encode.go 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "bufio"
  6. "encoding"
  7. "errors"
  8. "fmt"
  9. "io"
  10. "reflect"
  11. "sort"
  12. "strconv"
  13. "sync"
  14. "time"
  15. )
  16. const defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  17. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  18. // encWriter abstracts writing to a byte array or to an io.Writer.
  19. type encWriter interface {
  20. writeb([]byte)
  21. writestr(string)
  22. writen1(byte)
  23. writen2(byte, byte)
  24. atEndOfEncode()
  25. }
  26. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  27. type encDriver interface {
  28. EncodeNil()
  29. EncodeInt(i int64)
  30. EncodeUint(i uint64)
  31. EncodeBool(b bool)
  32. EncodeFloat32(f float32)
  33. EncodeFloat64(f float64)
  34. // encodeExtPreamble(xtag byte, length int)
  35. EncodeRawExt(re *RawExt, e *Encoder)
  36. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  37. EncodeString(c charEncoding, v string)
  38. // EncodeSymbol(v string)
  39. EncodeStringBytes(c charEncoding, v []byte)
  40. EncodeTime(time.Time)
  41. //encBignum(f *big.Int)
  42. //encStringRunes(c charEncoding, v []rune)
  43. WriteArrayStart(length int)
  44. WriteArrayElem()
  45. WriteArrayEnd()
  46. WriteMapStart(length int)
  47. WriteMapElemKey()
  48. WriteMapElemValue()
  49. WriteMapEnd()
  50. reset()
  51. atEndOfEncode()
  52. }
  53. type ioEncStringWriter interface {
  54. WriteString(s string) (n int, err error)
  55. }
  56. type encDriverAsis interface {
  57. EncodeAsis(v []byte)
  58. }
  59. type encodeError struct {
  60. codecError
  61. }
  62. func (e encodeError) Error() string {
  63. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  64. }
  65. type encDriverNoopContainerWriter struct{}
  66. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  67. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  68. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  69. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  70. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  71. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  72. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  73. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  74. type encDriverTrackContainerWriter struct {
  75. c containerState
  76. }
  77. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  78. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  79. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  80. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  81. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  82. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  83. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  84. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  85. // type ioEncWriterWriter interface {
  86. // WriteByte(c byte) error
  87. // WriteString(s string) (n int, err error)
  88. // Write(p []byte) (n int, err error)
  89. // }
  90. // EncodeOptions captures configuration options during encode.
  91. type EncodeOptions struct {
  92. // WriterBufferSize is the size of the buffer used when writing.
  93. //
  94. // if > 0, we use a smart buffer internally for performance purposes.
  95. WriterBufferSize int
  96. // ChanRecvTimeout is the timeout used when selecting from a chan.
  97. //
  98. // Configuring this controls how we receive from a chan during the encoding process.
  99. // - If ==0, we only consume the elements currently available in the chan.
  100. // - if <0, we consume until the chan is closed.
  101. // - If >0, we consume until this timeout.
  102. ChanRecvTimeout time.Duration
  103. // StructToArray specifies to encode a struct as an array, and not as a map
  104. StructToArray bool
  105. // Canonical representation means that encoding a value will always result in the same
  106. // sequence of bytes.
  107. //
  108. // This only affects maps, as the iteration order for maps is random.
  109. //
  110. // The implementation MAY use the natural sort order for the map keys if possible:
  111. //
  112. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  113. // then the map keys are first sorted in natural order and then written
  114. // with corresponding map values to the strema.
  115. // - If there is no natural sort order, then the map keys will first be
  116. // encoded into []byte, and then sorted,
  117. // before writing the sorted keys and the corresponding map values to the stream.
  118. //
  119. Canonical bool
  120. // CheckCircularRef controls whether we check for circular references
  121. // and error fast during an encode.
  122. //
  123. // If enabled, an error is received if a pointer to a struct
  124. // references itself either directly or through one of its fields (iteratively).
  125. //
  126. // This is opt-in, as there may be a performance hit to checking circular references.
  127. CheckCircularRef bool
  128. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  129. // when checking if a value is empty.
  130. //
  131. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  132. RecursiveEmptyCheck bool
  133. // Raw controls whether we encode Raw values.
  134. // This is a "dangerous" option and must be explicitly set.
  135. // If set, we blindly encode Raw values as-is, without checking
  136. // if they are a correct representation of a value in that format.
  137. // If unset, we error out.
  138. Raw bool
  139. // // AsSymbols defines what should be encoded as symbols.
  140. // //
  141. // // Encoding as symbols can reduce the encoded size significantly.
  142. // //
  143. // // However, during decoding, each string to be encoded as a symbol must
  144. // // be checked to see if it has been seen before. Consequently, encoding time
  145. // // will increase if using symbols, because string comparisons has a clear cost.
  146. // //
  147. // // Sample values:
  148. // // AsSymbolNone
  149. // // AsSymbolAll
  150. // // AsSymbolMapStringKeys
  151. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  152. // AsSymbols AsSymbolFlag
  153. }
  154. // ---------------------------------------------
  155. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  156. type ioEncWriter struct {
  157. w io.Writer
  158. ww io.Writer
  159. bw io.ByteWriter
  160. sw ioEncStringWriter
  161. fw ioFlusher
  162. b [8]byte
  163. }
  164. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  165. z.b[0] = b
  166. _, err = z.w.Write(z.b[:1])
  167. return
  168. }
  169. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  170. return z.w.Write(bytesView(s))
  171. }
  172. func (z *ioEncWriter) writeb(bs []byte) {
  173. if _, err := z.ww.Write(bs); err != nil {
  174. panic(err)
  175. }
  176. }
  177. func (z *ioEncWriter) writestr(s string) {
  178. if _, err := z.sw.WriteString(s); err != nil {
  179. panic(err)
  180. }
  181. }
  182. func (z *ioEncWriter) writen1(b byte) {
  183. if err := z.bw.WriteByte(b); err != nil {
  184. panic(err)
  185. }
  186. }
  187. func (z *ioEncWriter) writen2(b1, b2 byte) {
  188. var err error
  189. if err = z.bw.WriteByte(b1); err == nil {
  190. if err = z.bw.WriteByte(b2); err == nil {
  191. return
  192. }
  193. }
  194. panic(err)
  195. }
  196. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  197. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  198. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  199. // panic(err)
  200. // }
  201. // }
  202. func (z *ioEncWriter) atEndOfEncode() {
  203. if z.fw != nil {
  204. if err := z.fw.Flush(); err != nil {
  205. panic(err)
  206. }
  207. }
  208. }
  209. // ---------------------------------------------
  210. // bytesEncAppender implements encWriter and can write to an byte slice.
  211. type bytesEncAppender struct {
  212. b []byte
  213. out *[]byte
  214. }
  215. func (z *bytesEncAppender) writeb(s []byte) {
  216. z.b = append(z.b, s...)
  217. }
  218. func (z *bytesEncAppender) writestr(s string) {
  219. z.b = append(z.b, s...)
  220. }
  221. func (z *bytesEncAppender) writen1(b1 byte) {
  222. z.b = append(z.b, b1)
  223. }
  224. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  225. z.b = append(z.b, b1, b2)
  226. }
  227. func (z *bytesEncAppender) atEndOfEncode() {
  228. *(z.out) = z.b
  229. }
  230. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  231. z.b = in[:0]
  232. z.out = out
  233. }
  234. // ---------------------------------------------
  235. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  236. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  237. }
  238. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  239. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  240. }
  241. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  242. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  243. }
  244. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  245. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  246. e.marshal(bs, fnerr, false, cRAW)
  247. }
  248. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  249. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  250. e.marshal(bs, fnerr, false, cUTF8)
  251. }
  252. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  253. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  254. e.marshal(bs, fnerr, true, cUTF8)
  255. }
  256. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  257. e.rawBytes(rv2i(rv).(Raw))
  258. }
  259. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  260. e.e.EncodeNil()
  261. }
  262. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  263. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  264. }
  265. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  266. ti := f.ti
  267. ee := e.e
  268. // array may be non-addressable, so we have to manage with care
  269. // (don't call rv.Bytes, rv.Slice, etc).
  270. // E.g. type struct S{B [2]byte};
  271. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  272. if f.seq != seqTypeArray {
  273. if rv.IsNil() {
  274. ee.EncodeNil()
  275. return
  276. }
  277. // If in this method, then there was no extension function defined.
  278. // So it's okay to treat as []byte.
  279. if ti.rtid == uint8SliceTypId {
  280. ee.EncodeStringBytes(cRAW, rv.Bytes())
  281. return
  282. }
  283. }
  284. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  285. e.errorf("send-only channel cannot be encoded")
  286. }
  287. elemsep := e.esep
  288. rtelem := ti.elem
  289. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  290. var l int
  291. // if a slice, array or chan of bytes, treat specially
  292. if rtelemIsByte {
  293. switch f.seq {
  294. case seqTypeSlice:
  295. ee.EncodeStringBytes(cRAW, rv.Bytes())
  296. case seqTypeArray:
  297. l = rv.Len()
  298. if rv.CanAddr() {
  299. ee.EncodeStringBytes(cRAW, rv.Slice(0, l).Bytes())
  300. } else {
  301. var bs []byte
  302. if l <= cap(e.b) {
  303. bs = e.b[:l]
  304. } else {
  305. bs = make([]byte, l)
  306. }
  307. reflect.Copy(reflect.ValueOf(bs), rv)
  308. ee.EncodeStringBytes(cRAW, bs)
  309. }
  310. case seqTypeChan:
  311. // do not use range, so that the number of elements encoded
  312. // does not change, and encoding does not hang waiting on someone to close chan.
  313. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  314. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  315. if rv.IsNil() {
  316. ee.EncodeNil()
  317. break
  318. }
  319. bs := e.b[:0]
  320. irv := rv2i(rv)
  321. ch, ok := irv.(<-chan byte)
  322. if !ok {
  323. ch = irv.(chan byte)
  324. }
  325. L1:
  326. switch timeout := e.h.ChanRecvTimeout; {
  327. case timeout == 0: // only consume available
  328. for {
  329. select {
  330. case b := <-ch:
  331. bs = append(bs, b)
  332. default:
  333. break L1
  334. }
  335. }
  336. case timeout > 0: // consume until timeout
  337. tt := time.NewTimer(timeout)
  338. for {
  339. select {
  340. case b := <-ch:
  341. bs = append(bs, b)
  342. case <-tt.C:
  343. // close(tt.C)
  344. break L1
  345. }
  346. }
  347. default: // consume until close
  348. for b := range ch {
  349. bs = append(bs, b)
  350. }
  351. }
  352. ee.EncodeStringBytes(cRAW, bs)
  353. }
  354. return
  355. }
  356. // if chan, consume chan into a slice, and work off that slice.
  357. var rvcs reflect.Value
  358. if f.seq == seqTypeChan {
  359. rvcs = reflect.Zero(reflect.SliceOf(rtelem))
  360. timeout := e.h.ChanRecvTimeout
  361. if timeout < 0 { // consume until close
  362. for {
  363. recv, recvOk := rv.Recv()
  364. if !recvOk {
  365. break
  366. }
  367. rvcs = reflect.Append(rvcs, recv)
  368. }
  369. } else {
  370. cases := make([]reflect.SelectCase, 2)
  371. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  372. if timeout == 0 {
  373. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  374. } else {
  375. tt := time.NewTimer(timeout)
  376. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  377. }
  378. for {
  379. chosen, recv, recvOk := reflect.Select(cases)
  380. if chosen == 1 || !recvOk {
  381. break
  382. }
  383. rvcs = reflect.Append(rvcs, recv)
  384. }
  385. }
  386. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  387. }
  388. l = rv.Len()
  389. if ti.mbs {
  390. if l%2 == 1 {
  391. e.errorf("mapBySlice requires even slice length, but got %v", l)
  392. return
  393. }
  394. ee.WriteMapStart(l / 2)
  395. } else {
  396. ee.WriteArrayStart(l)
  397. }
  398. if l > 0 {
  399. var fn *codecFn
  400. for rtelem.Kind() == reflect.Ptr {
  401. rtelem = rtelem.Elem()
  402. }
  403. // if kind is reflect.Interface, do not pre-determine the
  404. // encoding type, because preEncodeValue may break it down to
  405. // a concrete type and kInterface will bomb.
  406. if rtelem.Kind() != reflect.Interface {
  407. fn = e.cfer().get(rtelem, true, true)
  408. }
  409. for j := 0; j < l; j++ {
  410. if elemsep {
  411. if ti.mbs {
  412. if j%2 == 0 {
  413. ee.WriteMapElemKey()
  414. } else {
  415. ee.WriteMapElemValue()
  416. }
  417. } else {
  418. ee.WriteArrayElem()
  419. }
  420. }
  421. e.encodeValue(rv.Index(j), fn, true)
  422. }
  423. }
  424. if ti.mbs {
  425. ee.WriteMapEnd()
  426. } else {
  427. ee.WriteArrayEnd()
  428. }
  429. }
  430. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  431. fti := f.ti
  432. elemsep := e.esep
  433. tisfi := fti.sfiSrc
  434. toMap := !(fti.toArray || e.h.StructToArray)
  435. if toMap {
  436. tisfi = fti.sfiSort
  437. }
  438. ee := e.e
  439. sfn := structFieldNode{v: rv, update: false}
  440. if toMap {
  441. ee.WriteMapStart(len(tisfi))
  442. if elemsep {
  443. for _, si := range tisfi {
  444. ee.WriteMapElemKey()
  445. // ee.EncodeString(cUTF8, si.encName)
  446. e.kStructFieldKey(fti.keyType, si)
  447. ee.WriteMapElemValue()
  448. e.encodeValue(sfn.field(si), nil, true)
  449. }
  450. } else {
  451. for _, si := range tisfi {
  452. // ee.EncodeString(cUTF8, si.encName)
  453. e.kStructFieldKey(fti.keyType, si)
  454. e.encodeValue(sfn.field(si), nil, true)
  455. }
  456. }
  457. ee.WriteMapEnd()
  458. } else {
  459. ee.WriteArrayStart(len(tisfi))
  460. if elemsep {
  461. for _, si := range tisfi {
  462. ee.WriteArrayElem()
  463. e.encodeValue(sfn.field(si), nil, true)
  464. }
  465. } else {
  466. for _, si := range tisfi {
  467. e.encodeValue(sfn.field(si), nil, true)
  468. }
  469. }
  470. ee.WriteArrayEnd()
  471. }
  472. }
  473. func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
  474. var m must
  475. // use if-else-if, not switch (which compiles to binary-search)
  476. // since keyType is typically valueTypeString, branch prediction is pretty good.
  477. if keyType == valueTypeString {
  478. if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
  479. e.w.writen1('"')
  480. e.w.writestr(s.encName)
  481. e.w.writen1('"')
  482. } else { // keyType == valueTypeString
  483. e.e.EncodeString(cUTF8, s.encName)
  484. }
  485. } else if keyType == valueTypeInt {
  486. e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
  487. } else if keyType == valueTypeUint {
  488. e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
  489. } else if keyType == valueTypeFloat {
  490. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
  491. }
  492. }
  493. func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
  494. var m must
  495. // use if-else-if, not switch (which compiles to binary-search)
  496. // since keyType is typically valueTypeString, branch prediction is pretty good.
  497. if keyType == valueTypeString {
  498. e.e.EncodeString(cUTF8, encName)
  499. } else if keyType == valueTypeInt {
  500. e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  501. } else if keyType == valueTypeUint {
  502. e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  503. } else if keyType == valueTypeFloat {
  504. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  505. }
  506. }
  507. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  508. fti := f.ti
  509. elemsep := e.esep
  510. tisfi := fti.sfiSrc
  511. var newlen int
  512. toMap := !(fti.toArray || e.h.StructToArray)
  513. var mf map[string]interface{}
  514. if f.ti.mf {
  515. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  516. toMap = true
  517. newlen += len(mf)
  518. } else if f.ti.mfp {
  519. if rv.CanAddr() {
  520. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  521. } else {
  522. // make a new addressable value of same one, and use it
  523. rv2 := reflect.New(rv.Type())
  524. rv2.Elem().Set(rv)
  525. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  526. }
  527. toMap = true
  528. newlen += len(mf)
  529. }
  530. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  531. if toMap {
  532. tisfi = fti.sfiSort
  533. }
  534. newlen += len(tisfi)
  535. ee := e.e
  536. // Use sync.Pool to reduce allocating slices unnecessarily.
  537. // The cost of sync.Pool is less than the cost of new allocation.
  538. //
  539. // Each element of the array pools one of encStructPool(8|16|32|64).
  540. // It allows the re-use of slices up to 64 in length.
  541. // A performance cost of encoding structs was collecting
  542. // which values were empty and should be omitted.
  543. // We needed slices of reflect.Value and string to collect them.
  544. // This shared pool reduces the amount of unnecessary creation we do.
  545. // The cost is that of locking sometimes, but sync.Pool is efficient
  546. // enough to reduce thread contention.
  547. var spool *sync.Pool
  548. var poolv interface{}
  549. var fkvs []sfiRv
  550. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  551. if newlen <= 8 {
  552. spool, poolv = pool.sfiRv8()
  553. fkvs = poolv.(*[8]sfiRv)[:newlen]
  554. } else if newlen <= 16 {
  555. spool, poolv = pool.sfiRv16()
  556. fkvs = poolv.(*[16]sfiRv)[:newlen]
  557. } else if newlen <= 32 {
  558. spool, poolv = pool.sfiRv32()
  559. fkvs = poolv.(*[32]sfiRv)[:newlen]
  560. } else if newlen <= 64 {
  561. spool, poolv = pool.sfiRv64()
  562. fkvs = poolv.(*[64]sfiRv)[:newlen]
  563. } else if newlen <= 128 {
  564. spool, poolv = pool.sfiRv128()
  565. fkvs = poolv.(*[128]sfiRv)[:newlen]
  566. } else {
  567. fkvs = make([]sfiRv, newlen)
  568. }
  569. newlen = 0
  570. var kv sfiRv
  571. recur := e.h.RecursiveEmptyCheck
  572. sfn := structFieldNode{v: rv, update: false}
  573. for _, si := range tisfi {
  574. // kv.r = si.field(rv, false)
  575. kv.r = sfn.field(si)
  576. if toMap {
  577. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  578. continue
  579. }
  580. kv.v = si // si.encName
  581. } else {
  582. // use the zero value.
  583. // if a reference or struct, set to nil (so you do not output too much)
  584. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  585. switch kv.r.Kind() {
  586. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  587. kv.r = reflect.Value{} //encode as nil
  588. }
  589. }
  590. }
  591. fkvs[newlen] = kv
  592. newlen++
  593. }
  594. var mflen int
  595. for k, v := range mf {
  596. if k == "" {
  597. delete(mf, k)
  598. continue
  599. }
  600. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  601. delete(mf, k)
  602. continue
  603. }
  604. mflen++
  605. }
  606. if toMap {
  607. ee.WriteMapStart(newlen + mflen)
  608. if elemsep {
  609. for j := 0; j < newlen; j++ {
  610. kv = fkvs[j]
  611. ee.WriteMapElemKey()
  612. // ee.EncodeString(cUTF8, kv.v)
  613. e.kStructFieldKey(fti.keyType, kv.v)
  614. ee.WriteMapElemValue()
  615. e.encodeValue(kv.r, nil, true)
  616. }
  617. } else {
  618. for j := 0; j < newlen; j++ {
  619. kv = fkvs[j]
  620. // ee.EncodeString(cUTF8, kv.v)
  621. e.kStructFieldKey(fti.keyType, kv.v)
  622. e.encodeValue(kv.r, nil, true)
  623. }
  624. }
  625. // now, add the others
  626. for k, v := range mf {
  627. ee.WriteMapElemKey()
  628. e.kStructFieldKeyName(fti.keyType, k)
  629. ee.WriteMapElemValue()
  630. e.encode(v)
  631. }
  632. ee.WriteMapEnd()
  633. } else {
  634. ee.WriteArrayStart(newlen)
  635. if elemsep {
  636. for j := 0; j < newlen; j++ {
  637. ee.WriteArrayElem()
  638. e.encodeValue(fkvs[j].r, nil, true)
  639. }
  640. } else {
  641. for j := 0; j < newlen; j++ {
  642. e.encodeValue(fkvs[j].r, nil, true)
  643. }
  644. }
  645. ee.WriteArrayEnd()
  646. }
  647. // do not use defer. Instead, use explicit pool return at end of function.
  648. // defer has a cost we are trying to avoid.
  649. // If there is a panic and these slices are not returned, it is ok.
  650. if spool != nil {
  651. spool.Put(poolv)
  652. }
  653. }
  654. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  655. ee := e.e
  656. if rv.IsNil() {
  657. ee.EncodeNil()
  658. return
  659. }
  660. l := rv.Len()
  661. ee.WriteMapStart(l)
  662. elemsep := e.esep
  663. if l == 0 {
  664. ee.WriteMapEnd()
  665. return
  666. }
  667. // var asSymbols bool
  668. // determine the underlying key and val encFn's for the map.
  669. // This eliminates some work which is done for each loop iteration i.e.
  670. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  671. //
  672. // However, if kind is reflect.Interface, do not pre-determine the
  673. // encoding type, because preEncodeValue may break it down to
  674. // a concrete type and kInterface will bomb.
  675. var keyFn, valFn *codecFn
  676. ti := f.ti
  677. rtkey0 := ti.key
  678. rtkey := rtkey0
  679. rtval0 := ti.elem
  680. rtval := rtval0
  681. // rtkeyid := rt2id(rtkey0)
  682. for rtval.Kind() == reflect.Ptr {
  683. rtval = rtval.Elem()
  684. }
  685. if rtval.Kind() != reflect.Interface {
  686. valFn = e.cfer().get(rtval, true, true)
  687. }
  688. mks := rv.MapKeys()
  689. if e.h.Canonical {
  690. e.kMapCanonical(rtkey, rv, mks, valFn)
  691. ee.WriteMapEnd()
  692. return
  693. }
  694. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  695. if !keyTypeIsString {
  696. for rtkey.Kind() == reflect.Ptr {
  697. rtkey = rtkey.Elem()
  698. }
  699. if rtkey.Kind() != reflect.Interface {
  700. // rtkeyid = rt2id(rtkey)
  701. keyFn = e.cfer().get(rtkey, true, true)
  702. }
  703. }
  704. // for j, lmks := 0, len(mks); j < lmks; j++ {
  705. for j := range mks {
  706. if elemsep {
  707. ee.WriteMapElemKey()
  708. }
  709. if keyTypeIsString {
  710. ee.EncodeString(cUTF8, mks[j].String())
  711. } else {
  712. e.encodeValue(mks[j], keyFn, true)
  713. }
  714. if elemsep {
  715. ee.WriteMapElemValue()
  716. }
  717. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  718. }
  719. ee.WriteMapEnd()
  720. }
  721. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  722. ee := e.e
  723. elemsep := e.esep
  724. // we previously did out-of-band if an extension was registered.
  725. // This is not necessary, as the natural kind is sufficient for ordering.
  726. switch rtkey.Kind() {
  727. case reflect.Bool:
  728. mksv := make([]boolRv, len(mks))
  729. for i, k := range mks {
  730. v := &mksv[i]
  731. v.r = k
  732. v.v = k.Bool()
  733. }
  734. sort.Sort(boolRvSlice(mksv))
  735. for i := range mksv {
  736. if elemsep {
  737. ee.WriteMapElemKey()
  738. }
  739. ee.EncodeBool(mksv[i].v)
  740. if elemsep {
  741. ee.WriteMapElemValue()
  742. }
  743. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  744. }
  745. case reflect.String:
  746. mksv := make([]stringRv, len(mks))
  747. for i, k := range mks {
  748. v := &mksv[i]
  749. v.r = k
  750. v.v = k.String()
  751. }
  752. sort.Sort(stringRvSlice(mksv))
  753. for i := range mksv {
  754. if elemsep {
  755. ee.WriteMapElemKey()
  756. }
  757. ee.EncodeString(cUTF8, mksv[i].v)
  758. if elemsep {
  759. ee.WriteMapElemValue()
  760. }
  761. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  762. }
  763. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  764. mksv := make([]uintRv, len(mks))
  765. for i, k := range mks {
  766. v := &mksv[i]
  767. v.r = k
  768. v.v = k.Uint()
  769. }
  770. sort.Sort(uintRvSlice(mksv))
  771. for i := range mksv {
  772. if elemsep {
  773. ee.WriteMapElemKey()
  774. }
  775. ee.EncodeUint(mksv[i].v)
  776. if elemsep {
  777. ee.WriteMapElemValue()
  778. }
  779. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  780. }
  781. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  782. mksv := make([]intRv, len(mks))
  783. for i, k := range mks {
  784. v := &mksv[i]
  785. v.r = k
  786. v.v = k.Int()
  787. }
  788. sort.Sort(intRvSlice(mksv))
  789. for i := range mksv {
  790. if elemsep {
  791. ee.WriteMapElemKey()
  792. }
  793. ee.EncodeInt(mksv[i].v)
  794. if elemsep {
  795. ee.WriteMapElemValue()
  796. }
  797. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  798. }
  799. case reflect.Float32:
  800. mksv := make([]floatRv, len(mks))
  801. for i, k := range mks {
  802. v := &mksv[i]
  803. v.r = k
  804. v.v = k.Float()
  805. }
  806. sort.Sort(floatRvSlice(mksv))
  807. for i := range mksv {
  808. if elemsep {
  809. ee.WriteMapElemKey()
  810. }
  811. ee.EncodeFloat32(float32(mksv[i].v))
  812. if elemsep {
  813. ee.WriteMapElemValue()
  814. }
  815. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  816. }
  817. case reflect.Float64:
  818. mksv := make([]floatRv, len(mks))
  819. for i, k := range mks {
  820. v := &mksv[i]
  821. v.r = k
  822. v.v = k.Float()
  823. }
  824. sort.Sort(floatRvSlice(mksv))
  825. for i := range mksv {
  826. if elemsep {
  827. ee.WriteMapElemKey()
  828. }
  829. ee.EncodeFloat64(mksv[i].v)
  830. if elemsep {
  831. ee.WriteMapElemValue()
  832. }
  833. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  834. }
  835. case reflect.Struct:
  836. if rv.Type() == timeTyp {
  837. mksv := make([]timeRv, len(mks))
  838. for i, k := range mks {
  839. v := &mksv[i]
  840. v.r = k
  841. v.v = rv2i(k).(time.Time)
  842. }
  843. sort.Sort(timeRvSlice(mksv))
  844. for i := range mksv {
  845. if elemsep {
  846. ee.WriteMapElemKey()
  847. }
  848. ee.EncodeTime(mksv[i].v)
  849. if elemsep {
  850. ee.WriteMapElemValue()
  851. }
  852. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  853. }
  854. break
  855. }
  856. fallthrough
  857. default:
  858. // out-of-band
  859. // first encode each key to a []byte first, then sort them, then record
  860. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  861. e2 := NewEncoderBytes(&mksv, e.hh)
  862. mksbv := make([]bytesRv, len(mks))
  863. for i, k := range mks {
  864. v := &mksbv[i]
  865. l := len(mksv)
  866. e2.MustEncode(k)
  867. v.r = k
  868. v.v = mksv[l:]
  869. }
  870. sort.Sort(bytesRvSlice(mksbv))
  871. for j := range mksbv {
  872. if elemsep {
  873. ee.WriteMapElemKey()
  874. }
  875. e.asis(mksbv[j].v)
  876. if elemsep {
  877. ee.WriteMapElemValue()
  878. }
  879. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  880. }
  881. }
  882. }
  883. // // --------------------------------------------------
  884. type encWriterSwitch struct {
  885. wi *ioEncWriter
  886. wb bytesEncAppender
  887. wx bool // if bytes, wx=true
  888. esep bool // whether it has elem separators
  889. isas bool // whether e.as != nil
  890. js bool // here, so that no need to piggy back on *codecFner for this
  891. be bool // here, so that no need to piggy back on *codecFner for this
  892. _ [3]byte // padding
  893. _ [2]uint64 // padding
  894. }
  895. /*
  896. func (z *encWriterSwitch) writeb(s []byte) {
  897. if z.wx {
  898. z.wb.writeb(s)
  899. } else {
  900. z.wi.writeb(s)
  901. }
  902. }
  903. func (z *encWriterSwitch) writestr(s string) {
  904. if z.wx {
  905. z.wb.writestr(s)
  906. } else {
  907. z.wi.writestr(s)
  908. }
  909. }
  910. func (z *encWriterSwitch) writen1(b1 byte) {
  911. if z.wx {
  912. z.wb.writen1(b1)
  913. } else {
  914. z.wi.writen1(b1)
  915. }
  916. }
  917. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  918. if z.wx {
  919. z.wb.writen2(b1, b2)
  920. } else {
  921. z.wi.writen2(b1, b2)
  922. }
  923. }
  924. func (z *encWriterSwitch) atEndOfEncode() {
  925. if z.wx {
  926. z.wb.atEndOfEncode()
  927. } else {
  928. z.wi.atEndOfEncode()
  929. }
  930. }
  931. */
  932. // An Encoder writes an object to an output stream in the codec format.
  933. type Encoder struct {
  934. panicHdl
  935. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  936. e encDriver
  937. // NOTE: Encoder shouldn't call it's write methods,
  938. // as the handler MAY need to do some coordination.
  939. w encWriter
  940. // bw *bufio.Writer
  941. as encDriverAsis
  942. err error
  943. // ---- cpu cache line boundary?
  944. encWriterSwitch
  945. // ---- cpu cache line boundary?
  946. h *BasicHandle
  947. codecFnPooler
  948. ci set
  949. // ---- writable fields during execution --- *try* to keep in sep cache line
  950. // ---- cpu cache line boundary?
  951. // b [scratchByteArrayLen]byte
  952. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  953. b [cacheLineSize - 0]byte // used for encoding a chan or (non-addressable) array of bytes
  954. }
  955. // NewEncoder returns an Encoder for encoding into an io.Writer.
  956. //
  957. // For efficiency, Users are encouraged to pass in a memory buffered writer
  958. // (eg bufio.Writer, bytes.Buffer).
  959. func NewEncoder(w io.Writer, h Handle) *Encoder {
  960. e := newEncoder(h)
  961. e.Reset(w)
  962. return e
  963. }
  964. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  965. // into a byte slice, using zero-copying to temporary slices.
  966. //
  967. // It will potentially replace the output byte slice pointed to.
  968. // After encoding, the out parameter contains the encoded contents.
  969. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  970. e := newEncoder(h)
  971. e.ResetBytes(out)
  972. return e
  973. }
  974. func newEncoder(h Handle) *Encoder {
  975. e := &Encoder{h: h.getBasicHandle(), err: errEncoderNotInitialized}
  976. e.hh = h
  977. e.esep = h.hasElemSeparators()
  978. return e
  979. }
  980. func (e *Encoder) resetCommon() {
  981. // e.w = &e.encWriterSwitch
  982. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  983. e.e = e.hh.newEncDriver(e)
  984. e.as, e.isas = e.e.(encDriverAsis)
  985. // e.cr, _ = e.e.(containerStateRecv)
  986. }
  987. e.be = e.hh.isBinary()
  988. _, e.js = e.hh.(*JsonHandle)
  989. e.e.reset()
  990. e.err = nil
  991. }
  992. // Reset resets the Encoder with a new output stream.
  993. //
  994. // This accommodates using the state of the Encoder,
  995. // where it has "cached" information about sub-engines.
  996. func (e *Encoder) Reset(w io.Writer) {
  997. if w == nil {
  998. return
  999. }
  1000. if e.wi == nil {
  1001. e.wi = new(ioEncWriter)
  1002. }
  1003. var ok bool
  1004. e.wx = false
  1005. e.wi.w = w
  1006. if e.h.WriterBufferSize > 0 {
  1007. bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1008. e.wi.bw = bw
  1009. e.wi.sw = bw
  1010. e.wi.fw = bw
  1011. e.wi.ww = bw
  1012. } else {
  1013. if e.wi.bw, ok = w.(io.ByteWriter); !ok {
  1014. e.wi.bw = e.wi
  1015. }
  1016. if e.wi.sw, ok = w.(ioEncStringWriter); !ok {
  1017. e.wi.sw = e.wi
  1018. }
  1019. e.wi.fw, _ = w.(ioFlusher)
  1020. e.wi.ww = w
  1021. }
  1022. e.w = e.wi
  1023. e.resetCommon()
  1024. }
  1025. // ResetBytes resets the Encoder with a new destination output []byte.
  1026. func (e *Encoder) ResetBytes(out *[]byte) {
  1027. if out == nil {
  1028. return
  1029. }
  1030. var in []byte
  1031. if out != nil {
  1032. in = *out
  1033. }
  1034. if in == nil {
  1035. in = make([]byte, defEncByteBufSize)
  1036. }
  1037. e.wx = true
  1038. e.wb.reset(in, out)
  1039. e.w = &e.wb
  1040. e.resetCommon()
  1041. }
  1042. // Encode writes an object into a stream.
  1043. //
  1044. // Encoding can be configured via the struct tag for the fields.
  1045. // The key (in the struct tags) that we look at is configurable.
  1046. //
  1047. // By default, we look up the "codec" key in the struct field's tags,
  1048. // and fall bak to the "json" key if "codec" is absent.
  1049. // That key in struct field's tag value is the key name,
  1050. // followed by an optional comma and options.
  1051. //
  1052. // To set an option on all fields (e.g. omitempty on all fields), you
  1053. // can create a field called _struct, and set flags on it. The options
  1054. // which can be set on _struct are:
  1055. // - omitempty: so all fields are omitted if empty
  1056. // - toarray: so struct is encoded as an array
  1057. // - int: so struct key names are encoded as signed integers (instead of strings)
  1058. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1059. // - float: so struct key names are encoded as floats (instead of strings)
  1060. // More details on these below.
  1061. //
  1062. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1063. // - the field's tag is "-", OR
  1064. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1065. //
  1066. // When encoding as a map, the first string in the tag (before the comma)
  1067. // is the map key string to use when encoding.
  1068. // ...
  1069. // This key is typically encoded as a string.
  1070. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1071. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1072. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1073. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1074. // This is done with the int,uint or float option on the _struct field (see above).
  1075. //
  1076. // However, struct values may encode as arrays. This happens when:
  1077. // - StructToArray Encode option is set, OR
  1078. // - the tag on the _struct field sets the "toarray" option
  1079. // Note that omitempty is ignored when encoding struct values as arrays,
  1080. // as an entry must be encoded for each field, to maintain its position.
  1081. //
  1082. // Values with types that implement MapBySlice are encoded as stream maps.
  1083. //
  1084. // The empty values (for omitempty option) are false, 0, any nil pointer
  1085. // or interface value, and any array, slice, map, or string of length zero.
  1086. //
  1087. // Anonymous fields are encoded inline except:
  1088. // - the struct tag specifies a replacement name (first value)
  1089. // - the field is of an interface type
  1090. //
  1091. // Examples:
  1092. //
  1093. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1094. // type MyStruct struct {
  1095. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1096. // Field1 string `codec:"-"` //skip this field
  1097. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1098. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1099. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1100. // io.Reader //use key "Reader".
  1101. // MyStruct `codec:"my1" //use key "my1".
  1102. // MyStruct //inline it
  1103. // ...
  1104. // }
  1105. //
  1106. // type MyStruct struct {
  1107. // _struct bool `codec:",toarray"` //encode struct as an array
  1108. // }
  1109. //
  1110. // type MyStruct struct {
  1111. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1112. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1113. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1114. // }
  1115. //
  1116. // The mode of encoding is based on the type of the value. When a value is seen:
  1117. // - If a Selfer, call its CodecEncodeSelf method
  1118. // - If an extension is registered for it, call that extension function
  1119. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1120. // - Else encode it based on its reflect.Kind
  1121. //
  1122. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1123. // Some formats support symbols (e.g. binc) and will properly encode the string
  1124. // only once in the stream, and use a tag to refer to it thereafter.
  1125. func (e *Encoder) Encode(v interface{}) (err error) {
  1126. defer e.deferred(&err)
  1127. e.MustEncode(v)
  1128. return
  1129. }
  1130. // MustEncode is like Encode, but panics if unable to Encode.
  1131. // This provides insight to the code location that triggered the error.
  1132. func (e *Encoder) MustEncode(v interface{}) {
  1133. if e.err != nil {
  1134. panic(e.err)
  1135. }
  1136. e.encode(v)
  1137. e.e.atEndOfEncode()
  1138. e.w.atEndOfEncode()
  1139. e.alwaysAtEnd()
  1140. }
  1141. func (e *Encoder) deferred(err1 *error) {
  1142. e.alwaysAtEnd()
  1143. if recoverPanicToErr {
  1144. if x := recover(); x != nil {
  1145. panicValToErr(e, x, err1)
  1146. panicValToErr(e, x, &e.err)
  1147. }
  1148. }
  1149. }
  1150. // func (e *Encoder) alwaysAtEnd() {
  1151. // e.codecFnPooler.alwaysAtEnd()
  1152. // }
  1153. func (e *Encoder) encode(iv interface{}) {
  1154. if iv == nil || definitelyNil(iv) {
  1155. e.e.EncodeNil()
  1156. return
  1157. }
  1158. if v, ok := iv.(Selfer); ok {
  1159. v.CodecEncodeSelf(e)
  1160. return
  1161. }
  1162. // a switch with only concrete types can be optimized.
  1163. // consequently, we deal with nil and interfaces outside.
  1164. switch v := iv.(type) {
  1165. case Raw:
  1166. e.rawBytes(v)
  1167. case reflect.Value:
  1168. e.encodeValue(v, nil, true)
  1169. case string:
  1170. e.e.EncodeString(cUTF8, v)
  1171. case bool:
  1172. e.e.EncodeBool(v)
  1173. case int:
  1174. e.e.EncodeInt(int64(v))
  1175. case int8:
  1176. e.e.EncodeInt(int64(v))
  1177. case int16:
  1178. e.e.EncodeInt(int64(v))
  1179. case int32:
  1180. e.e.EncodeInt(int64(v))
  1181. case int64:
  1182. e.e.EncodeInt(v)
  1183. case uint:
  1184. e.e.EncodeUint(uint64(v))
  1185. case uint8:
  1186. e.e.EncodeUint(uint64(v))
  1187. case uint16:
  1188. e.e.EncodeUint(uint64(v))
  1189. case uint32:
  1190. e.e.EncodeUint(uint64(v))
  1191. case uint64:
  1192. e.e.EncodeUint(v)
  1193. case uintptr:
  1194. e.e.EncodeUint(uint64(v))
  1195. case float32:
  1196. e.e.EncodeFloat32(v)
  1197. case float64:
  1198. e.e.EncodeFloat64(v)
  1199. case time.Time:
  1200. e.e.EncodeTime(v)
  1201. case []uint8:
  1202. e.e.EncodeStringBytes(cRAW, v)
  1203. case *Raw:
  1204. e.rawBytes(*v)
  1205. case *string:
  1206. e.e.EncodeString(cUTF8, *v)
  1207. case *bool:
  1208. e.e.EncodeBool(*v)
  1209. case *int:
  1210. e.e.EncodeInt(int64(*v))
  1211. case *int8:
  1212. e.e.EncodeInt(int64(*v))
  1213. case *int16:
  1214. e.e.EncodeInt(int64(*v))
  1215. case *int32:
  1216. e.e.EncodeInt(int64(*v))
  1217. case *int64:
  1218. e.e.EncodeInt(*v)
  1219. case *uint:
  1220. e.e.EncodeUint(uint64(*v))
  1221. case *uint8:
  1222. e.e.EncodeUint(uint64(*v))
  1223. case *uint16:
  1224. e.e.EncodeUint(uint64(*v))
  1225. case *uint32:
  1226. e.e.EncodeUint(uint64(*v))
  1227. case *uint64:
  1228. e.e.EncodeUint(*v)
  1229. case *uintptr:
  1230. e.e.EncodeUint(uint64(*v))
  1231. case *float32:
  1232. e.e.EncodeFloat32(*v)
  1233. case *float64:
  1234. e.e.EncodeFloat64(*v)
  1235. case *time.Time:
  1236. e.e.EncodeTime(*v)
  1237. case *[]uint8:
  1238. e.e.EncodeStringBytes(cRAW, *v)
  1239. default:
  1240. if !fastpathEncodeTypeSwitch(iv, e) {
  1241. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1242. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1243. }
  1244. }
  1245. }
  1246. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1247. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1248. var sptr uintptr
  1249. var rvp reflect.Value
  1250. var rvpValid bool
  1251. TOP:
  1252. switch rv.Kind() {
  1253. case reflect.Ptr:
  1254. if rv.IsNil() {
  1255. e.e.EncodeNil()
  1256. return
  1257. }
  1258. rvpValid = true
  1259. rvp = rv
  1260. rv = rv.Elem()
  1261. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1262. // TODO: Movable pointers will be an issue here. Future problem.
  1263. sptr = rv.UnsafeAddr()
  1264. break TOP
  1265. }
  1266. goto TOP
  1267. case reflect.Interface:
  1268. if rv.IsNil() {
  1269. e.e.EncodeNil()
  1270. return
  1271. }
  1272. rv = rv.Elem()
  1273. goto TOP
  1274. case reflect.Slice, reflect.Map:
  1275. if rv.IsNil() {
  1276. e.e.EncodeNil()
  1277. return
  1278. }
  1279. case reflect.Invalid, reflect.Func:
  1280. e.e.EncodeNil()
  1281. return
  1282. }
  1283. if sptr != 0 && (&e.ci).add(sptr) {
  1284. e.errorf("circular reference found: # %d", sptr)
  1285. }
  1286. if fn == nil {
  1287. rt := rv.Type()
  1288. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1289. fn = e.cfer().get(rt, checkFastpath, true)
  1290. }
  1291. if fn.i.addrE {
  1292. if rvpValid {
  1293. fn.fe(e, &fn.i, rvp)
  1294. } else if rv.CanAddr() {
  1295. fn.fe(e, &fn.i, rv.Addr())
  1296. } else {
  1297. rv2 := reflect.New(rv.Type())
  1298. rv2.Elem().Set(rv)
  1299. fn.fe(e, &fn.i, rv2)
  1300. }
  1301. } else {
  1302. fn.fe(e, &fn.i, rv)
  1303. }
  1304. if sptr != 0 {
  1305. (&e.ci).remove(sptr)
  1306. }
  1307. }
  1308. func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1309. if fnerr != nil {
  1310. panic(fnerr)
  1311. }
  1312. if bs == nil {
  1313. e.e.EncodeNil()
  1314. } else if asis {
  1315. e.asis(bs)
  1316. } else {
  1317. e.e.EncodeStringBytes(c, bs)
  1318. }
  1319. }
  1320. func (e *Encoder) asis(v []byte) {
  1321. if e.isas {
  1322. e.as.EncodeAsis(v)
  1323. } else {
  1324. e.w.writeb(v)
  1325. }
  1326. }
  1327. func (e *Encoder) rawBytes(vv Raw) {
  1328. v := []byte(vv)
  1329. if !e.h.Raw {
  1330. e.errorf("Raw values cannot be encoded: %v", v)
  1331. }
  1332. e.asis(v)
  1333. }
  1334. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1335. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1336. }