encode.go 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "bytes"
  6. "encoding"
  7. "errors"
  8. "fmt"
  9. "io"
  10. "reflect"
  11. "sort"
  12. "sync"
  13. )
  14. const (
  15. defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  16. )
  17. // AsSymbolFlag defines what should be encoded as symbols.
  18. type AsSymbolFlag uint8
  19. const (
  20. // AsSymbolDefault is default.
  21. // Currently, this means only encode struct field names as symbols.
  22. // The default is subject to change.
  23. AsSymbolDefault AsSymbolFlag = iota
  24. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  25. AsSymbolAll = 0xfe
  26. // AsSymbolNone means do not encode anything as a symbol.
  27. AsSymbolNone = 1 << iota
  28. // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
  29. AsSymbolMapStringKeysFlag
  30. // AsSymbolStructFieldName means encode struct field names as symbols.
  31. AsSymbolStructFieldNameFlag
  32. )
  33. // encWriter abstracts writing to a byte array or to an io.Writer.
  34. type encWriter interface {
  35. writeb([]byte)
  36. writestr(string)
  37. writen1(byte)
  38. writen2(byte, byte)
  39. atEndOfEncode()
  40. }
  41. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  42. type encDriver interface {
  43. IsBuiltinType(rt uintptr) bool
  44. EncodeBuiltin(rt uintptr, v interface{})
  45. EncodeNil()
  46. EncodeInt(i int64)
  47. EncodeUint(i uint64)
  48. EncodeBool(b bool)
  49. EncodeFloat32(f float32)
  50. EncodeFloat64(f float64)
  51. // encodeExtPreamble(xtag byte, length int)
  52. EncodeRawExt(re *RawExt, e *Encoder)
  53. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  54. EncodeArrayStart(length int)
  55. EncodeArrayEnd()
  56. EncodeArrayEntrySeparator()
  57. EncodeMapStart(length int)
  58. EncodeMapEnd()
  59. EncodeMapEntrySeparator()
  60. EncodeMapKVSeparator()
  61. EncodeString(c charEncoding, v string)
  62. EncodeSymbol(v string)
  63. EncodeStringBytes(c charEncoding, v []byte)
  64. //TODO
  65. //encBignum(f *big.Int)
  66. //encStringRunes(c charEncoding, v []rune)
  67. }
  68. type encNoSeparator struct{}
  69. func (_ encNoSeparator) EncodeMapEnd() {}
  70. func (_ encNoSeparator) EncodeArrayEnd() {}
  71. func (_ encNoSeparator) EncodeArrayEntrySeparator() {}
  72. func (_ encNoSeparator) EncodeMapEntrySeparator() {}
  73. func (_ encNoSeparator) EncodeMapKVSeparator() {}
  74. type encStructFieldBytesV struct {
  75. b []byte
  76. v reflect.Value
  77. }
  78. type encStructFieldBytesVslice []encStructFieldBytesV
  79. func (p encStructFieldBytesVslice) Len() int { return len(p) }
  80. func (p encStructFieldBytesVslice) Less(i, j int) bool { return bytes.Compare(p[i].b, p[j].b) == -1 }
  81. func (p encStructFieldBytesVslice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
  82. type ioEncWriterWriter interface {
  83. WriteByte(c byte) error
  84. WriteString(s string) (n int, err error)
  85. Write(p []byte) (n int, err error)
  86. }
  87. type ioEncStringWriter interface {
  88. WriteString(s string) (n int, err error)
  89. }
  90. type EncodeOptions struct {
  91. // Encode a struct as an array, and not as a map
  92. StructToArray bool
  93. // Canonical representation means that encoding a value will always result in the same
  94. // sequence of bytes.
  95. //
  96. // This mostly will apply to maps. In this case, codec will do more work to encode the
  97. // map keys out of band, and then sort them, before writing out the map to the stream.
  98. Canonical bool
  99. // AsSymbols defines what should be encoded as symbols.
  100. //
  101. // Encoding as symbols can reduce the encoded size significantly.
  102. //
  103. // However, during decoding, each string to be encoded as a symbol must
  104. // be checked to see if it has been seen before. Consequently, encoding time
  105. // will increase if using symbols, because string comparisons has a clear cost.
  106. //
  107. // Sample values:
  108. // AsSymbolNone
  109. // AsSymbolAll
  110. // AsSymbolMapStringKeys
  111. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  112. AsSymbols AsSymbolFlag
  113. }
  114. // ---------------------------------------------
  115. type simpleIoEncWriterWriter struct {
  116. w io.Writer
  117. bw io.ByteWriter
  118. sw ioEncStringWriter
  119. }
  120. func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
  121. if o.bw != nil {
  122. return o.bw.WriteByte(c)
  123. }
  124. _, err = o.w.Write([]byte{c})
  125. return
  126. }
  127. func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
  128. if o.sw != nil {
  129. return o.sw.WriteString(s)
  130. }
  131. // return o.w.Write([]byte(s))
  132. return o.w.Write(bytesView(s))
  133. }
  134. func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
  135. return o.w.Write(p)
  136. }
  137. // ----------------------------------------
  138. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  139. type ioEncWriter struct {
  140. w ioEncWriterWriter
  141. // x [8]byte // temp byte array re-used internally for efficiency
  142. }
  143. func (z *ioEncWriter) writeb(bs []byte) {
  144. if len(bs) == 0 {
  145. return
  146. }
  147. n, err := z.w.Write(bs)
  148. if err != nil {
  149. panic(err)
  150. }
  151. if n != len(bs) {
  152. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n))
  153. }
  154. }
  155. func (z *ioEncWriter) writestr(s string) {
  156. n, err := z.w.WriteString(s)
  157. if err != nil {
  158. panic(err)
  159. }
  160. if n != len(s) {
  161. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n))
  162. }
  163. }
  164. func (z *ioEncWriter) writen1(b byte) {
  165. if err := z.w.WriteByte(b); err != nil {
  166. panic(err)
  167. }
  168. }
  169. func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
  170. z.writen1(b1)
  171. z.writen1(b2)
  172. }
  173. func (z *ioEncWriter) atEndOfEncode() {}
  174. // ----------------------------------------
  175. // bytesEncWriter implements encWriter and can write to an byte slice.
  176. // It is used by Marshal function.
  177. type bytesEncWriter struct {
  178. b []byte
  179. c int // cursor
  180. out *[]byte // write out on atEndOfEncode
  181. }
  182. func (z *bytesEncWriter) writeb(s []byte) {
  183. if len(s) > 0 {
  184. c := z.grow(len(s))
  185. copy(z.b[c:], s)
  186. }
  187. }
  188. func (z *bytesEncWriter) writestr(s string) {
  189. if len(s) > 0 {
  190. c := z.grow(len(s))
  191. copy(z.b[c:], s)
  192. }
  193. }
  194. func (z *bytesEncWriter) writen1(b1 byte) {
  195. c := z.grow(1)
  196. z.b[c] = b1
  197. }
  198. func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
  199. c := z.grow(2)
  200. z.b[c] = b1
  201. z.b[c+1] = b2
  202. }
  203. func (z *bytesEncWriter) atEndOfEncode() {
  204. *(z.out) = z.b[:z.c]
  205. }
  206. func (z *bytesEncWriter) grow(n int) (oldcursor int) {
  207. oldcursor = z.c
  208. z.c = oldcursor + n
  209. if z.c > len(z.b) {
  210. if z.c > cap(z.b) {
  211. // Tried using appendslice logic: (if cap < 1024, *2, else *1.25).
  212. // However, it was too expensive, causing too many iterations of copy.
  213. // Using bytes.Buffer model was much better (2*cap + n)
  214. bs := make([]byte, 2*cap(z.b)+n)
  215. copy(bs, z.b[:oldcursor])
  216. z.b = bs
  217. } else {
  218. z.b = z.b[:cap(z.b)]
  219. }
  220. }
  221. return
  222. }
  223. // ---------------------------------------------
  224. type encFnInfoX struct {
  225. e *Encoder
  226. ti *typeInfo
  227. xfFn Ext
  228. xfTag uint64
  229. seq seqType
  230. }
  231. type encFnInfo struct {
  232. // use encFnInfo as a value receiver.
  233. // keep most of it less-used variables accessible via a pointer (*encFnInfoX).
  234. // As sweet spot for value-receiver is 3 words, keep everything except
  235. // encDriver (which everyone needs) directly accessible.
  236. // ensure encFnInfoX is set for everyone who needs it i.e.
  237. // rawExt, ext, builtin, (selfer|binary|text)Marshal, kSlice, kStruct, kMap, kInterface, fastpath
  238. ee encDriver
  239. *encFnInfoX
  240. }
  241. func (f encFnInfo) builtin(rv reflect.Value) {
  242. f.ee.EncodeBuiltin(f.ti.rtid, rv.Interface())
  243. }
  244. func (f encFnInfo) rawExt(rv reflect.Value) {
  245. // rev := rv.Interface().(RawExt)
  246. // f.ee.EncodeRawExt(&rev, f.e)
  247. var re *RawExt
  248. if rv.CanAddr() {
  249. re = rv.Addr().Interface().(*RawExt)
  250. } else {
  251. rev := rv.Interface().(RawExt)
  252. re = &rev
  253. }
  254. f.ee.EncodeRawExt(re, f.e)
  255. }
  256. func (f encFnInfo) ext(rv reflect.Value) {
  257. // if this is a struct and it was addressable, then pass the address directly (not the value)
  258. if rv.CanAddr() && rv.Kind() == reflect.Struct {
  259. rv = rv.Addr()
  260. }
  261. f.ee.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
  262. }
  263. func (f encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
  264. if indir == 0 {
  265. v = rv.Interface()
  266. } else if indir == -1 {
  267. v = rv.Addr().Interface()
  268. } else {
  269. for j := int8(0); j < indir; j++ {
  270. if rv.IsNil() {
  271. f.ee.EncodeNil()
  272. return
  273. }
  274. rv = rv.Elem()
  275. }
  276. v = rv.Interface()
  277. }
  278. return v, true
  279. }
  280. func (f encFnInfo) selferMarshal(rv reflect.Value) {
  281. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
  282. v.(Selfer).CodecEncodeSelf(f.e)
  283. }
  284. }
  285. func (f encFnInfo) binaryMarshal(rv reflect.Value) {
  286. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
  287. bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
  288. if fnerr != nil {
  289. panic(fnerr)
  290. }
  291. if bs == nil {
  292. f.ee.EncodeNil()
  293. } else {
  294. f.ee.EncodeStringBytes(c_RAW, bs)
  295. }
  296. }
  297. }
  298. func (f encFnInfo) textMarshal(rv reflect.Value) {
  299. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
  300. // debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
  301. bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
  302. if fnerr != nil {
  303. panic(fnerr)
  304. }
  305. if bs == nil {
  306. f.ee.EncodeNil()
  307. } else {
  308. f.ee.EncodeStringBytes(c_UTF8, bs)
  309. }
  310. }
  311. }
  312. func (f encFnInfo) kBool(rv reflect.Value) {
  313. f.ee.EncodeBool(rv.Bool())
  314. }
  315. func (f encFnInfo) kString(rv reflect.Value) {
  316. f.ee.EncodeString(c_UTF8, rv.String())
  317. }
  318. func (f encFnInfo) kFloat64(rv reflect.Value) {
  319. f.ee.EncodeFloat64(rv.Float())
  320. }
  321. func (f encFnInfo) kFloat32(rv reflect.Value) {
  322. f.ee.EncodeFloat32(float32(rv.Float()))
  323. }
  324. func (f encFnInfo) kInt(rv reflect.Value) {
  325. f.ee.EncodeInt(rv.Int())
  326. }
  327. func (f encFnInfo) kUint(rv reflect.Value) {
  328. f.ee.EncodeUint(rv.Uint())
  329. }
  330. func (f encFnInfo) kInvalid(rv reflect.Value) {
  331. f.ee.EncodeNil()
  332. }
  333. func (f encFnInfo) kErr(rv reflect.Value) {
  334. f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  335. }
  336. func (f encFnInfo) kSlice(rv reflect.Value) {
  337. ti := f.ti
  338. // array may be non-addressable, so we have to manage with care
  339. // (don't call rv.Bytes, rv.Slice, etc).
  340. // E.g. type struct S{B [2]byte};
  341. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  342. if f.seq != seqTypeArray {
  343. if rv.IsNil() {
  344. f.ee.EncodeNil()
  345. return
  346. }
  347. // If in this method, then there was no extension function defined.
  348. // So it's okay to treat as []byte.
  349. if ti.rtid == uint8SliceTypId {
  350. f.ee.EncodeStringBytes(c_RAW, rv.Bytes())
  351. return
  352. }
  353. }
  354. rtelem := ti.rt.Elem()
  355. l := rv.Len()
  356. if rtelem.Kind() == reflect.Uint8 {
  357. switch f.seq {
  358. case seqTypeArray:
  359. // if l == 0 { f.ee.encodeStringBytes(c_RAW, nil) } else
  360. if rv.CanAddr() {
  361. f.ee.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
  362. } else {
  363. var bs []byte
  364. if l <= cap(f.e.b) {
  365. bs = f.e.b[:l]
  366. } else {
  367. bs = make([]byte, l)
  368. }
  369. reflect.Copy(reflect.ValueOf(bs), rv)
  370. // TODO: Test that reflect.Copy works instead of manual one-by-one
  371. // for i := 0; i < l; i++ {
  372. // bs[i] = byte(rv.Index(i).Uint())
  373. // }
  374. f.ee.EncodeStringBytes(c_RAW, bs)
  375. }
  376. case seqTypeSlice:
  377. f.ee.EncodeStringBytes(c_RAW, rv.Bytes())
  378. case seqTypeChan:
  379. bs := f.e.b[:0]
  380. // do not use range, so that the number of elements encoded
  381. // does not change, and encoding does not hang waiting on someone to close chan.
  382. // for b := range rv.Interface().(<-chan byte) {
  383. // bs = append(bs, b)
  384. // }
  385. ch := rv.Interface().(<-chan byte)
  386. for i := 0; i < l; i++ {
  387. bs = append(bs, <-ch)
  388. }
  389. f.ee.EncodeStringBytes(c_RAW, bs)
  390. }
  391. return
  392. }
  393. if ti.mbs {
  394. if l%2 == 1 {
  395. f.e.errorf("mapBySlice requires even slice length, but got %v", l)
  396. return
  397. }
  398. f.ee.EncodeMapStart(l / 2)
  399. } else {
  400. f.ee.EncodeArrayStart(l)
  401. }
  402. e := f.e
  403. sep := !e.be
  404. if l > 0 {
  405. for rtelem.Kind() == reflect.Ptr {
  406. rtelem = rtelem.Elem()
  407. }
  408. // if kind is reflect.Interface, do not pre-determine the
  409. // encoding type, because preEncodeValue may break it down to
  410. // a concrete type and kInterface will bomb.
  411. var fn encFn
  412. if rtelem.Kind() != reflect.Interface {
  413. rtelemid := reflect.ValueOf(rtelem).Pointer()
  414. fn = e.getEncFn(rtelemid, rtelem, true, true)
  415. }
  416. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  417. if sep {
  418. for j := 0; j < l; j++ {
  419. if j > 0 {
  420. if ti.mbs {
  421. if j%2 == 0 {
  422. f.ee.EncodeMapEntrySeparator()
  423. } else {
  424. f.ee.EncodeMapKVSeparator()
  425. }
  426. } else {
  427. f.ee.EncodeArrayEntrySeparator()
  428. }
  429. }
  430. if f.seq == seqTypeChan {
  431. if rv2, ok2 := rv.Recv(); ok2 {
  432. e.encodeValue(rv2, fn)
  433. }
  434. } else {
  435. e.encodeValue(rv.Index(j), fn)
  436. }
  437. }
  438. } else {
  439. for j := 0; j < l; j++ {
  440. if f.seq == seqTypeChan {
  441. if rv2, ok2 := rv.Recv(); ok2 {
  442. e.encodeValue(rv2, fn)
  443. }
  444. } else {
  445. e.encodeValue(rv.Index(j), fn)
  446. }
  447. }
  448. }
  449. }
  450. if sep {
  451. if ti.mbs {
  452. f.ee.EncodeMapEnd()
  453. } else {
  454. f.ee.EncodeArrayEnd()
  455. }
  456. }
  457. }
  458. func (f encFnInfo) kStruct(rv reflect.Value) {
  459. fti := f.ti
  460. e := f.e
  461. tisfi := fti.sfip
  462. toMap := !(fti.toArray || e.h.StructToArray)
  463. newlen := len(fti.sfi)
  464. // Use sync.Pool to reduce allocating slices unnecessarily.
  465. // The cost of the occasional locking is less than the cost of locking.
  466. var fkvs []encStructFieldKV
  467. var pool *sync.Pool
  468. var poolv interface{}
  469. idxpool := newlen / 8
  470. if encStructPoolLen != 4 {
  471. panic(errors.New("encStructPoolLen must be equal to 4")) // defensive, in case it is changed
  472. }
  473. if idxpool < encStructPoolLen {
  474. pool = &encStructPool[idxpool]
  475. poolv = pool.Get()
  476. switch vv := poolv.(type) {
  477. case *[8]encStructFieldKV:
  478. fkvs = vv[:newlen]
  479. case *[16]encStructFieldKV:
  480. fkvs = vv[:newlen]
  481. case *[32]encStructFieldKV:
  482. fkvs = vv[:newlen]
  483. case *[64]encStructFieldKV:
  484. fkvs = vv[:newlen]
  485. }
  486. }
  487. if fkvs == nil {
  488. fkvs = make([]encStructFieldKV, newlen)
  489. }
  490. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  491. if toMap {
  492. tisfi = fti.sfi
  493. }
  494. newlen = 0
  495. var kv encStructFieldKV
  496. for _, si := range tisfi {
  497. kv.v = si.field(rv, false)
  498. // if si.i != -1 {
  499. // rvals[newlen] = rv.Field(int(si.i))
  500. // } else {
  501. // rvals[newlen] = rv.FieldByIndex(si.is)
  502. // }
  503. if toMap {
  504. if si.omitEmpty && isEmptyValue(kv.v) {
  505. continue
  506. }
  507. kv.k = si.encName
  508. } else {
  509. // use the zero value.
  510. // if a reference or struct, set to nil (so you do not output too much)
  511. if si.omitEmpty && isEmptyValue(kv.v) {
  512. switch kv.v.Kind() {
  513. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array,
  514. reflect.Map, reflect.Slice:
  515. kv.v = reflect.Value{} //encode as nil
  516. }
  517. }
  518. }
  519. fkvs[newlen] = kv
  520. newlen++
  521. }
  522. // debugf(">>>> kStruct: newlen: %v", newlen)
  523. sep := !e.be
  524. ee := f.ee //don't dereference everytime
  525. if sep {
  526. if toMap {
  527. ee.EncodeMapStart(newlen)
  528. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  529. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  530. for j := 0; j < newlen; j++ {
  531. kv = fkvs[j]
  532. if j > 0 {
  533. ee.EncodeMapEntrySeparator()
  534. }
  535. if asSymbols {
  536. ee.EncodeSymbol(kv.k)
  537. } else {
  538. ee.EncodeString(c_UTF8, kv.k)
  539. }
  540. ee.EncodeMapKVSeparator()
  541. e.encodeValue(kv.v, encFn{})
  542. }
  543. ee.EncodeMapEnd()
  544. } else {
  545. ee.EncodeArrayStart(newlen)
  546. for j := 0; j < newlen; j++ {
  547. kv = fkvs[j]
  548. if j > 0 {
  549. ee.EncodeArrayEntrySeparator()
  550. }
  551. e.encodeValue(kv.v, encFn{})
  552. }
  553. ee.EncodeArrayEnd()
  554. }
  555. } else {
  556. if toMap {
  557. ee.EncodeMapStart(newlen)
  558. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  559. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  560. for j := 0; j < newlen; j++ {
  561. kv = fkvs[j]
  562. if asSymbols {
  563. ee.EncodeSymbol(kv.k)
  564. } else {
  565. ee.EncodeString(c_UTF8, kv.k)
  566. }
  567. e.encodeValue(kv.v, encFn{})
  568. }
  569. } else {
  570. ee.EncodeArrayStart(newlen)
  571. for j := 0; j < newlen; j++ {
  572. kv = fkvs[j]
  573. e.encodeValue(kv.v, encFn{})
  574. }
  575. }
  576. }
  577. // do not use defer. Instead, use explicit pool return at end of function.
  578. // defer has a cost we are trying to avoid.
  579. // If there is a panic and these slices are not returned, it is ok.
  580. if pool != nil {
  581. pool.Put(poolv)
  582. }
  583. }
  584. // func (f encFnInfo) kPtr(rv reflect.Value) {
  585. // debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
  586. // if rv.IsNil() {
  587. // f.ee.encodeNil()
  588. // return
  589. // }
  590. // f.e.encodeValue(rv.Elem())
  591. // }
  592. func (f encFnInfo) kInterface(rv reflect.Value) {
  593. if rv.IsNil() {
  594. f.ee.EncodeNil()
  595. return
  596. }
  597. f.e.encodeValue(rv.Elem(), encFn{})
  598. }
  599. func (f encFnInfo) kMap(rv reflect.Value) {
  600. if rv.IsNil() {
  601. f.ee.EncodeNil()
  602. return
  603. }
  604. l := rv.Len()
  605. f.ee.EncodeMapStart(l)
  606. e := f.e
  607. sep := !e.be
  608. if l == 0 {
  609. if sep {
  610. f.ee.EncodeMapEnd()
  611. }
  612. return
  613. }
  614. var asSymbols bool
  615. // determine the underlying key and val encFn's for the map.
  616. // This eliminates some work which is done for each loop iteration i.e.
  617. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  618. //
  619. // However, if kind is reflect.Interface, do not pre-determine the
  620. // encoding type, because preEncodeValue may break it down to
  621. // a concrete type and kInterface will bomb.
  622. var keyFn, valFn encFn
  623. ti := f.ti
  624. rtkey := ti.rt.Key()
  625. rtval := ti.rt.Elem()
  626. rtkeyid := reflect.ValueOf(rtkey).Pointer()
  627. // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
  628. var keyTypeIsString = rtkeyid == stringTypId
  629. if keyTypeIsString {
  630. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  631. } else {
  632. for rtkey.Kind() == reflect.Ptr {
  633. rtkey = rtkey.Elem()
  634. }
  635. if rtkey.Kind() != reflect.Interface {
  636. rtkeyid = reflect.ValueOf(rtkey).Pointer()
  637. keyFn = e.getEncFn(rtkeyid, rtkey, true, true)
  638. }
  639. }
  640. for rtval.Kind() == reflect.Ptr {
  641. rtval = rtval.Elem()
  642. }
  643. if rtval.Kind() != reflect.Interface {
  644. rtvalid := reflect.ValueOf(rtval).Pointer()
  645. valFn = e.getEncFn(rtvalid, rtval, true, true)
  646. }
  647. mks := rv.MapKeys()
  648. // for j, lmks := 0, len(mks); j < lmks; j++ {
  649. ee := f.ee //don't dereference everytime
  650. if e.h.Canonical {
  651. // first encode each key to a []byte first, then sort them, then record
  652. // println(">>>>>>>> CANONICAL <<<<<<<<")
  653. var mksv []byte // temporary byte slice for the encoding
  654. e2 := NewEncoderBytes(&mksv, e.hh)
  655. mksbv := make([]encStructFieldBytesV, len(mks))
  656. for i, k := range mks {
  657. l := len(mksv)
  658. e2.MustEncode(k)
  659. mksbv[i].v = k
  660. mksbv[i].b = mksv[l:]
  661. }
  662. sort.Sort(encStructFieldBytesVslice(mksbv))
  663. for j := range mksbv {
  664. if j > 0 {
  665. ee.EncodeMapEntrySeparator()
  666. }
  667. e.w.writeb(mksbv[j].b)
  668. ee.EncodeMapKVSeparator()
  669. e.encodeValue(rv.MapIndex(mksbv[j].v), valFn)
  670. }
  671. ee.EncodeMapEnd()
  672. } else if sep {
  673. for j := range mks {
  674. if j > 0 {
  675. ee.EncodeMapEntrySeparator()
  676. }
  677. if keyTypeIsString {
  678. if asSymbols {
  679. ee.EncodeSymbol(mks[j].String())
  680. } else {
  681. ee.EncodeString(c_UTF8, mks[j].String())
  682. }
  683. } else {
  684. e.encodeValue(mks[j], keyFn)
  685. }
  686. ee.EncodeMapKVSeparator()
  687. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  688. }
  689. ee.EncodeMapEnd()
  690. } else {
  691. for j := range mks {
  692. if keyTypeIsString {
  693. if asSymbols {
  694. ee.EncodeSymbol(mks[j].String())
  695. } else {
  696. ee.EncodeString(c_UTF8, mks[j].String())
  697. }
  698. } else {
  699. e.encodeValue(mks[j], keyFn)
  700. }
  701. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  702. }
  703. }
  704. }
  705. // --------------------------------------------------
  706. // encFn encapsulates the captured variables and the encode function.
  707. // This way, we only do some calculations one times, and pass to the
  708. // code block that should be called (encapsulated in a function)
  709. // instead of executing the checks every time.
  710. type encFn struct {
  711. i encFnInfo
  712. f func(encFnInfo, reflect.Value)
  713. }
  714. // --------------------------------------------------
  715. type rtidEncFn struct {
  716. rtid uintptr
  717. fn encFn
  718. }
  719. // An Encoder writes an object to an output stream in the codec format.
  720. type Encoder struct {
  721. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  722. e encDriver
  723. w encWriter
  724. s []rtidEncFn
  725. be bool // is binary encoding
  726. wi ioEncWriter
  727. wb bytesEncWriter
  728. h *BasicHandle
  729. hh Handle
  730. f map[uintptr]encFn
  731. b [scratchByteArrayLen]byte
  732. }
  733. // NewEncoder returns an Encoder for encoding into an io.Writer.
  734. //
  735. // For efficiency, Users are encouraged to pass in a memory buffered writer
  736. // (eg bufio.Writer, bytes.Buffer).
  737. func NewEncoder(w io.Writer, h Handle) *Encoder {
  738. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
  739. ww, ok := w.(ioEncWriterWriter)
  740. if !ok {
  741. sww := simpleIoEncWriterWriter{w: w}
  742. sww.bw, _ = w.(io.ByteWriter)
  743. sww.sw, _ = w.(ioEncStringWriter)
  744. ww = &sww
  745. //ww = bufio.NewWriterSize(w, defEncByteBufSize)
  746. }
  747. e.wi.w = ww
  748. e.w = &e.wi
  749. e.e = h.newEncDriver(e)
  750. return e
  751. }
  752. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  753. // into a byte slice, using zero-copying to temporary slices.
  754. //
  755. // It will potentially replace the output byte slice pointed to.
  756. // After encoding, the out parameter contains the encoded contents.
  757. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  758. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
  759. in := *out
  760. if in == nil {
  761. in = make([]byte, defEncByteBufSize)
  762. }
  763. e.wb.b, e.wb.out = in, out
  764. e.w = &e.wb
  765. e.e = h.newEncDriver(e)
  766. return e
  767. }
  768. // Encode writes an object into a stream.
  769. //
  770. // Encoding can be configured via the struct tag for the fields.
  771. // The "codec" key in struct field's tag value is the key name,
  772. // followed by an optional comma and options.
  773. // Note that the "json" key is used in the absence of the "codec" key.
  774. //
  775. // To set an option on all fields (e.g. omitempty on all fields), you
  776. // can create a field called _struct, and set flags on it.
  777. //
  778. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  779. // - the field's tag is "-", OR
  780. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  781. //
  782. // When encoding as a map, the first string in the tag (before the comma)
  783. // is the map key string to use when encoding.
  784. //
  785. // However, struct values may encode as arrays. This happens when:
  786. // - StructToArray Encode option is set, OR
  787. // - the tag on the _struct field sets the "toarray" option
  788. //
  789. // Values with types that implement MapBySlice are encoded as stream maps.
  790. //
  791. // The empty values (for omitempty option) are false, 0, any nil pointer
  792. // or interface value, and any array, slice, map, or string of length zero.
  793. //
  794. // Anonymous fields are encoded inline if no struct tag is present.
  795. // Else they are encoded as regular fields.
  796. //
  797. // Examples:
  798. //
  799. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  800. // type MyStruct struct {
  801. // _struct bool `codec:",omitempty"` //set omitempty for every field
  802. // Field1 string `codec:"-"` //skip this field
  803. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  804. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  805. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  806. // ...
  807. // }
  808. //
  809. // type MyStruct struct {
  810. // _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
  811. // //and encode struct as an array
  812. // }
  813. //
  814. // The mode of encoding is based on the type of the value. When a value is seen:
  815. // - If an extension is registered for it, call that extension function
  816. // - If it implements BinaryMarshaler, call its MarshalBinary() (data []byte, err error)
  817. // - Else encode it based on its reflect.Kind
  818. //
  819. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  820. // Some formats support symbols (e.g. binc) and will properly encode the string
  821. // only once in the stream, and use a tag to refer to it thereafter.
  822. func (e *Encoder) Encode(v interface{}) (err error) {
  823. defer panicToErr(&err)
  824. e.encode(v)
  825. e.w.atEndOfEncode()
  826. return
  827. }
  828. // MustEncode is like Encode, but panics if unable to Encode.
  829. // This provides insight to the code location that triggered the error.
  830. func (e *Encoder) MustEncode(v interface{}) {
  831. e.encode(v)
  832. e.w.atEndOfEncode()
  833. }
  834. // comment out these (Must)Write methods. They were only put there to support cbor.
  835. // However, users already have access to the streams, and can write directly.
  836. //
  837. // // Write allows users write to the Encoder stream directly.
  838. // func (e *Encoder) Write(bs []byte) (err error) {
  839. // defer panicToErr(&err)
  840. // e.w.writeb(bs)
  841. // return
  842. // }
  843. // // MustWrite is like write, but panics if unable to Write.
  844. // func (e *Encoder) MustWrite(bs []byte) {
  845. // e.w.writeb(bs)
  846. // }
  847. func (e *Encoder) encode(iv interface{}) {
  848. // if ics, ok := iv.(Selfer); ok {
  849. // ics.CodecEncodeSelf(e)
  850. // return
  851. // }
  852. switch v := iv.(type) {
  853. case nil:
  854. e.e.EncodeNil()
  855. case Selfer:
  856. v.CodecEncodeSelf(e)
  857. case reflect.Value:
  858. e.encodeValue(v, encFn{})
  859. case string:
  860. e.e.EncodeString(c_UTF8, v)
  861. case bool:
  862. e.e.EncodeBool(v)
  863. case int:
  864. e.e.EncodeInt(int64(v))
  865. case int8:
  866. e.e.EncodeInt(int64(v))
  867. case int16:
  868. e.e.EncodeInt(int64(v))
  869. case int32:
  870. e.e.EncodeInt(int64(v))
  871. case int64:
  872. e.e.EncodeInt(v)
  873. case uint:
  874. e.e.EncodeUint(uint64(v))
  875. case uint8:
  876. e.e.EncodeUint(uint64(v))
  877. case uint16:
  878. e.e.EncodeUint(uint64(v))
  879. case uint32:
  880. e.e.EncodeUint(uint64(v))
  881. case uint64:
  882. e.e.EncodeUint(v)
  883. case float32:
  884. e.e.EncodeFloat32(v)
  885. case float64:
  886. e.e.EncodeFloat64(v)
  887. case []uint8:
  888. e.e.EncodeStringBytes(c_RAW, v)
  889. case *string:
  890. e.e.EncodeString(c_UTF8, *v)
  891. case *bool:
  892. e.e.EncodeBool(*v)
  893. case *int:
  894. e.e.EncodeInt(int64(*v))
  895. case *int8:
  896. e.e.EncodeInt(int64(*v))
  897. case *int16:
  898. e.e.EncodeInt(int64(*v))
  899. case *int32:
  900. e.e.EncodeInt(int64(*v))
  901. case *int64:
  902. e.e.EncodeInt(*v)
  903. case *uint:
  904. e.e.EncodeUint(uint64(*v))
  905. case *uint8:
  906. e.e.EncodeUint(uint64(*v))
  907. case *uint16:
  908. e.e.EncodeUint(uint64(*v))
  909. case *uint32:
  910. e.e.EncodeUint(uint64(*v))
  911. case *uint64:
  912. e.e.EncodeUint(*v)
  913. case *float32:
  914. e.e.EncodeFloat32(*v)
  915. case *float64:
  916. e.e.EncodeFloat64(*v)
  917. case *[]uint8:
  918. e.e.EncodeStringBytes(c_RAW, *v)
  919. default:
  920. // canonical mode is not supported for fastpath of maps (but is fine for slices)
  921. if e.h.Canonical {
  922. if !fastpathEncodeTypeSwitchSlice(iv, e) {
  923. e.encodeI(iv, false, false)
  924. }
  925. } else if !fastpathEncodeTypeSwitch(iv, e) {
  926. e.encodeI(iv, false, false)
  927. }
  928. }
  929. }
  930. func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer bool) {
  931. if rv, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
  932. rt := rv.Type()
  933. rtid := reflect.ValueOf(rt).Pointer()
  934. fn := e.getEncFn(rtid, rt, checkFastpath, checkCodecSelfer)
  935. fn.f(fn.i, rv)
  936. }
  937. }
  938. func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, proceed bool) {
  939. LOOP:
  940. for {
  941. switch rv.Kind() {
  942. case reflect.Ptr, reflect.Interface:
  943. if rv.IsNil() {
  944. e.e.EncodeNil()
  945. return
  946. }
  947. rv = rv.Elem()
  948. continue LOOP
  949. case reflect.Slice, reflect.Map:
  950. if rv.IsNil() {
  951. e.e.EncodeNil()
  952. return
  953. }
  954. case reflect.Invalid, reflect.Func:
  955. e.e.EncodeNil()
  956. return
  957. }
  958. break
  959. }
  960. return rv, true
  961. }
  962. func (e *Encoder) encodeValue(rv reflect.Value, fn encFn) {
  963. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  964. if rv, proceed := e.preEncodeValue(rv); proceed {
  965. if fn.f == nil {
  966. rt := rv.Type()
  967. rtid := reflect.ValueOf(rt).Pointer()
  968. fn = e.getEncFn(rtid, rt, true, true)
  969. }
  970. fn.f(fn.i, rv)
  971. }
  972. }
  973. func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn encFn) {
  974. // rtid := reflect.ValueOf(rt).Pointer()
  975. var ok bool
  976. if useMapForCodecCache {
  977. fn, ok = e.f[rtid]
  978. } else {
  979. for _, v := range e.s {
  980. if v.rtid == rtid {
  981. fn, ok = v.fn, true
  982. break
  983. }
  984. }
  985. }
  986. if ok {
  987. return
  988. }
  989. // fi.encFnInfoX = new(encFnInfoX)
  990. ti := getTypeInfo(rtid, rt)
  991. var fi encFnInfo
  992. fi.ee = e.e
  993. if checkCodecSelfer && ti.cs {
  994. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  995. fn.f = (encFnInfo).selferMarshal
  996. } else if rtid == rawExtTypId {
  997. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  998. fn.f = (encFnInfo).rawExt
  999. } else if e.e.IsBuiltinType(rtid) {
  1000. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1001. fn.f = (encFnInfo).builtin
  1002. } else if xfFn := e.h.getExt(rtid); xfFn != nil {
  1003. // fi.encFnInfoX = new(encFnInfoX)
  1004. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1005. fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
  1006. fn.f = (encFnInfo).ext
  1007. } else if supportMarshalInterfaces && e.be && ti.bm {
  1008. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1009. fn.f = (encFnInfo).binaryMarshal
  1010. } else if supportMarshalInterfaces && !e.be && ti.tm {
  1011. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1012. fn.f = (encFnInfo).textMarshal
  1013. } else {
  1014. rk := rt.Kind()
  1015. if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
  1016. if rt.PkgPath() == "" {
  1017. if idx := fastpathAV.index(rtid); idx != -1 {
  1018. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1019. fn.f = fastpathAV[idx].encfn
  1020. }
  1021. } else {
  1022. ok = false
  1023. // use mapping for underlying type if there
  1024. var rtu reflect.Type
  1025. if rk == reflect.Map {
  1026. rtu = reflect.MapOf(rt.Key(), rt.Elem())
  1027. } else {
  1028. rtu = reflect.SliceOf(rt.Elem())
  1029. }
  1030. rtuid := reflect.ValueOf(rtu).Pointer()
  1031. if idx := fastpathAV.index(rtuid); idx != -1 {
  1032. xfnf := fastpathAV[idx].encfn
  1033. xrt := fastpathAV[idx].rt
  1034. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1035. fn.f = func(xf encFnInfo, xrv reflect.Value) {
  1036. xfnf(xf, xrv.Convert(xrt))
  1037. }
  1038. }
  1039. }
  1040. }
  1041. if fn.f == nil {
  1042. switch rk {
  1043. case reflect.Bool:
  1044. fn.f = (encFnInfo).kBool
  1045. case reflect.String:
  1046. fn.f = (encFnInfo).kString
  1047. case reflect.Float64:
  1048. fn.f = (encFnInfo).kFloat64
  1049. case reflect.Float32:
  1050. fn.f = (encFnInfo).kFloat32
  1051. case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
  1052. fn.f = (encFnInfo).kInt
  1053. case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16:
  1054. fn.f = (encFnInfo).kUint
  1055. case reflect.Invalid:
  1056. fn.f = (encFnInfo).kInvalid
  1057. case reflect.Chan:
  1058. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeChan}
  1059. fn.f = (encFnInfo).kSlice
  1060. case reflect.Slice:
  1061. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeSlice}
  1062. fn.f = (encFnInfo).kSlice
  1063. case reflect.Array:
  1064. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeArray}
  1065. fn.f = (encFnInfo).kSlice
  1066. case reflect.Struct:
  1067. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1068. fn.f = (encFnInfo).kStruct
  1069. // case reflect.Ptr:
  1070. // fn.f = (encFnInfo).kPtr
  1071. case reflect.Interface:
  1072. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1073. fn.f = (encFnInfo).kInterface
  1074. case reflect.Map:
  1075. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1076. fn.f = (encFnInfo).kMap
  1077. default:
  1078. fn.f = (encFnInfo).kErr
  1079. }
  1080. }
  1081. }
  1082. fn.i = fi
  1083. if useMapForCodecCache {
  1084. if e.f == nil {
  1085. e.f = make(map[uintptr]encFn, 32)
  1086. }
  1087. e.f[rtid] = fn
  1088. } else {
  1089. if e.s == nil {
  1090. e.s = make([]rtidEncFn, 0, 32)
  1091. }
  1092. e.s = append(e.s, rtidEncFn{rtid, fn})
  1093. }
  1094. return
  1095. }
  1096. func (e *Encoder) errorf(format string, params ...interface{}) {
  1097. err := fmt.Errorf(format, params...)
  1098. panic(err)
  1099. }
  1100. // ----------------------------------------
  1101. type encStructFieldKV struct {
  1102. k string
  1103. v reflect.Value
  1104. }
  1105. const encStructPoolLen = 4
  1106. // encStructPool is an array of sync.Pool.
  1107. // Each element of the array pools one of encStructPool(8|16|32|64).
  1108. // It allows the re-use of slices up to 64 in length.
  1109. // A performance cost of encoding structs was collecting
  1110. // which values were empty and should be omitted.
  1111. // We needed slices of reflect.Value and string to collect them.
  1112. // This shared pool reduces the amount of unnecessary creation we do.
  1113. // The cost is that of locking sometimes, but sync.Pool is efficient
  1114. // enough to reduce thread contention.
  1115. var encStructPool [encStructPoolLen]sync.Pool
  1116. func init() {
  1117. encStructPool[0].New = func() interface{} { return new([8]encStructFieldKV) }
  1118. encStructPool[1].New = func() interface{} { return new([16]encStructFieldKV) }
  1119. encStructPool[2].New = func() interface{} { return new([32]encStructFieldKV) }
  1120. encStructPool[3].New = func() interface{} { return new([64]encStructFieldKV) }
  1121. }
  1122. // ----------------------------------------
  1123. // func encErr(format string, params ...interface{}) {
  1124. // doPanic(msgTagEnc, format, params...)
  1125. // }