encode.go 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "runtime"
  11. "sort"
  12. "strconv"
  13. "time"
  14. )
  15. // defEncByteBufSize is the default size of []byte used
  16. // for bufio buffer or []byte (when nil passed)
  17. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  18. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  19. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  20. type encDriver interface {
  21. EncodeNil()
  22. EncodeInt(i int64)
  23. EncodeUint(i uint64)
  24. EncodeBool(b bool)
  25. EncodeFloat32(f float32)
  26. EncodeFloat64(f float64)
  27. // encodeExtPreamble(xtag byte, length int)
  28. EncodeRawExt(re *RawExt)
  29. EncodeExt(v interface{}, xtag uint64, ext Ext)
  30. EncodeStringEnc(c charEncoding, v string) // c cannot be cRAW
  31. // EncodeSymbol(v string)
  32. EncodeStringBytesRaw(v []byte)
  33. EncodeTime(time.Time)
  34. //encBignum(f *big.Int)
  35. //encStringRunes(c charEncoding, v []rune)
  36. WriteArrayStart(length int)
  37. WriteArrayEnd()
  38. WriteMapStart(length int)
  39. WriteMapEnd()
  40. reset()
  41. atEndOfEncode()
  42. }
  43. type encDriverContainerTracker interface {
  44. WriteArrayElem()
  45. WriteMapElemKey()
  46. WriteMapElemValue()
  47. }
  48. type encDriverAsis interface {
  49. EncodeAsis(v []byte)
  50. }
  51. type encodeError struct {
  52. codecError
  53. }
  54. func (e encodeError) Error() string {
  55. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  56. }
  57. type encDriverNoopContainerWriter struct{}
  58. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  59. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  60. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  61. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  62. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  63. // func (encDriverNoopContainerWriter) WriteArrayElem() {}
  64. // func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  65. // func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  66. // type encDriverTrackContainerWriter struct {
  67. // c containerState
  68. // }
  69. // func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  70. // func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  71. // func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  72. // func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  73. // func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  74. // func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  75. // func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  76. // func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  77. // EncodeOptions captures configuration options during encode.
  78. type EncodeOptions struct {
  79. // WriterBufferSize is the size of the buffer used when writing.
  80. //
  81. // if > 0, we use a smart buffer internally for performance purposes.
  82. WriterBufferSize int
  83. // ChanRecvTimeout is the timeout used when selecting from a chan.
  84. //
  85. // Configuring this controls how we receive from a chan during the encoding process.
  86. // - If ==0, we only consume the elements currently available in the chan.
  87. // - if <0, we consume until the chan is closed.
  88. // - If >0, we consume until this timeout.
  89. ChanRecvTimeout time.Duration
  90. // StructToArray specifies to encode a struct as an array, and not as a map
  91. StructToArray bool
  92. // Canonical representation means that encoding a value will always result in the same
  93. // sequence of bytes.
  94. //
  95. // This only affects maps, as the iteration order for maps is random.
  96. //
  97. // The implementation MAY use the natural sort order for the map keys if possible:
  98. //
  99. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  100. // then the map keys are first sorted in natural order and then written
  101. // with corresponding map values to the strema.
  102. // - If there is no natural sort order, then the map keys will first be
  103. // encoded into []byte, and then sorted,
  104. // before writing the sorted keys and the corresponding map values to the stream.
  105. //
  106. Canonical bool
  107. // CheckCircularRef controls whether we check for circular references
  108. // and error fast during an encode.
  109. //
  110. // If enabled, an error is received if a pointer to a struct
  111. // references itself either directly or through one of its fields (iteratively).
  112. //
  113. // This is opt-in, as there may be a performance hit to checking circular references.
  114. CheckCircularRef bool
  115. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  116. // when checking if a value is empty.
  117. //
  118. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  119. RecursiveEmptyCheck bool
  120. // Raw controls whether we encode Raw values.
  121. // This is a "dangerous" option and must be explicitly set.
  122. // If set, we blindly encode Raw values as-is, without checking
  123. // if they are a correct representation of a value in that format.
  124. // If unset, we error out.
  125. Raw bool
  126. // StringToRaw controls how strings are encoded.
  127. //
  128. // As a go string is just an (immutable) sequence of bytes,
  129. // it can be encoded either as raw bytes or as a UTF string.
  130. //
  131. // By default, strings are encoded as UTF-8.
  132. // but can be treated as []byte during an encode.
  133. //
  134. // Note that things which we know (by definition) to be UTF-8
  135. // are ALWAYS encoded as UTF-8 strings.
  136. // These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
  137. StringToRaw bool
  138. // // AsSymbols defines what should be encoded as symbols.
  139. // //
  140. // // Encoding as symbols can reduce the encoded size significantly.
  141. // //
  142. // // However, during decoding, each string to be encoded as a symbol must
  143. // // be checked to see if it has been seen before. Consequently, encoding time
  144. // // will increase if using symbols, because string comparisons has a clear cost.
  145. // //
  146. // // Sample values:
  147. // // AsSymbolNone
  148. // // AsSymbolAll
  149. // // AsSymbolMapStringKeys
  150. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  151. // AsSymbols AsSymbolFlag
  152. }
  153. // ---------------------------------------------
  154. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  155. e.e.EncodeRawExt(rv2i(rv).(*RawExt))
  156. }
  157. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  158. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn)
  159. }
  160. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  161. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  162. }
  163. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  164. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  165. e.marshalRaw(bs, fnerr)
  166. }
  167. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  168. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  169. e.marshalUtf8(bs, fnerr)
  170. }
  171. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  172. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  173. e.marshalAsis(bs, fnerr)
  174. }
  175. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  176. e.rawBytes(rv2i(rv).(Raw))
  177. }
  178. func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
  179. e.e.EncodeBool(rvGetBool(rv))
  180. }
  181. func (e *Encoder) kTime(f *codecFnInfo, rv reflect.Value) {
  182. e.e.EncodeTime(rvGetTime(rv))
  183. }
  184. func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
  185. if e.h.StringToRaw {
  186. e.e.EncodeStringBytesRaw(bytesView(rvGetString(rv)))
  187. } else {
  188. e.e.EncodeStringEnc(cUTF8, rvGetString(rv))
  189. }
  190. }
  191. // func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
  192. // if e.h.StringToRaw {
  193. // e.kStringToRaw(f, rv)
  194. // } else {
  195. // e.kStringEnc(f, rv)
  196. // }
  197. // }
  198. // func (e *Encoder) kStringToRaw(f *codecFnInfo, rv reflect.Value) {
  199. // e.e.EncodeStringBytesRaw(bytesView(rvGetString(rv)))
  200. // }
  201. // func (e *Encoder) kStringEnc(f *codecFnInfo, rv reflect.Value) {
  202. // e.e.EncodeStringEnc(cUTF8, rvGetString(rv))
  203. // }
  204. func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
  205. e.e.EncodeFloat64(rvGetFloat64(rv))
  206. }
  207. func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
  208. e.e.EncodeFloat32(rvGetFloat32(rv))
  209. }
  210. func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
  211. e.e.EncodeInt(int64(rvGetInt(rv)))
  212. }
  213. func (e *Encoder) kInt8(f *codecFnInfo, rv reflect.Value) {
  214. e.e.EncodeInt(int64(rvGetInt8(rv)))
  215. }
  216. func (e *Encoder) kInt16(f *codecFnInfo, rv reflect.Value) {
  217. e.e.EncodeInt(int64(rvGetInt16(rv)))
  218. }
  219. func (e *Encoder) kInt32(f *codecFnInfo, rv reflect.Value) {
  220. e.e.EncodeInt(int64(rvGetInt32(rv)))
  221. }
  222. func (e *Encoder) kInt64(f *codecFnInfo, rv reflect.Value) {
  223. e.e.EncodeInt(int64(rvGetInt64(rv)))
  224. }
  225. func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
  226. e.e.EncodeUint(uint64(rvGetUint(rv)))
  227. }
  228. func (e *Encoder) kUint8(f *codecFnInfo, rv reflect.Value) {
  229. e.e.EncodeUint(uint64(rvGetUint8(rv)))
  230. }
  231. func (e *Encoder) kUint16(f *codecFnInfo, rv reflect.Value) {
  232. e.e.EncodeUint(uint64(rvGetUint16(rv)))
  233. }
  234. func (e *Encoder) kUint32(f *codecFnInfo, rv reflect.Value) {
  235. e.e.EncodeUint(uint64(rvGetUint32(rv)))
  236. }
  237. func (e *Encoder) kUint64(f *codecFnInfo, rv reflect.Value) {
  238. e.e.EncodeUint(uint64(rvGetUint64(rv)))
  239. }
  240. func (e *Encoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
  241. e.e.EncodeUint(uint64(rvGetUintptr(rv)))
  242. }
  243. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  244. e.e.EncodeNil()
  245. }
  246. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  247. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  248. }
  249. func chanToSlice(rv reflect.Value, rtelem reflect.Type, timeout time.Duration) (rvcs reflect.Value) {
  250. // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  251. rvcs = reflect.Zero(reflect.SliceOf(rtelem))
  252. if timeout < 0 { // consume until close
  253. for {
  254. recv, recvOk := rv.Recv()
  255. if !recvOk {
  256. break
  257. }
  258. rvcs = reflect.Append(rvcs, recv)
  259. }
  260. } else {
  261. cases := make([]reflect.SelectCase, 2)
  262. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  263. if timeout == 0 {
  264. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  265. } else {
  266. tt := time.NewTimer(timeout)
  267. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv4i(tt.C)}
  268. }
  269. for {
  270. chosen, recv, recvOk := reflect.Select(cases)
  271. if chosen == 1 || !recvOk {
  272. break
  273. }
  274. rvcs = reflect.Append(rvcs, recv)
  275. }
  276. }
  277. return
  278. }
  279. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  280. // array may be non-addressable, so we have to manage with care
  281. // (don't call rv.Bytes, rv.Slice, etc).
  282. // E.g. type struct S{B [2]byte};
  283. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  284. mbs := f.ti.mbs
  285. if f.seq != seqTypeArray {
  286. if rvIsNil(rv) {
  287. e.e.EncodeNil()
  288. return
  289. }
  290. // If in this method, then there was no extension function defined.
  291. // So it's okay to treat as []byte.
  292. if !mbs && f.ti.rtid == uint8SliceTypId {
  293. e.e.EncodeStringBytesRaw(rvGetBytes(rv))
  294. return
  295. }
  296. }
  297. if f.seq == seqTypeChan && f.ti.chandir&uint8(reflect.RecvDir) == 0 {
  298. e.errorf("send-only channel cannot be encoded")
  299. }
  300. rtelem := f.ti.elem
  301. var l int
  302. // if a slice, array or chan of bytes, treat specially
  303. if !mbs && uint8TypId == rt2id(rtelem) { // NOT rtelem.Kind() == reflect.Uint8
  304. switch f.seq {
  305. case seqTypeSlice:
  306. e.e.EncodeStringBytesRaw(rvGetBytes(rv))
  307. case seqTypeArray:
  308. e.e.EncodeStringBytesRaw(rvGetArrayBytesRO(rv, e.b[:]))
  309. case seqTypeChan:
  310. e.kSliceBytesChan(rv)
  311. }
  312. return
  313. }
  314. // if chan, consume chan into a slice, and work off that slice.
  315. if f.seq == seqTypeChan {
  316. rv = chanToSlice(rv, rtelem, e.h.ChanRecvTimeout)
  317. }
  318. l = rv.Len() // rv may be slice or array
  319. if mbs {
  320. if l%2 == 1 {
  321. e.errorf("mapBySlice requires even slice length, but got %v", l)
  322. return
  323. }
  324. e.mapStart(l / 2)
  325. } else {
  326. e.arrayStart(l)
  327. }
  328. if l > 0 {
  329. var fn *codecFn
  330. for rtelem.Kind() == reflect.Ptr {
  331. rtelem = rtelem.Elem()
  332. }
  333. // if kind is reflect.Interface, do not pre-determine the
  334. // encoding type, because preEncodeValue may break it down to
  335. // a concrete type and kInterface will bomb.
  336. if rtelem.Kind() != reflect.Interface {
  337. fn = e.h.fn(rtelem)
  338. }
  339. for j := 0; j < l; j++ {
  340. if mbs {
  341. if j%2 == 0 {
  342. e.mapElemKey()
  343. } else {
  344. e.mapElemValue()
  345. }
  346. } else {
  347. e.arrayElem()
  348. }
  349. e.encodeValue(rv.Index(j), fn)
  350. }
  351. }
  352. if mbs {
  353. e.mapEnd()
  354. } else {
  355. e.arrayEnd()
  356. }
  357. }
  358. func (e *Encoder) kSliceBytesChan(rv reflect.Value) {
  359. // do not use range, so that the number of elements encoded
  360. // does not change, and encoding does not hang waiting on someone to close chan.
  361. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  362. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  363. // if rvIsNil(rv) {
  364. // e.e.EncodeNil()
  365. // return
  366. // }
  367. bs := e.b[:0]
  368. irv := rv2i(rv)
  369. ch, ok := irv.(<-chan byte)
  370. if !ok {
  371. ch = irv.(chan byte)
  372. }
  373. L1:
  374. switch timeout := e.h.ChanRecvTimeout; {
  375. case timeout == 0: // only consume available
  376. for {
  377. select {
  378. case b := <-ch:
  379. bs = append(bs, b)
  380. default:
  381. break L1
  382. }
  383. }
  384. case timeout > 0: // consume until timeout
  385. tt := time.NewTimer(timeout)
  386. for {
  387. select {
  388. case b := <-ch:
  389. bs = append(bs, b)
  390. case <-tt.C:
  391. // close(tt.C)
  392. break L1
  393. }
  394. }
  395. default: // consume until close
  396. for b := range ch {
  397. bs = append(bs, b)
  398. }
  399. }
  400. e.e.EncodeStringBytesRaw(bs)
  401. }
  402. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  403. sfn := structFieldNode{v: rv, update: false}
  404. if f.ti.toArray || e.h.StructToArray { // toArray
  405. e.arrayStart(len(f.ti.sfiSrc))
  406. for _, si := range f.ti.sfiSrc {
  407. e.arrayElem()
  408. e.encodeValue(sfn.field(si), nil)
  409. }
  410. e.arrayEnd()
  411. } else {
  412. e.mapStart(len(f.ti.sfiSort))
  413. for _, si := range f.ti.sfiSort {
  414. e.mapElemKey()
  415. e.kStructFieldKey(f.ti.keyType, si.encNameAsciiAlphaNum, si.encName)
  416. e.mapElemValue()
  417. e.encodeValue(sfn.field(si), nil)
  418. }
  419. e.mapEnd()
  420. }
  421. }
  422. func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
  423. encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
  424. }
  425. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  426. var newlen int
  427. toMap := !(f.ti.toArray || e.h.StructToArray)
  428. var mf map[string]interface{}
  429. if f.ti.isFlag(tiflagMissingFielder) {
  430. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  431. toMap = true
  432. newlen += len(mf)
  433. } else if f.ti.isFlag(tiflagMissingFielderPtr) {
  434. if rv.CanAddr() {
  435. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  436. } else {
  437. // make a new addressable value of same one, and use it
  438. rv2 := reflect.New(rv.Type())
  439. rvSetDirect(rv2.Elem(), rv)
  440. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  441. }
  442. toMap = true
  443. newlen += len(mf)
  444. }
  445. newlen += len(f.ti.sfiSrc)
  446. // Use sync.Pool to reduce allocating slices unnecessarily.
  447. // The cost of sync.Pool is less than the cost of new allocation.
  448. //
  449. // Each element of the array pools one of encStructPool(8|16|32|64).
  450. // It allows the re-use of slices up to 64 in length.
  451. // A performance cost of encoding structs was collecting
  452. // which values were empty and should be omitted.
  453. // We needed slices of reflect.Value and string to collect them.
  454. // This shared pool reduces the amount of unnecessary creation we do.
  455. // The cost is that of locking sometimes, but sync.Pool is efficient
  456. // enough to reduce thread contention.
  457. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  458. // var spool sfiRvPooler
  459. var fkvs = e.slist.get(newlen)
  460. recur := e.h.RecursiveEmptyCheck
  461. sfn := structFieldNode{v: rv, update: false}
  462. var kv sfiRv
  463. var j int
  464. if toMap {
  465. newlen = 0
  466. for _, si := range f.ti.sfiSort { // use sorted array
  467. // kv.r = si.field(rv, false)
  468. kv.r = sfn.field(si)
  469. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  470. continue
  471. }
  472. kv.v = si // si.encName
  473. fkvs[newlen] = kv
  474. newlen++
  475. }
  476. var mflen int
  477. for k, v := range mf {
  478. if k == "" {
  479. delete(mf, k)
  480. continue
  481. }
  482. if f.ti.infoFieldOmitempty && isEmptyValue(rv4i(v), e.h.TypeInfos, recur, recur) {
  483. delete(mf, k)
  484. continue
  485. }
  486. mflen++
  487. }
  488. // encode it all
  489. e.mapStart(newlen + mflen)
  490. for j = 0; j < newlen; j++ {
  491. kv = fkvs[j]
  492. e.mapElemKey()
  493. e.kStructFieldKey(f.ti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  494. e.mapElemValue()
  495. e.encodeValue(kv.r, nil)
  496. }
  497. // now, add the others
  498. for k, v := range mf {
  499. e.mapElemKey()
  500. e.kStructFieldKey(f.ti.keyType, false, k)
  501. e.mapElemValue()
  502. e.encode(v)
  503. }
  504. e.mapEnd()
  505. } else {
  506. newlen = len(f.ti.sfiSrc)
  507. // kv.v = nil
  508. for i, si := range f.ti.sfiSrc { // use unsorted array (to match sequence in struct)
  509. // kv.r = si.field(rv, false)
  510. kv.r = sfn.field(si)
  511. // use the zero value.
  512. // if a reference or struct, set to nil (so you do not output too much)
  513. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  514. switch kv.r.Kind() {
  515. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  516. kv.r = reflect.Value{} //encode as nil
  517. }
  518. }
  519. fkvs[i] = kv
  520. }
  521. // encode it all
  522. e.arrayStart(newlen)
  523. for j = 0; j < newlen; j++ {
  524. e.arrayElem()
  525. e.encodeValue(fkvs[j].r, nil)
  526. }
  527. e.arrayEnd()
  528. }
  529. // do not use defer. Instead, use explicit pool return at end of function.
  530. // defer has a cost we are trying to avoid.
  531. // If there is a panic and these slices are not returned, it is ok.
  532. // spool.end()
  533. e.slist.put(fkvs)
  534. }
  535. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  536. if rvIsNil(rv) {
  537. e.e.EncodeNil()
  538. return
  539. }
  540. l := rv.Len()
  541. e.mapStart(l)
  542. if l == 0 {
  543. e.mapEnd()
  544. return
  545. }
  546. // var asSymbols bool
  547. // determine the underlying key and val encFn's for the map.
  548. // This eliminates some work which is done for each loop iteration i.e.
  549. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  550. //
  551. // However, if kind is reflect.Interface, do not pre-determine the
  552. // encoding type, because preEncodeValue may break it down to
  553. // a concrete type and kInterface will bomb.
  554. var keyFn, valFn *codecFn
  555. // rtkeyid := rt2id(f.ti.key)
  556. ktypeKind := f.ti.key.Kind()
  557. vtypeKind := f.ti.elem.Kind()
  558. rtval := f.ti.elem
  559. rtvalkind := vtypeKind
  560. for rtvalkind == reflect.Ptr {
  561. rtval = rtval.Elem()
  562. rtvalkind = rtval.Kind()
  563. }
  564. if rtvalkind != reflect.Interface {
  565. valFn = e.h.fn(rtval)
  566. }
  567. var rvv = mapAddressableRV(f.ti.elem, vtypeKind)
  568. if e.h.Canonical {
  569. e.kMapCanonical(f.ti.key, f.ti.elem, rv, rvv, valFn)
  570. e.mapEnd()
  571. return
  572. }
  573. rtkey := f.ti.key
  574. var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
  575. if !keyTypeIsString {
  576. for rtkey.Kind() == reflect.Ptr {
  577. rtkey = rtkey.Elem()
  578. }
  579. if rtkey.Kind() != reflect.Interface {
  580. // rtkeyid = rt2id(rtkey)
  581. keyFn = e.h.fn(rtkey)
  582. }
  583. }
  584. var rvk = mapAddressableRV(f.ti.key, ktypeKind)
  585. it := mapRange(rv, rvk, rvv, true)
  586. var vx reflect.Value
  587. for it.Next() {
  588. e.mapElemKey()
  589. if vx = it.Key(); !vx.IsValid() {
  590. vx = rvk
  591. }
  592. if keyTypeIsString {
  593. if e.h.StringToRaw {
  594. e.e.EncodeStringBytesRaw(bytesView(vx.String()))
  595. } else {
  596. e.e.EncodeStringEnc(cUTF8, vx.String())
  597. }
  598. } else {
  599. e.encodeValue(vx, keyFn)
  600. }
  601. e.mapElemValue()
  602. if vx = it.Value(); !vx.IsValid() {
  603. vx = rvv
  604. }
  605. e.encodeValue(vx, valFn)
  606. }
  607. it.Done()
  608. e.mapEnd()
  609. }
  610. func (e *Encoder) kMapCanonical(rtkey, rtval reflect.Type, rv, rvv reflect.Value, valFn *codecFn) {
  611. // we previously did out-of-band if an extension was registered.
  612. // This is not necessary, as the natural kind is sufficient for ordering.
  613. mks := rv.MapKeys()
  614. switch rtkey.Kind() {
  615. case reflect.Bool:
  616. mksv := make([]boolRv, len(mks))
  617. for i, k := range mks {
  618. v := &mksv[i]
  619. v.r = k
  620. v.v = k.Bool()
  621. }
  622. sort.Sort(boolRvSlice(mksv))
  623. for i := range mksv {
  624. e.mapElemKey()
  625. e.e.EncodeBool(mksv[i].v)
  626. e.mapElemValue()
  627. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  628. }
  629. case reflect.String:
  630. mksv := make([]stringRv, len(mks))
  631. for i, k := range mks {
  632. v := &mksv[i]
  633. v.r = k
  634. v.v = k.String()
  635. }
  636. sort.Sort(stringRvSlice(mksv))
  637. for i := range mksv {
  638. e.mapElemKey()
  639. if e.h.StringToRaw {
  640. e.e.EncodeStringBytesRaw(bytesView(mksv[i].v))
  641. } else {
  642. e.e.EncodeStringEnc(cUTF8, mksv[i].v)
  643. }
  644. e.mapElemValue()
  645. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  646. }
  647. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  648. mksv := make([]uint64Rv, len(mks))
  649. for i, k := range mks {
  650. v := &mksv[i]
  651. v.r = k
  652. v.v = k.Uint()
  653. }
  654. sort.Sort(uint64RvSlice(mksv))
  655. for i := range mksv {
  656. e.mapElemKey()
  657. e.e.EncodeUint(mksv[i].v)
  658. e.mapElemValue()
  659. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  660. }
  661. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  662. mksv := make([]int64Rv, len(mks))
  663. for i, k := range mks {
  664. v := &mksv[i]
  665. v.r = k
  666. v.v = k.Int()
  667. }
  668. sort.Sort(int64RvSlice(mksv))
  669. for i := range mksv {
  670. e.mapElemKey()
  671. e.e.EncodeInt(mksv[i].v)
  672. e.mapElemValue()
  673. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  674. }
  675. case reflect.Float32:
  676. mksv := make([]float64Rv, len(mks))
  677. for i, k := range mks {
  678. v := &mksv[i]
  679. v.r = k
  680. v.v = k.Float()
  681. }
  682. sort.Sort(float64RvSlice(mksv))
  683. for i := range mksv {
  684. e.mapElemKey()
  685. e.e.EncodeFloat32(float32(mksv[i].v))
  686. e.mapElemValue()
  687. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  688. }
  689. case reflect.Float64:
  690. mksv := make([]float64Rv, len(mks))
  691. for i, k := range mks {
  692. v := &mksv[i]
  693. v.r = k
  694. v.v = k.Float()
  695. }
  696. sort.Sort(float64RvSlice(mksv))
  697. for i := range mksv {
  698. e.mapElemKey()
  699. e.e.EncodeFloat64(mksv[i].v)
  700. e.mapElemValue()
  701. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  702. }
  703. case reflect.Struct:
  704. if rtkey == timeTyp {
  705. mksv := make([]timeRv, len(mks))
  706. for i, k := range mks {
  707. v := &mksv[i]
  708. v.r = k
  709. v.v = rv2i(k).(time.Time)
  710. }
  711. sort.Sort(timeRvSlice(mksv))
  712. for i := range mksv {
  713. e.mapElemKey()
  714. e.e.EncodeTime(mksv[i].v)
  715. e.mapElemValue()
  716. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
  717. }
  718. break
  719. }
  720. fallthrough
  721. default:
  722. // out-of-band
  723. // first encode each key to a []byte first, then sort them, then record
  724. // var bufp bytesBufPooler
  725. // var mksv []byte = bufp.get(len(mks) * 16)[:0]
  726. // var mksv []byte = make([]byte, 0, len(mks)*16)
  727. var mksv []byte = e.blist.get(len(mks) * 16)[:0]
  728. e2 := NewEncoderBytes(&mksv, e.hh)
  729. mksbv := make([]bytesRv, len(mks))
  730. for i, k := range mks {
  731. v := &mksbv[i]
  732. l := len(mksv)
  733. e2.MustEncode(k)
  734. v.r = k
  735. v.v = mksv[l:]
  736. }
  737. sort.Sort(bytesRvSlice(mksbv))
  738. for j := range mksbv {
  739. e.mapElemKey()
  740. e.asis(mksbv[j].v)
  741. e.mapElemValue()
  742. e.encodeValue(mapGet(rv, mksbv[j].r, rvv), valFn)
  743. }
  744. // bufp.end()
  745. e.blist.put(mksv)
  746. }
  747. }
  748. // Encoder writes an object to an output stream in a supported format.
  749. //
  750. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  751. // concurrently in multiple goroutines.
  752. //
  753. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  754. // so its state can be reused to decode new input streams repeatedly.
  755. // This is the idiomatic way to use.
  756. type Encoder struct {
  757. panicHdl
  758. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  759. e encDriver
  760. // NOTE: Encoder shouldn't call it's write methods,
  761. // as the handler MAY need to do some coordination.
  762. // w *encWr
  763. // bw *bufio.Writer
  764. as encDriverAsis
  765. jenc *jsonEncDriver
  766. h *BasicHandle
  767. hh Handle
  768. // ---- cpu cache line boundary
  769. encWr
  770. err error
  771. // ---- cpu cache line boundary
  772. // ---- writable fields during execution --- *try* to keep in sep cache line
  773. ci set // holds set of addresses found during an encoding (if CheckCircularRef=true)
  774. // cidef [1]interface{} // default ci
  775. b [(7 * 8)]byte // for encoding chan byte, (non-addressable) [N]byte, etc
  776. slist sfiRvFreelist
  777. blist bytesFreelist
  778. // ---- cpu cache line boundary?
  779. // b [scratchByteArrayLen]byte
  780. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  781. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  782. }
  783. // NewEncoder returns an Encoder for encoding into an io.Writer.
  784. //
  785. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  786. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  787. func NewEncoder(w io.Writer, h Handle) *Encoder {
  788. e := newEncoder(h)
  789. e.Reset(w)
  790. return e
  791. }
  792. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  793. // into a byte slice, using zero-copying to temporary slices.
  794. //
  795. // It will potentially replace the output byte slice pointed to.
  796. // After encoding, the out parameter contains the encoded contents.
  797. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  798. e := newEncoder(h)
  799. e.ResetBytes(out)
  800. return e
  801. }
  802. func newEncoder(h Handle) *Encoder {
  803. e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
  804. e.bytes = true
  805. if useFinalizers {
  806. runtime.SetFinalizer(e, (*Encoder).finalize)
  807. }
  808. // e.w = &e.encWr
  809. e.hh = h
  810. e.esep = h.hasElemSeparators()
  811. return e
  812. }
  813. func (e *Encoder) w() *encWr {
  814. return &e.encWr
  815. }
  816. func (e *Encoder) resetCommon() {
  817. // e.w = &e.encWr
  818. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  819. e.e = e.hh.newEncDriver(e)
  820. e.as, e.isas = e.e.(encDriverAsis)
  821. // e.cr, _ = e.e.(containerStateRecv)
  822. }
  823. if e.ci == nil {
  824. // e.ci = (set)(e.cidef[:0])
  825. } else {
  826. e.ci = e.ci[:0]
  827. }
  828. e.be = e.hh.isBinary()
  829. e.jenc = nil
  830. _, e.js = e.hh.(*JsonHandle)
  831. if e.js {
  832. e.jenc = e.e.(interface{ getJsonEncDriver() *jsonEncDriver }).getJsonEncDriver()
  833. }
  834. e.e.reset()
  835. e.c = 0
  836. e.err = nil
  837. }
  838. // Reset resets the Encoder with a new output stream.
  839. //
  840. // This accommodates using the state of the Encoder,
  841. // where it has "cached" information about sub-engines.
  842. func (e *Encoder) Reset(w io.Writer) {
  843. if w == nil {
  844. return
  845. }
  846. // var ok bool
  847. e.bytes = false
  848. if e.wf == nil {
  849. e.wf = new(bufioEncWriter)
  850. }
  851. // e.typ = entryTypeUnset
  852. // if e.h.WriterBufferSize > 0 {
  853. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  854. // // e.wi.bw = bw
  855. // // e.wi.sw = bw
  856. // // e.wi.fw = bw
  857. // // e.wi.ww = bw
  858. // if e.wf == nil {
  859. // e.wf = new(bufioEncWriter)
  860. // }
  861. // e.wf.reset(w, e.h.WriterBufferSize)
  862. // e.typ = entryTypeBufio
  863. // } else {
  864. // if e.wi == nil {
  865. // e.wi = new(ioEncWriter)
  866. // }
  867. // e.wi.reset(w)
  868. // e.typ = entryTypeIo
  869. // }
  870. e.wf.reset(w, e.h.WriterBufferSize, &e.blist)
  871. // e.typ = entryTypeBufio
  872. // e.w = e.wi
  873. e.resetCommon()
  874. }
  875. // ResetBytes resets the Encoder with a new destination output []byte.
  876. func (e *Encoder) ResetBytes(out *[]byte) {
  877. if out == nil {
  878. return
  879. }
  880. var in []byte = *out
  881. if in == nil {
  882. in = make([]byte, defEncByteBufSize)
  883. }
  884. e.bytes = true
  885. // e.typ = entryTypeBytes
  886. e.wb.reset(in, out)
  887. // e.w = &e.wb
  888. e.resetCommon()
  889. }
  890. // Encode writes an object into a stream.
  891. //
  892. // Encoding can be configured via the struct tag for the fields.
  893. // The key (in the struct tags) that we look at is configurable.
  894. //
  895. // By default, we look up the "codec" key in the struct field's tags,
  896. // and fall bak to the "json" key if "codec" is absent.
  897. // That key in struct field's tag value is the key name,
  898. // followed by an optional comma and options.
  899. //
  900. // To set an option on all fields (e.g. omitempty on all fields), you
  901. // can create a field called _struct, and set flags on it. The options
  902. // which can be set on _struct are:
  903. // - omitempty: so all fields are omitted if empty
  904. // - toarray: so struct is encoded as an array
  905. // - int: so struct key names are encoded as signed integers (instead of strings)
  906. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  907. // - float: so struct key names are encoded as floats (instead of strings)
  908. // More details on these below.
  909. //
  910. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  911. // - the field's tag is "-", OR
  912. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  913. //
  914. // When encoding as a map, the first string in the tag (before the comma)
  915. // is the map key string to use when encoding.
  916. // ...
  917. // This key is typically encoded as a string.
  918. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  919. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  920. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  921. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  922. // This is done with the int,uint or float option on the _struct field (see above).
  923. //
  924. // However, struct values may encode as arrays. This happens when:
  925. // - StructToArray Encode option is set, OR
  926. // - the tag on the _struct field sets the "toarray" option
  927. // Note that omitempty is ignored when encoding struct values as arrays,
  928. // as an entry must be encoded for each field, to maintain its position.
  929. //
  930. // Values with types that implement MapBySlice are encoded as stream maps.
  931. //
  932. // The empty values (for omitempty option) are false, 0, any nil pointer
  933. // or interface value, and any array, slice, map, or string of length zero.
  934. //
  935. // Anonymous fields are encoded inline except:
  936. // - the struct tag specifies a replacement name (first value)
  937. // - the field is of an interface type
  938. //
  939. // Examples:
  940. //
  941. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  942. // type MyStruct struct {
  943. // _struct bool `codec:",omitempty"` //set omitempty for every field
  944. // Field1 string `codec:"-"` //skip this field
  945. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  946. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  947. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  948. // io.Reader //use key "Reader".
  949. // MyStruct `codec:"my1" //use key "my1".
  950. // MyStruct //inline it
  951. // ...
  952. // }
  953. //
  954. // type MyStruct struct {
  955. // _struct bool `codec:",toarray"` //encode struct as an array
  956. // }
  957. //
  958. // type MyStruct struct {
  959. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  960. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  961. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  962. // }
  963. //
  964. // The mode of encoding is based on the type of the value. When a value is seen:
  965. // - If a Selfer, call its CodecEncodeSelf method
  966. // - If an extension is registered for it, call that extension function
  967. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  968. // - Else encode it based on its reflect.Kind
  969. //
  970. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  971. // Some formats support symbols (e.g. binc) and will properly encode the string
  972. // only once in the stream, and use a tag to refer to it thereafter.
  973. func (e *Encoder) Encode(v interface{}) (err error) {
  974. // tried to use closure, as runtime optimizes defer with no params.
  975. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  976. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  977. // defer func() { e.deferred(&err) }() }
  978. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  979. if e.err != nil {
  980. return e.err
  981. }
  982. if recoverPanicToErr {
  983. defer func() {
  984. // if error occurred during encoding, return that error;
  985. // else if error occurred on end'ing (i.e. during flush), return that error.
  986. err = e.w().endErr()
  987. x := recover()
  988. if x == nil {
  989. if e.err != err {
  990. e.err = err
  991. }
  992. } else {
  993. panicValToErr(e, x, &e.err)
  994. if e.err != err {
  995. err = e.err
  996. }
  997. }
  998. }()
  999. }
  1000. // defer e.deferred(&err)
  1001. e.mustEncode(v)
  1002. return
  1003. }
  1004. // MustEncode is like Encode, but panics if unable to Encode.
  1005. // This provides insight to the code location that triggered the error.
  1006. func (e *Encoder) MustEncode(v interface{}) {
  1007. if e.err != nil {
  1008. panic(e.err)
  1009. }
  1010. e.mustEncode(v)
  1011. }
  1012. func (e *Encoder) mustEncode(v interface{}) {
  1013. // if e.wf == nil {
  1014. // e.encode(v)
  1015. // e.e.atEndOfEncode()
  1016. // e.w().end()
  1017. // return
  1018. // }
  1019. // if e.wf.buf == nil {
  1020. // e.wf.buf = e.wf.bytesBufPooler.get(e.wf.sz)
  1021. // e.wf.buf = e.wf.buf[:cap(e.wf.buf)]
  1022. // }
  1023. e.calls++
  1024. e.encode(v)
  1025. e.calls--
  1026. if e.calls == 0 {
  1027. e.e.atEndOfEncode()
  1028. e.w().end()
  1029. if !e.h.ExplicitRelease {
  1030. e.Release()
  1031. }
  1032. }
  1033. }
  1034. // func (e *Encoder) deferred(err1 *error) {
  1035. // e.w().end()
  1036. // if recoverPanicToErr {
  1037. // if x := recover(); x != nil {
  1038. // panicValToErr(e, x, err1)
  1039. // panicValToErr(e, x, &e.err)
  1040. // }
  1041. // }
  1042. // }
  1043. //go:noinline -- as it is run by finalizer
  1044. func (e *Encoder) finalize() {
  1045. e.Release()
  1046. }
  1047. // Release releases shared (pooled) resources.
  1048. //
  1049. // It is important to call Release() when done with an Encoder, so those resources
  1050. // are released instantly for use by subsequently created Encoders.
  1051. func (e *Encoder) Release() {
  1052. // if e.wf != nil {
  1053. // e.wf.release()
  1054. // }
  1055. }
  1056. func (e *Encoder) encode(iv interface{}) {
  1057. // a switch with only concrete types can be optimized.
  1058. // consequently, we deal with nil and interfaces outside the switch.
  1059. if iv == nil {
  1060. e.e.EncodeNil()
  1061. return
  1062. }
  1063. rv, ok := isNil(iv)
  1064. if ok {
  1065. e.e.EncodeNil()
  1066. return
  1067. }
  1068. var vself Selfer
  1069. switch v := iv.(type) {
  1070. // case nil:
  1071. // case Selfer:
  1072. case Raw:
  1073. e.rawBytes(v)
  1074. case reflect.Value:
  1075. e.encodeValue(v, nil)
  1076. case string:
  1077. if e.h.StringToRaw {
  1078. e.e.EncodeStringBytesRaw(bytesView(v))
  1079. } else {
  1080. e.e.EncodeStringEnc(cUTF8, v)
  1081. }
  1082. case bool:
  1083. e.e.EncodeBool(v)
  1084. case int:
  1085. e.e.EncodeInt(int64(v))
  1086. case int8:
  1087. e.e.EncodeInt(int64(v))
  1088. case int16:
  1089. e.e.EncodeInt(int64(v))
  1090. case int32:
  1091. e.e.EncodeInt(int64(v))
  1092. case int64:
  1093. e.e.EncodeInt(v)
  1094. case uint:
  1095. e.e.EncodeUint(uint64(v))
  1096. case uint8:
  1097. e.e.EncodeUint(uint64(v))
  1098. case uint16:
  1099. e.e.EncodeUint(uint64(v))
  1100. case uint32:
  1101. e.e.EncodeUint(uint64(v))
  1102. case uint64:
  1103. e.e.EncodeUint(v)
  1104. case uintptr:
  1105. e.e.EncodeUint(uint64(v))
  1106. case float32:
  1107. e.e.EncodeFloat32(v)
  1108. case float64:
  1109. e.e.EncodeFloat64(v)
  1110. case time.Time:
  1111. e.e.EncodeTime(v)
  1112. case []uint8:
  1113. e.e.EncodeStringBytesRaw(v)
  1114. case *Raw:
  1115. e.rawBytes(*v)
  1116. case *string:
  1117. if e.h.StringToRaw {
  1118. e.e.EncodeStringBytesRaw(bytesView(*v))
  1119. } else {
  1120. e.e.EncodeStringEnc(cUTF8, *v)
  1121. }
  1122. case *bool:
  1123. e.e.EncodeBool(*v)
  1124. case *int:
  1125. e.e.EncodeInt(int64(*v))
  1126. case *int8:
  1127. e.e.EncodeInt(int64(*v))
  1128. case *int16:
  1129. e.e.EncodeInt(int64(*v))
  1130. case *int32:
  1131. e.e.EncodeInt(int64(*v))
  1132. case *int64:
  1133. e.e.EncodeInt(*v)
  1134. case *uint:
  1135. e.e.EncodeUint(uint64(*v))
  1136. case *uint8:
  1137. e.e.EncodeUint(uint64(*v))
  1138. case *uint16:
  1139. e.e.EncodeUint(uint64(*v))
  1140. case *uint32:
  1141. e.e.EncodeUint(uint64(*v))
  1142. case *uint64:
  1143. e.e.EncodeUint(*v)
  1144. case *uintptr:
  1145. e.e.EncodeUint(uint64(*v))
  1146. case *float32:
  1147. e.e.EncodeFloat32(*v)
  1148. case *float64:
  1149. e.e.EncodeFloat64(*v)
  1150. case *time.Time:
  1151. e.e.EncodeTime(*v)
  1152. case *[]uint8:
  1153. if *v == nil {
  1154. e.e.EncodeNil()
  1155. } else {
  1156. e.e.EncodeStringBytesRaw(*v)
  1157. }
  1158. default:
  1159. if vself, ok = iv.(Selfer); ok {
  1160. vself.CodecEncodeSelf(e)
  1161. } else if !fastpathEncodeTypeSwitch(iv, e) {
  1162. if !rv.IsValid() {
  1163. rv = rv4i(iv)
  1164. }
  1165. e.encodeValue(rv, nil)
  1166. }
  1167. }
  1168. }
  1169. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
  1170. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1171. // We considered using a uintptr (a pointer) retrievable via rv.UnsafeAddr.
  1172. // However, it is possible for the same pointer to point to 2 different types e.g.
  1173. // type T struct { tHelper }
  1174. // Here, for var v T; &v and &v.tHelper are the same pointer.
  1175. // Consequently, we need a tuple of type and pointer, which interface{} natively provides.
  1176. var sptr interface{} // uintptr
  1177. var rvp reflect.Value
  1178. var rvpValid bool
  1179. TOP:
  1180. switch rv.Kind() {
  1181. case reflect.Ptr:
  1182. if rvIsNil(rv) {
  1183. e.e.EncodeNil()
  1184. return
  1185. }
  1186. rvpValid = true
  1187. rvp = rv
  1188. rv = rv.Elem()
  1189. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1190. sptr = rv2i(rvp) // rv.UnsafeAddr()
  1191. break TOP
  1192. }
  1193. goto TOP
  1194. case reflect.Interface:
  1195. if rvIsNil(rv) {
  1196. e.e.EncodeNil()
  1197. return
  1198. }
  1199. rv = rv.Elem()
  1200. goto TOP
  1201. case reflect.Slice, reflect.Map:
  1202. if rvIsNil(rv) {
  1203. e.e.EncodeNil()
  1204. return
  1205. }
  1206. case reflect.Invalid, reflect.Func:
  1207. e.e.EncodeNil()
  1208. return
  1209. }
  1210. if sptr != nil && (&e.ci).add(sptr) {
  1211. // e.errorf("circular reference found: # %d", sptr)
  1212. e.errorf("circular reference found: # %p, %T", sptr, sptr)
  1213. }
  1214. var rt reflect.Type
  1215. if fn == nil {
  1216. rt = rv.Type()
  1217. fn = e.h.fn(rt)
  1218. }
  1219. if fn.i.addrE {
  1220. if rvpValid {
  1221. fn.fe(e, &fn.i, rvp)
  1222. } else if rv.CanAddr() {
  1223. fn.fe(e, &fn.i, rv.Addr())
  1224. } else {
  1225. if rt == nil {
  1226. rt = rv.Type()
  1227. }
  1228. rv2 := reflect.New(rt)
  1229. rvSetDirect(rv2.Elem(), rv)
  1230. fn.fe(e, &fn.i, rv2)
  1231. }
  1232. } else {
  1233. fn.fe(e, &fn.i, rv)
  1234. }
  1235. if sptr != 0 {
  1236. (&e.ci).remove(sptr)
  1237. }
  1238. }
  1239. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1240. // if fnerr != nil {
  1241. // panic(fnerr)
  1242. // }
  1243. // if bs == nil {
  1244. // e.e.EncodeNil()
  1245. // } else if asis {
  1246. // e.asis(bs)
  1247. // } else {
  1248. // e.e.EncodeStringBytesRaw(bs)
  1249. // }
  1250. // }
  1251. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1252. if fnerr != nil {
  1253. panic(fnerr)
  1254. }
  1255. if bs == nil {
  1256. e.e.EncodeNil()
  1257. } else {
  1258. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1259. }
  1260. }
  1261. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1262. if fnerr != nil {
  1263. panic(fnerr)
  1264. }
  1265. if bs == nil {
  1266. e.e.EncodeNil()
  1267. } else {
  1268. e.asis(bs)
  1269. }
  1270. }
  1271. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1272. if fnerr != nil {
  1273. panic(fnerr)
  1274. }
  1275. if bs == nil {
  1276. e.e.EncodeNil()
  1277. } else {
  1278. e.e.EncodeStringBytesRaw(bs)
  1279. }
  1280. }
  1281. func (e *Encoder) asis(v []byte) {
  1282. if e.isas {
  1283. e.as.EncodeAsis(v)
  1284. } else {
  1285. e.w().writeb(v)
  1286. }
  1287. }
  1288. func (e *Encoder) rawBytes(vv Raw) {
  1289. v := []byte(vv)
  1290. if !e.h.Raw {
  1291. e.errorf("Raw values cannot be encoded: %v", v)
  1292. }
  1293. e.asis(v)
  1294. }
  1295. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1296. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1297. }
  1298. // ---- container tracker methods
  1299. // Note: We update the .c after calling the callback.
  1300. // This way, the callback can know what the last status was.
  1301. func (e *Encoder) mapStart(length int) {
  1302. e.e.WriteMapStart(length)
  1303. e.c = containerMapStart
  1304. }
  1305. func (e *Encoder) mapElemKey() {
  1306. if e.js {
  1307. e.jenc.WriteMapElemKey()
  1308. }
  1309. e.c = containerMapKey
  1310. }
  1311. func (e *Encoder) mapElemValue() {
  1312. if e.js {
  1313. e.jenc.WriteMapElemValue()
  1314. }
  1315. e.c = containerMapValue
  1316. }
  1317. // // Note: This is harder to inline, as there are 2 function calls inside.
  1318. // func (e *Encoder) mapElemKeyOrValue(j uint8) {
  1319. // if j == 0 {
  1320. // if e.js {
  1321. // e.jenc.WriteMapElemKey()
  1322. // }
  1323. // e.c = containerMapKey
  1324. // } else {
  1325. // if e.js {
  1326. // e.jenc.WriteMapElemValue()
  1327. // }
  1328. // e.c = containerMapValue
  1329. // }
  1330. // }
  1331. func (e *Encoder) mapEnd() {
  1332. e.e.WriteMapEnd()
  1333. e.c = containerMapEnd
  1334. e.c = 0
  1335. }
  1336. func (e *Encoder) arrayStart(length int) {
  1337. e.e.WriteArrayStart(length)
  1338. e.c = containerArrayStart
  1339. }
  1340. func (e *Encoder) arrayElem() {
  1341. if e.js {
  1342. e.jenc.WriteArrayElem()
  1343. }
  1344. e.c = containerArrayElem
  1345. }
  1346. func (e *Encoder) arrayEnd() {
  1347. e.e.WriteArrayEnd()
  1348. e.c = 0
  1349. e.c = containerArrayEnd
  1350. }
  1351. // ----------
  1352. func (e *Encoder) sideEncode(v interface{}, bs *[]byte) {
  1353. rv := baseRV(v)
  1354. e2 := NewEncoderBytes(bs, e.hh)
  1355. e2.encodeValue(rv, e.h.fnNoExt(rv.Type()))
  1356. e2.e.atEndOfEncode()
  1357. e2.w().end()
  1358. }
  1359. func encStructFieldKey(encName string, ee encDriver, w *encWr,
  1360. keyType valueType, encNameAsciiAlphaNum bool, js bool) {
  1361. var m must
  1362. // use if-else-if, not switch (which compiles to binary-search)
  1363. // since keyType is typically valueTypeString, branch prediction is pretty good.
  1364. if keyType == valueTypeString {
  1365. if js && encNameAsciiAlphaNum { // keyType == valueTypeString
  1366. w.writeqstr(encName)
  1367. // ----
  1368. // w.writen1('"')
  1369. // w.writestr(encName)
  1370. // w.writen1('"')
  1371. // ----
  1372. // w.writestr(`"` + encName + `"`)
  1373. // ----
  1374. // // do concat myself, so it is faster than the generic string concat
  1375. // b := make([]byte, len(encName)+2)
  1376. // copy(b[1:], encName)
  1377. // b[0] = '"'
  1378. // b[len(b)-1] = '"'
  1379. // w.writeb(b)
  1380. } else { // keyType == valueTypeString
  1381. ee.EncodeStringEnc(cUTF8, encName)
  1382. }
  1383. } else if keyType == valueTypeInt {
  1384. ee.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  1385. } else if keyType == valueTypeUint {
  1386. ee.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  1387. } else if keyType == valueTypeFloat {
  1388. ee.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  1389. }
  1390. }
  1391. // type encExtPreambler interface {
  1392. // encodeExtPreamble(tag uint8, length int)
  1393. // }
  1394. // func encBytesExt(rv interface{}, xtag uint64, ext Ext, h Handle, e encDriver) {
  1395. // var bs []byte
  1396. // var bufp bytesBufPooler
  1397. // if ext == SelfExt {
  1398. // bs = bufp.get(1024)[:0]
  1399. // rv2 := rv4i(v)
  1400. // NewEncoderBytes(&bs, h).encodeValue(rv2, h.fnNoExt(rv2.Type()))
  1401. // } else {
  1402. // bs = ext.WriteExt(v)
  1403. // }
  1404. // if bs == nil {
  1405. // e.EncodeNil()
  1406. // return
  1407. // }
  1408. // if e.h.WriteExt {
  1409. // e.encodeExtPreamble(uint8(xtag), len(bs))
  1410. // e.w.writeb(bs)
  1411. // } else {
  1412. // e.EncodeStringBytesRaw(bs)
  1413. // }
  1414. // if ext == SelfExt {
  1415. // bufp.end()
  1416. // }
  1417. // }
  1418. // func encStringAsRawBytesMaybe(ee encDriver, s string, stringToRaw bool) {
  1419. // if stringToRaw {
  1420. // ee.EncodeStringBytesRaw(bytesView(s))
  1421. // } else {
  1422. // ee.EncodeStringEnc(cUTF8, s)
  1423. // }
  1424. // }