uint64:
  1468. e.e.EncodeUint(*v)
  1469. case *uintptr:
  1470. e.e.EncodeUint(uint64(*v))
  1471. case *float32:
  1472. e.e.EncodeFloat32(*v)
  1473. case *float64:
  1474. e.e.EncodeFloat64(*v)
  1475. case *time.Time:
  1476. e.e.EncodeTime(*v)
  1477. case *[]uint8:
  1478. e.e.EncodeStringBytesRaw(*v)
  1479. default:
  1480. if v, ok := iv.(Selfer); ok {
  1481. v.CodecEncodeSelf(e)
  1482. } else if !fastpathEncodeTypeSwitch(iv, e) {
  1483. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1484. e.encodeValue(reflect.ValueOf(iv), nil)
  1485. }
  1486. }
  1487. }
  1488. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
  1489. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1490. // We considered using a uintptr (a pointer) retrievable via rv.UnsafeAddr.
  1491. // However, it is possible for the same pointer to point to 2 different types e.g.
  1492. // type T struct { tHelper }
  1493. // Here, for var v T; &v and &v.tHelper are the same pointer.
  1494. // Consequently, we need a tuple of type and pointer, which interface{} natively provides.
  1495. var sptr interface{} // uintptr
  1496. var rvp reflect.Value
  1497. var rvpValid bool
  1498. TOP:
  1499. switch rv.Kind() {
  1500. case reflect.Ptr:
  1501. if rv.IsNil() {
  1502. e.e.EncodeNil()
  1503. return
  1504. }
  1505. rvpValid = true
  1506. rvp = rv
  1507. rv = rv.Elem()
  1508. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1509. sptr = rv2i(rvp) // rv.UnsafeAddr()
  1510. break TOP
  1511. }
  1512. goto TOP
  1513. case reflect.Interface:
  1514. if rv.IsNil() {
  1515. e.e.EncodeNil()
  1516. return
  1517. }
  1518. rv = rv.Elem()
  1519. goto TOP
  1520. case reflect.Slice, reflect.Map:
  1521. if rv.IsNil() {
  1522. e.e.EncodeNil()
  1523. return
  1524. }
  1525. case reflect.Invalid, reflect.Func:
  1526. e.e.EncodeNil()
  1527. return
  1528. }
  1529. if sptr != nil && (&e.ci).add(sptr) {
  1530. // e.errorf("circular reference found: # %d", sptr)
  1531. e.errorf("circular reference found: # %p, %T", sptr, sptr)
  1532. }
  1533. if fn == nil {
  1534. rt := rv.Type()
  1535. fn = e.h.fn(rt)
  1536. }
  1537. if fn.i.addrE {
  1538. if rvpValid {
  1539. fn.fe(e, &fn.i, rvp)
  1540. } else if rv.CanAddr() {
  1541. fn.fe(e, &fn.i, rv.Addr())
  1542. } else {
  1543. rv2 := reflect.New(rv.Type())
  1544. rv2.Elem().Set(rv)
  1545. fn.fe(e, &fn.i, rv2)
  1546. }
  1547. } else {
  1548. fn.fe(e, &fn.i, rv)
  1549. }
  1550. if sptr != 0 {
  1551. (&e.ci).remove(sptr)
  1552. }
  1553. }
  1554. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1555. // if fnerr != nil {
  1556. // panic(fnerr)
  1557. // }
  1558. // if bs == nil {
  1559. // e.e.EncodeNil()
  1560. // } else if asis {
  1561. // e.asis(bs)
  1562. // } else {
  1563. // e.e.EncodeStringBytesRaw(bs)
  1564. // }
  1565. // }
  1566. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1567. if fnerr != nil {
  1568. panic(fnerr)
  1569. }
  1570. if bs == nil {
  1571. e.e.EncodeNil()
  1572. } else {
  1573. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1574. }
  1575. }
  1576. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1577. if fnerr != nil {
  1578. panic(fnerr)
  1579. }
  1580. if bs == nil {
  1581. e.e.EncodeNil()
  1582. } else {
  1583. e.asis(bs)
  1584. }
  1585. }
  1586. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1587. if fnerr != nil {
  1588. panic(fnerr)
  1589. }
  1590. if bs == nil {
  1591. e.e.EncodeNil()
  1592. } else {
  1593. e.e.EncodeStringBytesRaw(bs)
  1594. }
  1595. }
  1596. func (e *Encoder) asis(v []byte) {
  1597. if e.isas {
  1598. e.as.EncodeAsis(v)
  1599. } else {
  1600. e.w().writeb(v)
  1601. }
  1602. }
  1603. func (e *Encoder) rawBytes(vv Raw) {
  1604. v := []byte(vv)
  1605. if !e.h.Raw {
  1606. e.errorf("Raw values cannot be encoded: %v", v)
  1607. }
  1608. e.asis(v)
  1609. }
  1610. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1611. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1612. }
  1613. // ---- container tracker methods
  1614. // Note: We update the .c after calling the callback.
  1615. // This way, the callback can know what the last status was.
  1616. func (e *Encoder) mapStart(length int) {
  1617. e.e.WriteMapStart(length)
  1618. e.c = containerMapStart
  1619. }
  1620. func (e *Encoder) mapElemKey() {
  1621. if e.js {
  1622. e.jenc.WriteMapElemKey()
  1623. }
  1624. e.c = containerMapKey
  1625. }
  1626. func (e *Encoder) mapElemValue() {
  1627. if e.js {
  1628. e.jenc.WriteMapElemValue()
  1629. }
  1630. e.c = containerMapValue
  1631. }
  1632. func (e *Encoder) mapEnd() {
  1633. e.e.WriteMapEnd()
  1634. e.c = containerMapEnd
  1635. e.c = 0
  1636. }
  1637. func (e *Encoder) arrayStart(length int) {
  1638. e.e.WriteArrayStart(length)
  1639. e.c = containerArrayStart
  1640. }
  1641. func (e *Encoder) arrayElem() {
  1642. if e.js {
  1643. e.jenc.WriteArrayElem()
  1644. }
  1645. e.c = containerArrayElem
  1646. }
  1647. func (e *Encoder) arrayEnd() {
  1648. e.e.WriteArrayEnd()
  1649. e.c = 0
  1650. e.c = containerArrayEnd
  1651. }
  1652. // ----------
  1653. func (e *Encoder) sideEncode(v interface{}, bs *[]byte) {
  1654. rv := baseRV(v)
  1655. e2 := NewEncoderBytes(bs, e.hh)
  1656. e2.encodeValue(rv, e.h.fnNoExt(rv.Type()))
  1657. e2.e.atEndOfEncode()
  1658. e2.w().end()
  1659. // xdebugf("sideEncode: xbs: len: %d, %v, v: %v", len(*bs), *bs, v)
  1660. }
  1661. func encStructFieldKey(encName string, ee encDriver, w *encWriterSwitch,
  1662. keyType valueType, encNameAsciiAlphaNum bool, js bool) {
  1663. var m must
  1664. // use if-else-if, not switch (which compiles to binary-search)
  1665. // since keyType is typically valueTypeString, branch prediction is pretty good.
  1666. if keyType == valueTypeString {
  1667. if js && encNameAsciiAlphaNum { // keyType == valueTypeString
  1668. w.writeqstr(encName)
  1669. // ----
  1670. // w.writen1('"')
  1671. // w.writestr(encName)
  1672. // w.writen1('"')
  1673. // ----
  1674. // w.writestr(`"` + encName + `"`)
  1675. // ----
  1676. // // do concat myself, so it is faster than the generic string concat
  1677. // b := make([]byte, len(encName)+2)
  1678. // copy(b[1:], encName)
  1679. // b[0] = '"'
  1680. // b[len(b)-1] = '"'
  1681. // w.writeb(b)
  1682. } else { // keyType == valueTypeString
  1683. ee.EncodeStringEnc(cUTF8, encName)
  1684. }
  1685. } else if keyType == valueTypeInt {
  1686. ee.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  1687. } else if keyType == valueTypeUint {
  1688. ee.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  1689. } else if keyType == valueTypeFloat {
  1690. ee.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  1691. }
  1692. }
  1693. // type encExtPreambler interface {
  1694. // encodeExtPreamble(tag uint8, length int)
  1695. // }
  1696. // func encBytesExt(rv interface{}, xtag uint64, ext Ext, h Handle, e encDriver) {
  1697. // var bs []byte
  1698. // var bufp bytesBufPooler
  1699. // if ext == SelfExt {
  1700. // bs = bufp.get(1024)[:0]
  1701. // rv2 := reflect.ValueOf(v)
  1702. // NewEncoderBytes(&bs, h).encodeValue(rv2, h.fnNoExt(rv2.Type()))
  1703. // } else {
  1704. // bs = ext.WriteExt(v)
  1705. // }
  1706. // if bs == nil {
  1707. // e.EncodeNil()
  1708. // return
  1709. // }
  1710. // if e.h.WriteExt {
  1711. // e.encodeExtPreamble(uint8(xtag), len(bs))
  1712. // e.w.writeb(bs)
  1713. // } else {
  1714. // e.EncodeStringBytesRaw(bs)
  1715. // }
  1716. // if ext == SelfExt {
  1717. // bufp.end()
  1718. // }
  1719. // }
  1720. // func encStringAsRawBytesMaybe(ee encDriver, s string, stringToRaw bool) {
  1721. // if stringToRaw {
  1722. // ee.EncodeStringBytesRaw(bytesView(s))
  1723. // } else {
  1724. // ee.EncodeStringEnc(cUTF8, s)
  1725. // }
  1726. // }