encode.go 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "fmt"
  7. "io"
  8. "reflect"
  9. "sort"
  10. "sync"
  11. )
  12. const (
  13. defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  14. )
  15. // AsSymbolFlag defines what should be encoded as symbols.
  16. type AsSymbolFlag uint8
  17. const (
  18. // AsSymbolDefault is default.
  19. // Currently, this means only encode struct field names as symbols.
  20. // The default is subject to change.
  21. AsSymbolDefault AsSymbolFlag = iota
  22. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  23. AsSymbolAll = 0xfe
  24. // AsSymbolNone means do not encode anything as a symbol.
  25. AsSymbolNone = 1 << iota
  26. // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
  27. AsSymbolMapStringKeysFlag
  28. // AsSymbolStructFieldName means encode struct field names as symbols.
  29. AsSymbolStructFieldNameFlag
  30. )
  31. // encWriter abstracts writing to a byte array or to an io.Writer.
  32. type encWriter interface {
  33. writeb([]byte)
  34. writestr(string)
  35. writen1(byte)
  36. writen2(byte, byte)
  37. atEndOfEncode()
  38. }
  39. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  40. type encDriver interface {
  41. IsBuiltinType(rt uintptr) bool
  42. EncodeBuiltin(rt uintptr, v interface{})
  43. EncodeNil()
  44. EncodeInt(i int64)
  45. EncodeUint(i uint64)
  46. EncodeBool(b bool)
  47. EncodeFloat32(f float32)
  48. EncodeFloat64(f float64)
  49. // encodeExtPreamble(xtag byte, length int)
  50. EncodeRawExt(re *RawExt, e *Encoder)
  51. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  52. EncodeArrayStart(length int)
  53. EncodeMapStart(length int)
  54. EncodeEnd()
  55. EncodeString(c charEncoding, v string)
  56. EncodeSymbol(v string)
  57. EncodeStringBytes(c charEncoding, v []byte)
  58. //TODO
  59. //encBignum(f *big.Int)
  60. //encStringRunes(c charEncoding, v []rune)
  61. }
  62. type encDriverAsis interface {
  63. EncodeAsis(v []byte)
  64. }
  65. type encNoSeparator struct{}
  66. func (_ encNoSeparator) EncodeEnd() {}
  67. type ioEncWriterWriter interface {
  68. WriteByte(c byte) error
  69. WriteString(s string) (n int, err error)
  70. Write(p []byte) (n int, err error)
  71. }
  72. type ioEncStringWriter interface {
  73. WriteString(s string) (n int, err error)
  74. }
  75. type EncodeOptions struct {
  76. // Encode a struct as an array, and not as a map
  77. StructToArray bool
  78. // Canonical representation means that encoding a value will always result in the same
  79. // sequence of bytes.
  80. //
  81. // This only affects maps, as the iteration order for maps is random.
  82. //
  83. // The implementation MAY use the natural sort order for the map keys if possible:
  84. //
  85. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  86. // then the map keys are first sorted in natural order and then written
  87. // with corresponding map values to the strema.
  88. // - If there is no natural sort order, then the map keys will first be
  89. // encoded into []byte, and then sorted,
  90. // before writing the sorted keys and the corresponding map values to the stream.
  91. //
  92. Canonical bool
  93. // AsSymbols defines what should be encoded as symbols.
  94. //
  95. // Encoding as symbols can reduce the encoded size significantly.
  96. //
  97. // However, during decoding, each string to be encoded as a symbol must
  98. // be checked to see if it has been seen before. Consequently, encoding time
  99. // will increase if using symbols, because string comparisons has a clear cost.
  100. //
  101. // Sample values:
  102. // AsSymbolNone
  103. // AsSymbolAll
  104. // AsSymbolMapStringKeys
  105. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  106. AsSymbols AsSymbolFlag
  107. }
  108. // ---------------------------------------------
  109. type simpleIoEncWriterWriter struct {
  110. w io.Writer
  111. bw io.ByteWriter
  112. sw ioEncStringWriter
  113. }
  114. func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
  115. if o.bw != nil {
  116. return o.bw.WriteByte(c)
  117. }
  118. _, err = o.w.Write([]byte{c})
  119. return
  120. }
  121. func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
  122. if o.sw != nil {
  123. return o.sw.WriteString(s)
  124. }
  125. // return o.w.Write([]byte(s))
  126. return o.w.Write(bytesView(s))
  127. }
  128. func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
  129. return o.w.Write(p)
  130. }
  131. // ----------------------------------------
  132. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  133. type ioEncWriter struct {
  134. w ioEncWriterWriter
  135. // x [8]byte // temp byte array re-used internally for efficiency
  136. }
  137. func (z *ioEncWriter) writeb(bs []byte) {
  138. if len(bs) == 0 {
  139. return
  140. }
  141. n, err := z.w.Write(bs)
  142. if err != nil {
  143. panic(err)
  144. }
  145. if n != len(bs) {
  146. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n))
  147. }
  148. }
  149. func (z *ioEncWriter) writestr(s string) {
  150. n, err := z.w.WriteString(s)
  151. if err != nil {
  152. panic(err)
  153. }
  154. if n != len(s) {
  155. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n))
  156. }
  157. }
  158. func (z *ioEncWriter) writen1(b byte) {
  159. if err := z.w.WriteByte(b); err != nil {
  160. panic(err)
  161. }
  162. }
  163. func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
  164. z.writen1(b1)
  165. z.writen1(b2)
  166. }
  167. func (z *ioEncWriter) atEndOfEncode() {}
  168. // ----------------------------------------
  169. // bytesEncWriter implements encWriter and can write to an byte slice.
  170. // It is used by Marshal function.
  171. type bytesEncWriter struct {
  172. b []byte
  173. c int // cursor
  174. out *[]byte // write out on atEndOfEncode
  175. }
  176. func (z *bytesEncWriter) writeb(s []byte) {
  177. if len(s) > 0 {
  178. c := z.grow(len(s))
  179. copy(z.b[c:], s)
  180. }
  181. }
  182. func (z *bytesEncWriter) writestr(s string) {
  183. if len(s) > 0 {
  184. c := z.grow(len(s))
  185. copy(z.b[c:], s)
  186. }
  187. }
  188. func (z *bytesEncWriter) writen1(b1 byte) {
  189. c := z.grow(1)
  190. z.b[c] = b1
  191. }
  192. func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
  193. c := z.grow(2)
  194. z.b[c] = b1
  195. z.b[c+1] = b2
  196. }
  197. func (z *bytesEncWriter) atEndOfEncode() {
  198. *(z.out) = z.b[:z.c]
  199. }
  200. func (z *bytesEncWriter) grow(n int) (oldcursor int) {
  201. oldcursor = z.c
  202. z.c = oldcursor + n
  203. if z.c > len(z.b) {
  204. if z.c > cap(z.b) {
  205. // appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
  206. // bytes.Buffer model (2*cap + n): much better
  207. // bs := make([]byte, 2*cap(z.b)+n)
  208. bs := make([]byte, growCap(cap(z.b), 1, n))
  209. copy(bs, z.b[:oldcursor])
  210. z.b = bs
  211. } else {
  212. z.b = z.b[:cap(z.b)]
  213. }
  214. }
  215. return
  216. }
  217. // ---------------------------------------------
  218. type encFnInfo struct {
  219. e *Encoder
  220. ti *typeInfo
  221. xfFn Ext
  222. xfTag uint64
  223. seq seqType
  224. }
  225. func (f *encFnInfo) builtin(rv reflect.Value) {
  226. f.e.e.EncodeBuiltin(f.ti.rtid, rv.Interface())
  227. }
  228. func (f *encFnInfo) rawExt(rv reflect.Value) {
  229. // rev := rv.Interface().(RawExt)
  230. // f.e.e.EncodeRawExt(&rev, f.e)
  231. var re *RawExt
  232. if rv.CanAddr() {
  233. re = rv.Addr().Interface().(*RawExt)
  234. } else {
  235. rev := rv.Interface().(RawExt)
  236. re = &rev
  237. }
  238. f.e.e.EncodeRawExt(re, f.e)
  239. }
  240. func (f *encFnInfo) ext(rv reflect.Value) {
  241. // if this is a struct|array and it was addressable, then pass the address directly (not the value)
  242. if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
  243. rv = rv.Addr()
  244. }
  245. f.e.e.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
  246. }
  247. func (f *encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
  248. if indir == 0 {
  249. v = rv.Interface()
  250. } else if indir == -1 {
  251. // If a non-pointer was passed to Encode(), then that value is not addressable.
  252. // Take addr if addresable, else copy value to an addressable value.
  253. if rv.CanAddr() {
  254. v = rv.Addr().Interface()
  255. } else {
  256. rv2 := reflect.New(rv.Type())
  257. rv2.Elem().Set(rv)
  258. v = rv2.Interface()
  259. // fmt.Printf("rv.Type: %v, rv2.Type: %v, v: %v\n", rv.Type(), rv2.Type(), v)
  260. }
  261. } else {
  262. for j := int8(0); j < indir; j++ {
  263. if rv.IsNil() {
  264. f.e.e.EncodeNil()
  265. return
  266. }
  267. rv = rv.Elem()
  268. }
  269. v = rv.Interface()
  270. }
  271. return v, true
  272. }
  273. func (f *encFnInfo) selferMarshal(rv reflect.Value) {
  274. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
  275. v.(Selfer).CodecEncodeSelf(f.e)
  276. }
  277. }
  278. func (f *encFnInfo) binaryMarshal(rv reflect.Value) {
  279. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
  280. bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
  281. f.e.marshal(bs, fnerr, false, c_RAW)
  282. }
  283. }
  284. func (f *encFnInfo) textMarshal(rv reflect.Value) {
  285. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
  286. // debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
  287. bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
  288. f.e.marshal(bs, fnerr, false, c_UTF8)
  289. }
  290. }
  291. func (f *encFnInfo) jsonMarshal(rv reflect.Value) {
  292. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
  293. bs, fnerr := v.(jsonMarshaler).MarshalJSON()
  294. f.e.marshal(bs, fnerr, true, c_UTF8)
  295. }
  296. }
  297. func (f *encFnInfo) kBool(rv reflect.Value) {
  298. f.e.e.EncodeBool(rv.Bool())
  299. }
  300. func (f *encFnInfo) kString(rv reflect.Value) {
  301. f.e.e.EncodeString(c_UTF8, rv.String())
  302. }
  303. func (f *encFnInfo) kFloat64(rv reflect.Value) {
  304. f.e.e.EncodeFloat64(rv.Float())
  305. }
  306. func (f *encFnInfo) kFloat32(rv reflect.Value) {
  307. f.e.e.EncodeFloat32(float32(rv.Float()))
  308. }
  309. func (f *encFnInfo) kInt(rv reflect.Value) {
  310. f.e.e.EncodeInt(rv.Int())
  311. }
  312. func (f *encFnInfo) kUint(rv reflect.Value) {
  313. f.e.e.EncodeUint(rv.Uint())
  314. }
  315. func (f *encFnInfo) kInvalid(rv reflect.Value) {
  316. f.e.e.EncodeNil()
  317. }
  318. func (f *encFnInfo) kErr(rv reflect.Value) {
  319. f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  320. }
  321. func (f *encFnInfo) kSlice(rv reflect.Value) {
  322. ti := f.ti
  323. // array may be non-addressable, so we have to manage with care
  324. // (don't call rv.Bytes, rv.Slice, etc).
  325. // E.g. type struct S{B [2]byte};
  326. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  327. if f.seq != seqTypeArray {
  328. if rv.IsNil() {
  329. f.e.e.EncodeNil()
  330. return
  331. }
  332. // If in this method, then there was no extension function defined.
  333. // So it's okay to treat as []byte.
  334. if ti.rtid == uint8SliceTypId {
  335. f.e.e.EncodeStringBytes(c_RAW, rv.Bytes())
  336. return
  337. }
  338. }
  339. rtelem := ti.rt.Elem()
  340. l := rv.Len()
  341. if rtelem.Kind() == reflect.Uint8 {
  342. switch f.seq {
  343. case seqTypeArray:
  344. // if l == 0 { f.e.e.encodeStringBytes(c_RAW, nil) } else
  345. if rv.CanAddr() {
  346. f.e.e.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
  347. } else {
  348. var bs []byte
  349. if l <= cap(f.e.b) {
  350. bs = f.e.b[:l]
  351. } else {
  352. bs = make([]byte, l)
  353. }
  354. reflect.Copy(reflect.ValueOf(bs), rv)
  355. // TODO: Test that reflect.Copy works instead of manual one-by-one
  356. // for i := 0; i < l; i++ {
  357. // bs[i] = byte(rv.Index(i).Uint())
  358. // }
  359. f.e.e.EncodeStringBytes(c_RAW, bs)
  360. }
  361. case seqTypeSlice:
  362. f.e.e.EncodeStringBytes(c_RAW, rv.Bytes())
  363. case seqTypeChan:
  364. bs := f.e.b[:0]
  365. // do not use range, so that the number of elements encoded
  366. // does not change, and encoding does not hang waiting on someone to close chan.
  367. // for b := range rv.Interface().(<-chan byte) {
  368. // bs = append(bs, b)
  369. // }
  370. ch := rv.Interface().(<-chan byte)
  371. for i := 0; i < l; i++ {
  372. bs = append(bs, <-ch)
  373. }
  374. f.e.e.EncodeStringBytes(c_RAW, bs)
  375. }
  376. return
  377. }
  378. if ti.mbs {
  379. if l%2 == 1 {
  380. f.e.errorf("mapBySlice requires even slice length, but got %v", l)
  381. return
  382. }
  383. f.e.e.EncodeMapStart(l / 2)
  384. } else {
  385. f.e.e.EncodeArrayStart(l)
  386. }
  387. e := f.e
  388. if l > 0 {
  389. for rtelem.Kind() == reflect.Ptr {
  390. rtelem = rtelem.Elem()
  391. }
  392. // if kind is reflect.Interface, do not pre-determine the
  393. // encoding type, because preEncodeValue may break it down to
  394. // a concrete type and kInterface will bomb.
  395. var fn *encFn
  396. if rtelem.Kind() != reflect.Interface {
  397. rtelemid := reflect.ValueOf(rtelem).Pointer()
  398. fn = e.getEncFn(rtelemid, rtelem, true, true)
  399. }
  400. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  401. for j := 0; j < l; j++ {
  402. if f.seq == seqTypeChan {
  403. if rv2, ok2 := rv.Recv(); ok2 {
  404. e.encodeValue(rv2, fn)
  405. }
  406. } else {
  407. e.encodeValue(rv.Index(j), fn)
  408. }
  409. }
  410. }
  411. f.e.e.EncodeEnd()
  412. }
  413. func (f *encFnInfo) kStruct(rv reflect.Value) {
  414. fti := f.ti
  415. e := f.e
  416. tisfi := fti.sfip
  417. toMap := !(fti.toArray || e.h.StructToArray)
  418. newlen := len(fti.sfi)
  419. // Use sync.Pool to reduce allocating slices unnecessarily.
  420. // The cost of the occasional locking is less than the cost of locking.
  421. pool, poolv, fkvs := encStructPoolGet(newlen)
  422. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  423. if toMap {
  424. tisfi = fti.sfi
  425. }
  426. newlen = 0
  427. var kv stringRv
  428. for _, si := range tisfi {
  429. kv.r = si.field(rv, false)
  430. // if si.i != -1 {
  431. // rvals[newlen] = rv.Field(int(si.i))
  432. // } else {
  433. // rvals[newlen] = rv.FieldByIndex(si.is)
  434. // }
  435. if toMap {
  436. if si.omitEmpty && isEmptyValue(kv.r) {
  437. continue
  438. }
  439. kv.v = si.encName
  440. } else {
  441. // use the zero value.
  442. // if a reference or struct, set to nil (so you do not output too much)
  443. if si.omitEmpty && isEmptyValue(kv.r) {
  444. switch kv.r.Kind() {
  445. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array,
  446. reflect.Map, reflect.Slice:
  447. kv.r = reflect.Value{} //encode as nil
  448. }
  449. }
  450. }
  451. fkvs[newlen] = kv
  452. newlen++
  453. }
  454. // debugf(">>>> kStruct: newlen: %v", newlen)
  455. // sep := !e.be
  456. ee := f.e.e //don't dereference everytime
  457. if toMap {
  458. ee.EncodeMapStart(newlen)
  459. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  460. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  461. for j := 0; j < newlen; j++ {
  462. kv = fkvs[j]
  463. if asSymbols {
  464. ee.EncodeSymbol(kv.v)
  465. } else {
  466. ee.EncodeString(c_UTF8, kv.v)
  467. }
  468. e.encodeValue(kv.r, nil)
  469. }
  470. } else {
  471. ee.EncodeArrayStart(newlen)
  472. for j := 0; j < newlen; j++ {
  473. kv = fkvs[j]
  474. e.encodeValue(kv.r, nil)
  475. }
  476. }
  477. ee.EncodeEnd()
  478. // do not use defer. Instead, use explicit pool return at end of function.
  479. // defer has a cost we are trying to avoid.
  480. // If there is a panic and these slices are not returned, it is ok.
  481. if pool != nil {
  482. pool.Put(poolv)
  483. }
  484. }
  485. // func (f *encFnInfo) kPtr(rv reflect.Value) {
  486. // debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
  487. // if rv.IsNil() {
  488. // f.e.e.encodeNil()
  489. // return
  490. // }
  491. // f.e.encodeValue(rv.Elem())
  492. // }
  493. func (f *encFnInfo) kInterface(rv reflect.Value) {
  494. if rv.IsNil() {
  495. f.e.e.EncodeNil()
  496. return
  497. }
  498. f.e.encodeValue(rv.Elem(), nil)
  499. }
  500. func (f *encFnInfo) kMap(rv reflect.Value) {
  501. ee := f.e.e
  502. if rv.IsNil() {
  503. ee.EncodeNil()
  504. return
  505. }
  506. l := rv.Len()
  507. ee.EncodeMapStart(l)
  508. e := f.e
  509. if l == 0 {
  510. ee.EncodeEnd()
  511. return
  512. }
  513. var asSymbols bool
  514. // determine the underlying key and val encFn's for the map.
  515. // This eliminates some work which is done for each loop iteration i.e.
  516. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  517. //
  518. // However, if kind is reflect.Interface, do not pre-determine the
  519. // encoding type, because preEncodeValue may break it down to
  520. // a concrete type and kInterface will bomb.
  521. var keyFn, valFn *encFn
  522. ti := f.ti
  523. rtkey := ti.rt.Key()
  524. rtval := ti.rt.Elem()
  525. rtkeyid := reflect.ValueOf(rtkey).Pointer()
  526. // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
  527. var keyTypeIsString = rtkeyid == stringTypId
  528. if keyTypeIsString {
  529. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  530. } else {
  531. for rtkey.Kind() == reflect.Ptr {
  532. rtkey = rtkey.Elem()
  533. }
  534. if rtkey.Kind() != reflect.Interface {
  535. rtkeyid = reflect.ValueOf(rtkey).Pointer()
  536. keyFn = e.getEncFn(rtkeyid, rtkey, true, true)
  537. }
  538. }
  539. for rtval.Kind() == reflect.Ptr {
  540. rtval = rtval.Elem()
  541. }
  542. if rtval.Kind() != reflect.Interface {
  543. rtvalid := reflect.ValueOf(rtval).Pointer()
  544. valFn = e.getEncFn(rtvalid, rtval, true, true)
  545. }
  546. mks := rv.MapKeys()
  547. // for j, lmks := 0, len(mks); j < lmks; j++ {
  548. if e.h.Canonical {
  549. e.kMapCanonical(rtkeyid, rtkey, rv, mks, valFn, asSymbols)
  550. } else {
  551. for j := range mks {
  552. if keyTypeIsString {
  553. if asSymbols {
  554. ee.EncodeSymbol(mks[j].String())
  555. } else {
  556. ee.EncodeString(c_UTF8, mks[j].String())
  557. }
  558. } else {
  559. e.encodeValue(mks[j], keyFn)
  560. }
  561. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  562. }
  563. }
  564. ee.EncodeEnd()
  565. }
  566. func (e *Encoder) kMapCanonical(rtkeyid uintptr, rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *encFn, asSymbols bool) {
  567. ee := e.e
  568. // we previously did out-of-band if an extension was registered.
  569. // This is not necessary, as the natural kind is sufficient for ordering.
  570. if rtkeyid == uint8SliceTypId {
  571. mksv := make([]bytesRv, len(mks))
  572. for i, k := range mks {
  573. v := &mksv[i]
  574. v.r = k
  575. v.v = k.Bytes()
  576. }
  577. sort.Sort(bytesRvSlice(mksv))
  578. for i := range mksv {
  579. ee.EncodeStringBytes(c_RAW, mksv[i].v)
  580. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  581. }
  582. } else {
  583. switch rtkey.Kind() {
  584. case reflect.Bool:
  585. mksv := make([]boolRv, len(mks))
  586. for i, k := range mks {
  587. v := &mksv[i]
  588. v.r = k
  589. v.v = k.Bool()
  590. }
  591. sort.Sort(boolRvSlice(mksv))
  592. for i := range mksv {
  593. ee.EncodeBool(mksv[i].v)
  594. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  595. }
  596. case reflect.String:
  597. mksv := make([]stringRv, len(mks))
  598. for i, k := range mks {
  599. v := &mksv[i]
  600. v.r = k
  601. v.v = k.String()
  602. }
  603. sort.Sort(stringRvSlice(mksv))
  604. for i := range mksv {
  605. if asSymbols {
  606. ee.EncodeSymbol(mksv[i].v)
  607. } else {
  608. ee.EncodeString(c_UTF8, mksv[i].v)
  609. }
  610. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  611. }
  612. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  613. mksv := make([]uintRv, len(mks))
  614. for i, k := range mks {
  615. v := &mksv[i]
  616. v.r = k
  617. v.v = k.Uint()
  618. }
  619. sort.Sort(uintRvSlice(mksv))
  620. for i := range mksv {
  621. ee.EncodeUint(mksv[i].v)
  622. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  623. }
  624. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  625. mksv := make([]intRv, len(mks))
  626. for i, k := range mks {
  627. v := &mksv[i]
  628. v.r = k
  629. v.v = k.Int()
  630. }
  631. sort.Sort(intRvSlice(mksv))
  632. for i := range mksv {
  633. ee.EncodeInt(mksv[i].v)
  634. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  635. }
  636. case reflect.Float32:
  637. mksv := make([]floatRv, len(mks))
  638. for i, k := range mks {
  639. v := &mksv[i]
  640. v.r = k
  641. v.v = k.Float()
  642. }
  643. sort.Sort(floatRvSlice(mksv))
  644. for i := range mksv {
  645. ee.EncodeFloat32(float32(mksv[i].v))
  646. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  647. }
  648. case reflect.Float64:
  649. mksv := make([]floatRv, len(mks))
  650. for i, k := range mks {
  651. v := &mksv[i]
  652. v.r = k
  653. v.v = k.Float()
  654. }
  655. sort.Sort(floatRvSlice(mksv))
  656. for i := range mksv {
  657. ee.EncodeFloat64(mksv[i].v)
  658. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  659. }
  660. default:
  661. // out-of-band
  662. // first encode each key to a []byte first, then sort them, then record
  663. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  664. e2 := NewEncoderBytes(&mksv, e.hh)
  665. mksbv := make([]bytesRv, len(mks))
  666. for i, k := range mks {
  667. v := &mksbv[i]
  668. l := len(mksv)
  669. e2.MustEncode(k)
  670. v.r = k
  671. v.v = mksv[l:]
  672. // fmt.Printf(">>>>> %s\n", mksv[l:])
  673. }
  674. sort.Sort(bytesRvSlice(mksbv))
  675. for j := range mksbv {
  676. e.asis(mksbv[j].v)
  677. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn)
  678. }
  679. }
  680. }
  681. }
  682. // --------------------------------------------------
  683. // encFn encapsulates the captured variables and the encode function.
  684. // This way, we only do some calculations one times, and pass to the
  685. // code block that should be called (encapsulated in a function)
  686. // instead of executing the checks every time.
  687. type encFn struct {
  688. i encFnInfo
  689. f func(*encFnInfo, reflect.Value)
  690. }
  691. // --------------------------------------------------
  692. type encRtidFn struct {
  693. rtid uintptr
  694. fn encFn
  695. }
  696. // An Encoder writes an object to an output stream in the codec format.
  697. type Encoder struct {
  698. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  699. e encDriver
  700. // NOTE: Encoder shouldn't call it's write methods,
  701. // as the handler MAY need to do some coordination.
  702. w encWriter
  703. s []encRtidFn
  704. be bool // is binary encoding
  705. js bool // is json handle
  706. wi ioEncWriter
  707. wb bytesEncWriter
  708. h *BasicHandle
  709. as encDriverAsis
  710. hh Handle
  711. f map[uintptr]*encFn
  712. b [scratchByteArrayLen]byte
  713. }
  714. // NewEncoder returns an Encoder for encoding into an io.Writer.
  715. //
  716. // For efficiency, Users are encouraged to pass in a memory buffered writer
  717. // (eg bufio.Writer, bytes.Buffer).
  718. func NewEncoder(w io.Writer, h Handle) *Encoder {
  719. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
  720. ww, ok := w.(ioEncWriterWriter)
  721. if !ok {
  722. sww := simpleIoEncWriterWriter{w: w}
  723. sww.bw, _ = w.(io.ByteWriter)
  724. sww.sw, _ = w.(ioEncStringWriter)
  725. ww = &sww
  726. //ww = bufio.NewWriterSize(w, defEncByteBufSize)
  727. }
  728. e.wi.w = ww
  729. e.w = &e.wi
  730. _, e.js = h.(*JsonHandle)
  731. e.e = h.newEncDriver(e)
  732. e.as, _ = e.e.(encDriverAsis)
  733. return e
  734. }
  735. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  736. // into a byte slice, using zero-copying to temporary slices.
  737. //
  738. // It will potentially replace the output byte slice pointed to.
  739. // After encoding, the out parameter contains the encoded contents.
  740. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  741. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
  742. in := *out
  743. if in == nil {
  744. in = make([]byte, defEncByteBufSize)
  745. }
  746. e.wb.b, e.wb.out = in, out
  747. e.w = &e.wb
  748. _, e.js = h.(*JsonHandle)
  749. e.e = h.newEncDriver(e)
  750. e.as, _ = e.e.(encDriverAsis)
  751. return e
  752. }
  753. // Encode writes an object into a stream.
  754. //
  755. // Encoding can be configured via the struct tag for the fields.
  756. // The "codec" key in struct field's tag value is the key name,
  757. // followed by an optional comma and options.
  758. // Note that the "json" key is used in the absence of the "codec" key.
  759. //
  760. // To set an option on all fields (e.g. omitempty on all fields), you
  761. // can create a field called _struct, and set flags on it.
  762. //
  763. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  764. // - the field's tag is "-", OR
  765. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  766. //
  767. // When encoding as a map, the first string in the tag (before the comma)
  768. // is the map key string to use when encoding.
  769. //
  770. // However, struct values may encode as arrays. This happens when:
  771. // - StructToArray Encode option is set, OR
  772. // - the tag on the _struct field sets the "toarray" option
  773. //
  774. // Values with types that implement MapBySlice are encoded as stream maps.
  775. //
  776. // The empty values (for omitempty option) are false, 0, any nil pointer
  777. // or interface value, and any array, slice, map, or string of length zero.
  778. //
  779. // Anonymous fields are encoded inline except:
  780. // - the struct tag specifies a replacement name (first value)
  781. // - the field is of an interface type
  782. //
  783. // Examples:
  784. //
  785. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  786. // type MyStruct struct {
  787. // _struct bool `codec:",omitempty"` //set omitempty for every field
  788. // Field1 string `codec:"-"` //skip this field
  789. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  790. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  791. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  792. // io.Reader //use key "Reader".
  793. // MyStruct `codec:"my1" //use key "my1".
  794. // MyStruct //inline it
  795. // ...
  796. // }
  797. //
  798. // type MyStruct struct {
  799. // _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
  800. // //and encode struct as an array
  801. // }
  802. //
  803. // The mode of encoding is based on the type of the value. When a value is seen:
  804. // - If a Selfer, call its CodecEncodeSelf method
  805. // - If an extension is registered for it, call that extension function
  806. // - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
  807. // - Else encode it based on its reflect.Kind
  808. //
  809. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  810. // Some formats support symbols (e.g. binc) and will properly encode the string
  811. // only once in the stream, and use a tag to refer to it thereafter.
  812. func (e *Encoder) Encode(v interface{}) (err error) {
  813. defer panicToErr(&err)
  814. e.encode(v)
  815. e.w.atEndOfEncode()
  816. return
  817. }
  818. // MustEncode is like Encode, but panics if unable to Encode.
  819. // This provides insight to the code location that triggered the error.
  820. func (e *Encoder) MustEncode(v interface{}) {
  821. e.encode(v)
  822. e.w.atEndOfEncode()
  823. }
  824. // comment out these (Must)Write methods. They were only put there to support cbor.
  825. // However, users already have access to the streams, and can write directly.
  826. //
  827. // // Write allows users write to the Encoder stream directly.
  828. // func (e *Encoder) Write(bs []byte) (err error) {
  829. // defer panicToErr(&err)
  830. // e.w.writeb(bs)
  831. // return
  832. // }
  833. // // MustWrite is like write, but panics if unable to Write.
  834. // func (e *Encoder) MustWrite(bs []byte) {
  835. // e.w.writeb(bs)
  836. // }
  837. func (e *Encoder) encode(iv interface{}) {
  838. // if ics, ok := iv.(Selfer); ok {
  839. // ics.CodecEncodeSelf(e)
  840. // return
  841. // }
  842. switch v := iv.(type) {
  843. case nil:
  844. e.e.EncodeNil()
  845. case Selfer:
  846. v.CodecEncodeSelf(e)
  847. case reflect.Value:
  848. e.encodeValue(v, nil)
  849. case string:
  850. e.e.EncodeString(c_UTF8, v)
  851. case bool:
  852. e.e.EncodeBool(v)
  853. case int:
  854. e.e.EncodeInt(int64(v))
  855. case int8:
  856. e.e.EncodeInt(int64(v))
  857. case int16:
  858. e.e.EncodeInt(int64(v))
  859. case int32:
  860. e.e.EncodeInt(int64(v))
  861. case int64:
  862. e.e.EncodeInt(v)
  863. case uint:
  864. e.e.EncodeUint(uint64(v))
  865. case uint8:
  866. e.e.EncodeUint(uint64(v))
  867. case uint16:
  868. e.e.EncodeUint(uint64(v))
  869. case uint32:
  870. e.e.EncodeUint(uint64(v))
  871. case uint64:
  872. e.e.EncodeUint(v)
  873. case float32:
  874. e.e.EncodeFloat32(v)
  875. case float64:
  876. e.e.EncodeFloat64(v)
  877. case []uint8:
  878. e.e.EncodeStringBytes(c_RAW, v)
  879. case *string:
  880. e.e.EncodeString(c_UTF8, *v)
  881. case *bool:
  882. e.e.EncodeBool(*v)
  883. case *int:
  884. e.e.EncodeInt(int64(*v))
  885. case *int8:
  886. e.e.EncodeInt(int64(*v))
  887. case *int16:
  888. e.e.EncodeInt(int64(*v))
  889. case *int32:
  890. e.e.EncodeInt(int64(*v))
  891. case *int64:
  892. e.e.EncodeInt(*v)
  893. case *uint:
  894. e.e.EncodeUint(uint64(*v))
  895. case *uint8:
  896. e.e.EncodeUint(uint64(*v))
  897. case *uint16:
  898. e.e.EncodeUint(uint64(*v))
  899. case *uint32:
  900. e.e.EncodeUint(uint64(*v))
  901. case *uint64:
  902. e.e.EncodeUint(*v)
  903. case *float32:
  904. e.e.EncodeFloat32(*v)
  905. case *float64:
  906. e.e.EncodeFloat64(*v)
  907. case *[]uint8:
  908. e.e.EncodeStringBytes(c_RAW, *v)
  909. default:
  910. const checkCodecSelfer1 = true // in case T is passed, where *T is a Selfer, still checkCodecSelfer
  911. if !fastpathEncodeTypeSwitch(iv, e) {
  912. e.encodeI(iv, false, checkCodecSelfer1)
  913. }
  914. }
  915. }
  916. func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer bool) {
  917. if rv, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
  918. rt := rv.Type()
  919. rtid := reflect.ValueOf(rt).Pointer()
  920. fn := e.getEncFn(rtid, rt, checkFastpath, checkCodecSelfer)
  921. fn.f(&fn.i, rv)
  922. }
  923. }
  924. func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, proceed bool) {
  925. LOOP:
  926. for {
  927. switch rv.Kind() {
  928. case reflect.Ptr, reflect.Interface:
  929. if rv.IsNil() {
  930. e.e.EncodeNil()
  931. return
  932. }
  933. rv = rv.Elem()
  934. continue LOOP
  935. case reflect.Slice, reflect.Map:
  936. if rv.IsNil() {
  937. e.e.EncodeNil()
  938. return
  939. }
  940. case reflect.Invalid, reflect.Func:
  941. e.e.EncodeNil()
  942. return
  943. }
  944. break
  945. }
  946. return rv, true
  947. }
  948. func (e *Encoder) encodeValue(rv reflect.Value, fn *encFn) {
  949. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  950. if rv, proceed := e.preEncodeValue(rv); proceed {
  951. if fn == nil {
  952. rt := rv.Type()
  953. rtid := reflect.ValueOf(rt).Pointer()
  954. fn = e.getEncFn(rtid, rt, true, true)
  955. }
  956. fn.f(&fn.i, rv)
  957. }
  958. }
  959. func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *encFn) {
  960. // rtid := reflect.ValueOf(rt).Pointer()
  961. var ok bool
  962. if useMapForCodecCache {
  963. fn, ok = e.f[rtid]
  964. } else {
  965. for i := range e.s {
  966. v := &(e.s[i])
  967. if v.rtid == rtid {
  968. fn, ok = &(v.fn), true
  969. break
  970. }
  971. }
  972. }
  973. if ok {
  974. return
  975. }
  976. if useMapForCodecCache {
  977. if e.f == nil {
  978. e.f = make(map[uintptr]*encFn, initCollectionCap)
  979. }
  980. fn = new(encFn)
  981. e.f[rtid] = fn
  982. } else {
  983. if e.s == nil {
  984. e.s = make([]encRtidFn, 0, initCollectionCap)
  985. }
  986. e.s = append(e.s, encRtidFn{rtid: rtid})
  987. fn = &(e.s[len(e.s)-1]).fn
  988. }
  989. ti := e.h.getTypeInfo(rtid, rt)
  990. fi := &(fn.i)
  991. fi.e = e
  992. fi.ti = ti
  993. if checkCodecSelfer && ti.cs {
  994. fn.f = (*encFnInfo).selferMarshal
  995. } else if rtid == rawExtTypId {
  996. fn.f = (*encFnInfo).rawExt
  997. } else if e.e.IsBuiltinType(rtid) {
  998. fn.f = (*encFnInfo).builtin
  999. } else if xfFn := e.h.getExt(rtid); xfFn != nil {
  1000. fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
  1001. fn.f = (*encFnInfo).ext
  1002. } else if supportMarshalInterfaces && e.be && ti.bm {
  1003. fn.f = (*encFnInfo).binaryMarshal
  1004. } else if supportMarshalInterfaces && !e.be && e.js && ti.jm {
  1005. //If JSON, we should check JSONMarshal before textMarshal
  1006. fn.f = (*encFnInfo).jsonMarshal
  1007. } else if supportMarshalInterfaces && !e.be && ti.tm {
  1008. fn.f = (*encFnInfo).textMarshal
  1009. } else {
  1010. rk := rt.Kind()
  1011. if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
  1012. if rt.PkgPath() == "" {
  1013. if idx := fastpathAV.index(rtid); idx != -1 {
  1014. fn.f = fastpathAV[idx].encfn
  1015. }
  1016. } else {
  1017. ok = false
  1018. // use mapping for underlying type if there
  1019. var rtu reflect.Type
  1020. if rk == reflect.Map {
  1021. rtu = reflect.MapOf(rt.Key(), rt.Elem())
  1022. } else {
  1023. rtu = reflect.SliceOf(rt.Elem())
  1024. }
  1025. rtuid := reflect.ValueOf(rtu).Pointer()
  1026. if idx := fastpathAV.index(rtuid); idx != -1 {
  1027. xfnf := fastpathAV[idx].encfn
  1028. xrt := fastpathAV[idx].rt
  1029. fn.f = func(xf *encFnInfo, xrv reflect.Value) {
  1030. xfnf(xf, xrv.Convert(xrt))
  1031. }
  1032. }
  1033. }
  1034. }
  1035. if fn.f == nil {
  1036. switch rk {
  1037. case reflect.Bool:
  1038. fn.f = (*encFnInfo).kBool
  1039. case reflect.String:
  1040. fn.f = (*encFnInfo).kString
  1041. case reflect.Float64:
  1042. fn.f = (*encFnInfo).kFloat64
  1043. case reflect.Float32:
  1044. fn.f = (*encFnInfo).kFloat32
  1045. case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
  1046. fn.f = (*encFnInfo).kInt
  1047. case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16, reflect.Uintptr:
  1048. fn.f = (*encFnInfo).kUint
  1049. case reflect.Invalid:
  1050. fn.f = (*encFnInfo).kInvalid
  1051. case reflect.Chan:
  1052. fi.seq = seqTypeChan
  1053. fn.f = (*encFnInfo).kSlice
  1054. case reflect.Slice:
  1055. fi.seq = seqTypeSlice
  1056. fn.f = (*encFnInfo).kSlice
  1057. case reflect.Array:
  1058. fi.seq = seqTypeArray
  1059. fn.f = (*encFnInfo).kSlice
  1060. case reflect.Struct:
  1061. fn.f = (*encFnInfo).kStruct
  1062. // case reflect.Ptr:
  1063. // fn.f = (*encFnInfo).kPtr
  1064. case reflect.Interface:
  1065. fn.f = (*encFnInfo).kInterface
  1066. case reflect.Map:
  1067. fn.f = (*encFnInfo).kMap
  1068. default:
  1069. fn.f = (*encFnInfo).kErr
  1070. }
  1071. }
  1072. }
  1073. return
  1074. }
  1075. func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1076. if fnerr != nil {
  1077. panic(fnerr)
  1078. }
  1079. if bs == nil {
  1080. e.e.EncodeNil()
  1081. } else if asis {
  1082. e.asis(bs)
  1083. } else {
  1084. e.e.EncodeStringBytes(c, bs)
  1085. }
  1086. }
  1087. func (e *Encoder) asis(v []byte) {
  1088. if e.as == nil {
  1089. e.w.writeb(v)
  1090. } else {
  1091. e.as.EncodeAsis(v)
  1092. }
  1093. }
  1094. func (e *Encoder) errorf(format string, params ...interface{}) {
  1095. err := fmt.Errorf(format, params...)
  1096. panic(err)
  1097. }
  1098. // ----------------------------------------
  1099. const encStructPoolLen = 5
  1100. // encStructPool is an array of sync.Pool.
  1101. // Each element of the array pools one of encStructPool(8|16|32|64).
  1102. // It allows the re-use of slices up to 64 in length.
  1103. // A performance cost of encoding structs was collecting
  1104. // which values were empty and should be omitted.
  1105. // We needed slices of reflect.Value and string to collect them.
  1106. // This shared pool reduces the amount of unnecessary creation we do.
  1107. // The cost is that of locking sometimes, but sync.Pool is efficient
  1108. // enough to reduce thread contention.
  1109. var encStructPool [encStructPoolLen]sync.Pool
  1110. func init() {
  1111. encStructPool[0].New = func() interface{} { return new([8]stringRv) }
  1112. encStructPool[1].New = func() interface{} { return new([16]stringRv) }
  1113. encStructPool[2].New = func() interface{} { return new([32]stringRv) }
  1114. encStructPool[3].New = func() interface{} { return new([64]stringRv) }
  1115. encStructPool[4].New = func() interface{} { return new([128]stringRv) }
  1116. }
  1117. func encStructPoolGet(newlen int) (p *sync.Pool, v interface{}, s []stringRv) {
  1118. // if encStructPoolLen != 5 { // constant chec, so removed at build time.
  1119. // panic(errors.New("encStructPoolLen must be equal to 4")) // defensive, in case it is changed
  1120. // }
  1121. // idxpool := newlen / 8
  1122. // if pool == nil {
  1123. // fkvs = make([]stringRv, newlen)
  1124. // } else {
  1125. // poolv = pool.Get()
  1126. // switch vv := poolv.(type) {
  1127. // case *[8]stringRv:
  1128. // fkvs = vv[:newlen]
  1129. // case *[16]stringRv:
  1130. // fkvs = vv[:newlen]
  1131. // case *[32]stringRv:
  1132. // fkvs = vv[:newlen]
  1133. // case *[64]stringRv:
  1134. // fkvs = vv[:newlen]
  1135. // case *[128]stringRv:
  1136. // fkvs = vv[:newlen]
  1137. // }
  1138. // }
  1139. if newlen <= 8 {
  1140. p = &encStructPool[0]
  1141. v = p.Get()
  1142. s = v.(*[8]stringRv)[:newlen]
  1143. } else if newlen <= 16 {
  1144. p = &encStructPool[1]
  1145. v = p.Get()
  1146. s = v.(*[16]stringRv)[:newlen]
  1147. } else if newlen <= 32 {
  1148. p = &encStructPool[2]
  1149. v = p.Get()
  1150. s = v.(*[32]stringRv)[:newlen]
  1151. } else if newlen <= 64 {
  1152. p = &encStructPool[3]
  1153. v = p.Get()
  1154. s = v.(*[64]stringRv)[:newlen]
  1155. } else if newlen <= 128 {
  1156. p = &encStructPool[4]
  1157. v = p.Get()
  1158. s = v.(*[128]stringRv)[:newlen]
  1159. } else {
  1160. s = make([]stringRv, newlen)
  1161. }
  1162. return
  1163. }
  1164. // ----------------------------------------
  1165. // func encErr(format string, params ...interface{}) {
  1166. // doPanic(msgTagEnc, format, params...)
  1167. // }