encode.go 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "sort"
  11. "strconv"
  12. "time"
  13. )
  14. // defEncByteBufSize is the default size of []byte used
  15. // for bufio buffer or []byte (when nil passed)
  16. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  17. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  18. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  19. type encDriver interface {
  20. EncodeNil()
  21. EncodeInt(i int64)
  22. EncodeUint(i uint64)
  23. EncodeBool(b bool)
  24. EncodeFloat32(f float32)
  25. EncodeFloat64(f float64)
  26. // encodeExtPreamble(xtag byte, length int)
  27. EncodeRawExt(re *RawExt)
  28. EncodeExt(v interface{}, xtag uint64, ext Ext)
  29. // EncodeString using cUTF8, honor'ing StringToRaw flag
  30. EncodeString(v string)
  31. // EncodeStringEnc(c charEncoding, v string) // c cannot be cRAW
  32. // EncodeSymbol(v string)
  33. EncodeStringBytesRaw(v []byte)
  34. EncodeTime(time.Time)
  35. //encBignum(f *big.Int)
  36. //encStringRunes(c charEncoding, v []rune)
  37. WriteArrayStart(length int)
  38. WriteArrayEnd()
  39. WriteMapStart(length int)
  40. WriteMapEnd()
  41. reset()
  42. atEndOfEncode()
  43. encoder() *Encoder
  44. }
  45. type encDriverContainerTracker interface {
  46. WriteArrayElem()
  47. WriteMapElemKey()
  48. WriteMapElemValue()
  49. }
  50. // type encDriverAsis interface {
  51. // EncodeAsis(v []byte)
  52. // }
  53. type encodeError struct {
  54. codecError
  55. }
  56. func (e encodeError) Error() string {
  57. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  58. }
  59. type encDriverNoopContainerWriter struct{}
  60. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  61. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  62. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  63. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  64. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  65. // func (encDriverNoopContainerWriter) WriteArrayElem() {}
  66. // func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  67. // func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  68. // type encDriverTrackContainerWriter struct {
  69. // c containerState
  70. // }
  71. // func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  72. // func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  73. // func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  74. // func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  75. // func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  76. // func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  77. // func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  78. // func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  79. // EncodeOptions captures configuration options during encode.
  80. type EncodeOptions struct {
  81. // WriterBufferSize is the size of the buffer used when writing.
  82. //
  83. // if > 0, we use a smart buffer internally for performance purposes.
  84. WriterBufferSize int
  85. // ChanRecvTimeout is the timeout used when selecting from a chan.
  86. //
  87. // Configuring this controls how we receive from a chan during the encoding process.
  88. // - If ==0, we only consume the elements currently available in the chan.
  89. // - if <0, we consume until the chan is closed.
  90. // - If >0, we consume until this timeout.
  91. ChanRecvTimeout time.Duration
  92. // StructToArray specifies to encode a struct as an array, and not as a map
  93. StructToArray bool
  94. // Canonical representation means that encoding a value will always result in the same
  95. // sequence of bytes.
  96. //
  97. // This only affects maps, as the iteration order for maps is random.
  98. //
  99. // The implementation MAY use the natural sort order for the map keys if possible:
  100. //
  101. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  102. // then the map keys are first sorted in natural order and then written
  103. // with corresponding map values to the strema.
  104. // - If there is no natural sort order, then the map keys will first be
  105. // encoded into []byte, and then sorted,
  106. // before writing the sorted keys and the corresponding map values to the stream.
  107. //
  108. Canonical bool
  109. // CheckCircularRef controls whether we check for circular references
  110. // and error fast during an encode.
  111. //
  112. // If enabled, an error is received if a pointer to a struct
  113. // references itself either directly or through one of its fields (iteratively).
  114. //
  115. // This is opt-in, as there may be a performance hit to checking circular references.
  116. CheckCircularRef bool
  117. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  118. // when checking if a value is empty.
  119. //
  120. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  121. RecursiveEmptyCheck bool
  122. // Raw controls whether we encode Raw values.
  123. // This is a "dangerous" option and must be explicitly set.
  124. // If set, we blindly encode Raw values as-is, without checking
  125. // if they are a correct representation of a value in that format.
  126. // If unset, we error out.
  127. Raw bool
  128. // StringToRaw controls how strings are encoded.
  129. //
  130. // As a go string is just an (immutable) sequence of bytes,
  131. // it can be encoded either as raw bytes or as a UTF string.
  132. //
  133. // By default, strings are encoded as UTF-8.
  134. // but can be treated as []byte during an encode.
  135. //
  136. // Note that things which we know (by definition) to be UTF-8
  137. // are ALWAYS encoded as UTF-8 strings.
  138. // These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
  139. StringToRaw bool
  140. // // AsSymbols defines what should be encoded as symbols.
  141. // //
  142. // // Encoding as symbols can reduce the encoded size significantly.
  143. // //
  144. // // However, during decoding, each string to be encoded as a symbol must
  145. // // be checked to see if it has been seen before. Consequently, encoding time
  146. // // will increase if using symbols, because string comparisons has a clear cost.
  147. // //
  148. // // Sample values:
  149. // // AsSymbolNone
  150. // // AsSymbolAll
  151. // // AsSymbolMapStringKeys
  152. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  153. // AsSymbols AsSymbolFlag
  154. }
  155. // ---------------------------------------------
  156. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  157. e.e.EncodeRawExt(rv2i(rv).(*RawExt))
  158. }
  159. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  160. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn)
  161. }
  162. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  163. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  164. }
  165. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  166. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  167. e.marshalRaw(bs, fnerr)
  168. }
  169. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  170. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  171. e.marshalUtf8(bs, fnerr)
  172. }
  173. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  174. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  175. e.marshalAsis(bs, fnerr)
  176. }
  177. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  178. e.rawBytes(rv2i(rv).(Raw))
  179. }
  180. func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
  181. e.e.EncodeBool(rvGetBool(rv))
  182. }
  183. func (e *Encoder) kTime(f *codecFnInfo, rv reflect.Value) {
  184. e.e.EncodeTime(rvGetTime(rv))
  185. }
  186. func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
  187. e.e.EncodeString(rvGetString(rv))
  188. // if e.h.StringToRaw {
  189. // e.e.EncodeStringBytesRaw(bytesView(rvGetString(rv)))
  190. // } else {
  191. // e.e.EncodeStringEnc(cUTF8, rvGetString(rv))
  192. // }
  193. }
  194. // func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
  195. // if e.h.StringToRaw {
  196. // e.kStringToRaw(f, rv)
  197. // } else {
  198. // e.kStringEnc(f, rv)
  199. // }
  200. // }
  201. // func (e *Encoder) kStringToRaw(f *codecFnInfo, rv reflect.Value) {
  202. // e.e.EncodeStringBytesRaw(bytesView(rvGetString(rv)))
  203. // }
  204. // func (e *Encoder) kStringEnc(f *codecFnInfo, rv reflect.Value) {
  205. // e.e.EncodeStringEnc(cUTF8, rvGetString(rv))
  206. // }
  207. func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
  208. e.e.EncodeFloat64(rvGetFloat64(rv))
  209. }
  210. func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
  211. e.e.EncodeFloat32(rvGetFloat32(rv))
  212. }
  213. func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
  214. e.e.EncodeInt(int64(rvGetInt(rv)))
  215. }
  216. func (e *Encoder) kInt8(f *codecFnInfo, rv reflect.Value) {
  217. e.e.EncodeInt(int64(rvGetInt8(rv)))
  218. }
  219. func (e *Encoder) kInt16(f *codecFnInfo, rv reflect.Value) {
  220. e.e.EncodeInt(int64(rvGetInt16(rv)))
  221. }
  222. func (e *Encoder) kInt32(f *codecFnInfo, rv reflect.Value) {
  223. e.e.EncodeInt(int64(rvGetInt32(rv)))
  224. }
  225. func (e *Encoder) kInt64(f *codecFnInfo, rv reflect.Value) {
  226. e.e.EncodeInt(int64(rvGetInt64(rv)))
  227. }
  228. func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
  229. e.e.EncodeUint(uint64(rvGetUint(rv)))
  230. }
  231. func (e *Encoder) kUint8(f *codecFnInfo, rv reflect.Value) {
  232. e.e.EncodeUint(uint64(rvGetUint8(rv)))
  233. }
  234. func (e *Encoder) kUint16(f *codecFnInfo, rv reflect.Value) {
  235. e.e.EncodeUint(uint64(rvGetUint16(rv)))
  236. }
  237. func (e *Encoder) kUint32(f *codecFnInfo, rv reflect.Value) {
  238. e.e.EncodeUint(uint64(rvGetUint32(rv)))
  239. }
  240. func (e *Encoder) kUint64(f *codecFnInfo, rv reflect.Value) {
  241. e.e.EncodeUint(uint64(rvGetUint64(rv)))
  242. }
  243. func (e *Encoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
  244. e.e.EncodeUint(uint64(rvGetUintptr(rv)))
  245. }
  246. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  247. e.e.EncodeNil()
  248. }
  249. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  250. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  251. }
  252. func chanToSlice(rv reflect.Value, rtelem reflect.Type, timeout time.Duration) (rvcs reflect.Value) {
  253. // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  254. rvcs = reflect.Zero(reflect.SliceOf(rtelem))
  255. if timeout < 0 { // consume until close
  256. for {
  257. recv, recvOk := rv.Recv()
  258. if !recvOk {
  259. break
  260. }
  261. rvcs = reflect.Append(rvcs, recv)
  262. }
  263. } else {
  264. cases := make([]reflect.SelectCase, 2)
  265. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  266. if timeout == 0 {
  267. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  268. } else {
  269. tt := time.NewTimer(timeout)
  270. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv4i(tt.C)}
  271. }
  272. for {
  273. chosen, recv, recvOk := reflect.Select(cases)
  274. if chosen == 1 || !recvOk {
  275. break
  276. }
  277. rvcs = reflect.Append(rvcs, recv)
  278. }
  279. }
  280. return
  281. }
  282. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  283. // array may be non-addressable, so we have to manage with care
  284. // (don't call rv.Bytes, rv.Slice, etc).
  285. // E.g. type struct S{B [2]byte};
  286. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  287. mbs := f.ti.mbs
  288. if f.seq != seqTypeArray {
  289. if rvIsNil(rv) {
  290. e.e.EncodeNil()
  291. return
  292. }
  293. // If in this method, then there was no extension function defined.
  294. // So it's okay to treat as []byte.
  295. if !mbs && f.ti.rtid == uint8SliceTypId {
  296. e.e.EncodeStringBytesRaw(rvGetBytes(rv))
  297. return
  298. }
  299. }
  300. if f.seq == seqTypeChan && f.ti.chandir&uint8(reflect.RecvDir) == 0 {
  301. e.errorf("send-only channel cannot be encoded")
  302. }
  303. rtelem := f.ti.elem
  304. var l int
  305. // if a slice, array or chan of bytes, treat specially
  306. if !mbs && uint8TypId == rt2id(rtelem) { // NOT rtelem.Kind() == reflect.Uint8
  307. switch f.seq {
  308. case seqTypeSlice:
  309. e.e.EncodeStringBytesRaw(rvGetBytes(rv))
  310. case seqTypeArray:
  311. e.e.EncodeStringBytesRaw(rvGetArrayBytesRO(rv, e.b[:]))
  312. case seqTypeChan:
  313. e.kSliceBytesChan(rv)
  314. }
  315. return
  316. }
  317. // if chan, consume chan into a slice, and work off that slice.
  318. if f.seq == seqTypeChan {
  319. rv = chanToSlice(rv, rtelem, e.h.ChanRecvTimeout)
  320. }
  321. l = rv.Len() // rv may be slice or array
  322. if mbs {
  323. if l%2 == 1 {
  324. e.errorf("mapBySlice requires even slice length, but got %v", l)
  325. return
  326. }
  327. e.mapStart(l / 2)
  328. } else {
  329. e.arrayStart(l)
  330. }
  331. if l > 0 {
  332. var fn *codecFn
  333. for rtelem.Kind() == reflect.Ptr {
  334. rtelem = rtelem.Elem()
  335. }
  336. // if kind is reflect.Interface, do not pre-determine the
  337. // encoding type, because preEncodeValue may break it down to
  338. // a concrete type and kInterface will bomb.
  339. if rtelem.Kind() != reflect.Interface {
  340. fn = e.h.fn(rtelem)
  341. }
  342. for j := 0; j < l; j++ {
  343. if mbs {
  344. if j%2 == 0 {
  345. e.mapElemKey()
  346. } else {
  347. e.mapElemValue()
  348. }
  349. } else {
  350. e.arrayElem()
  351. }
  352. e.encodeValue(rv.Index(j), fn)
  353. }
  354. }
  355. if mbs {
  356. e.mapEnd()
  357. } else {
  358. e.arrayEnd()
  359. }
  360. }
  361. func (e *Encoder) kSliceBytesChan(rv reflect.Value) {
  362. // do not use range, so that the number of elements encoded
  363. // does not change, and encoding does not hang waiting on someone to close chan.
  364. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  365. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  366. // if rvIsNil(rv) {
  367. // e.e.EncodeNil()
  368. // return
  369. // }
  370. bs := e.b[:0]
  371. irv := rv2i(rv)
  372. ch, ok := irv.(<-chan byte)
  373. if !ok {
  374. ch = irv.(chan byte)
  375. }
  376. L1:
  377. switch timeout := e.h.ChanRecvTimeout; {
  378. case timeout == 0: // only consume available
  379. for {
  380. select {
  381. case b := <-ch:
  382. bs = append(bs, b)
  383. default:
  384. break L1
  385. }
  386. }
  387. case timeout > 0: // consume until timeout
  388. tt := time.NewTimer(timeout)
  389. for {
  390. select {
  391. case b := <-ch:
  392. bs = append(bs, b)
  393. case <-tt.C:
  394. // close(tt.C)
  395. break L1
  396. }
  397. }
  398. default: // consume until close
  399. for b := range ch {
  400. bs = append(bs, b)
  401. }
  402. }
  403. e.e.EncodeStringBytesRaw(bs)
  404. }
  405. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  406. sfn := structFieldNode{v: rv, update: false}
  407. if f.ti.toArray || e.h.StructToArray { // toArray
  408. e.arrayStart(len(f.ti.sfiSrc))
  409. for _, si := range f.ti.sfiSrc {
  410. e.arrayElem()
  411. e.encodeValue(sfn.field(si), nil)
  412. }
  413. e.arrayEnd()
  414. } else {
  415. e.mapStart(len(f.ti.sfiSort))
  416. for _, si := range f.ti.sfiSort {
  417. e.mapElemKey()
  418. e.kStructFieldKey(f.ti.keyType, si.encNameAsciiAlphaNum, si.encName)
  419. e.mapElemValue()
  420. e.encodeValue(sfn.field(si), nil)
  421. }
  422. e.mapEnd()
  423. }
  424. }
  425. func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
  426. encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
  427. }
  428. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  429. var newlen int
  430. toMap := !(f.ti.toArray || e.h.StructToArray)
  431. var mf map[string]interface{}
  432. if f.ti.isFlag(tiflagMissingFielder) {
  433. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  434. toMap = true
  435. newlen += len(mf)
  436. } else if f.ti.isFlag(tiflagMissingFielderPtr) {
  437. if rv.CanAddr() {
  438. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  439. } else {
  440. // make a new addressable value of same one, and use it
  441. rv2 := reflect.New(rv.Type())
  442. rvSetDirect(rv2.Elem(), rv)
  443. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  444. }
  445. toMap = true
  446. newlen += len(mf)
  447. }
  448. newlen += len(f.ti.sfiSrc)
  449. // Use sync.Pool to reduce allocating slices unnecessarily.
  450. // The cost of sync.Pool is less than the cost of new allocation.
  451. //
  452. // Each element of the array pools one of encStructPool(8|16|32|64).
  453. // It allows the re-use of slices up to 64 in length.
  454. // A performance cost of encoding structs was collecting
  455. // which values were empty and should be omitted.
  456. // We needed slices of reflect.Value and string to collect them.
  457. // This shared pool reduces the amount of unnecessary creation we do.
  458. // The cost is that of locking sometimes, but sync.Pool is efficient
  459. // enough to reduce thread contention.
  460. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  461. // var spool sfiRvPooler
  462. var fkvs = e.slist.get(newlen)
  463. recur := e.h.RecursiveEmptyCheck
  464. sfn := structFieldNode{v: rv, update: false}
  465. var kv sfiRv
  466. var j int
  467. if toMap {
  468. newlen = 0
  469. for _, si := range f.ti.sfiSort { // use sorted array
  470. // kv.r = si.field(rv, false)
  471. kv.r = sfn.field(si)
  472. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  473. continue
  474. }
  475. kv.v = si // si.encName
  476. fkvs[newlen] = kv
  477. newlen++
  478. }
  479. var mflen int
  480. for k, v := range mf {
  481. if k == "" {
  482. delete(mf, k)
  483. continue
  484. }
  485. if f.ti.infoFieldOmitempty && isEmptyValue(rv4i(v), e.h.TypeInfos, recur, recur) {
  486. delete(mf, k)
  487. continue
  488. }
  489. mflen++
  490. }
  491. // encode it all
  492. e.mapStart(newlen + mflen)
  493. for j = 0; j < newlen; j++ {
  494. kv = fkvs[j]
  495. e.mapElemKey()
  496. e.kStructFieldKey(f.ti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  497. e.mapElemValue()
  498. e.encodeValue(kv.r, nil)
  499. }
  500. // now, add the others
  501. for k, v := range mf {
  502. e.mapElemKey()
  503. e.kStructFieldKey(f.ti.keyType, false, k)
  504. e.mapElemValue()
  505. e.encode(v)
  506. }
  507. e.mapEnd()
  508. } else {
  509. newlen = len(f.ti.sfiSrc)
  510. // kv.v = nil
  511. for i, si := range f.ti.sfiSrc { // use unsorted array (to match sequence in struct)
  512. // kv.r = si.field(rv, false)
  513. kv.r = sfn.field(si)
  514. // use the zero value.
  515. // if a reference or struct, set to nil (so you do not output too much)
  516. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  517. switch kv.r.Kind() {
  518. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  519. kv.r = reflect.Value{} //encode as nil
  520. }
  521. }
  522. fkvs[i] = kv
  523. }
  524. // encode it all
  525. e.arrayStart(newlen)
  526. for j = 0; j < newlen; j++ {
  527. e.arrayElem()
  528. e.encodeValue(fkvs[j].r, nil)
  529. }
  530. e.arrayEnd()
  531. }
  532. // do not use defer. Instead, use explicit pool return at end of function.
  533. // defer has a cost we are trying to avoid.
  534. // If there is a panic and these slices are not returned, it is ok.
  535. // spool.end()
  536. e.slist.put(fkvs)
  537. }
  538. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  539. if rvIsNil(rv) {
  540. e.e.EncodeNil()
  541. return
  542. }
  543. l := rv.Len()
  544. e.mapStart(l)
  545. if l == 0 {
  546. e.mapEnd()
  547. return
  548. }
  549. // var asSymbols bool
  550. // determine the underlying key and val encFn's for the map.
  551. // This eliminates some work which is done for each loop iteration i.e.
  552. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  553. //
  554. // However, if kind is reflect.Interface, do not pre-determine the
  555. // encoding type, because preEncodeValue may break it down to
  556. // a concrete type and kInterface will bomb.
  557. var keyFn, valFn *codecFn
  558. // rtkeyid := rt2id(f.ti.key)
  559. ktypeKind := f.ti.key.Kind()
  560. vtypeKind := f.ti.elem.Kind()
  561. rtval := f.ti.elem
  562. rtvalkind := vtypeKind
  563. for rtvalkind == reflect.Ptr {
  564. rtval = rtval.Elem()
  565. rtvalkind = rtval.Kind()
  566. }
  567. if rtvalkind != reflect.Interface {
  568. valFn = e.h.fn(rtval)
  569. }
  570. var rvv = mapAddressableRV(f.ti.elem, vtypeKind)
  571. if e.h.Canonical {
  572. e.kMapCanonical(f.ti.key, f.ti.elem, rv, rvv, valFn)
  573. e.mapEnd()
  574. return
  575. }
  576. rtkey := f.ti.key
  577. var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
  578. if !keyTypeIsString {
  579. for rtkey.Kind() == reflect.Ptr {
  580. rtkey = rtkey.Elem()
  581. }
  582. if rtkey.Kind() != reflect.Interface {
  583. // rtkeyid = rt2id(rtkey)
  584. keyFn = e.h.fn(rtkey)
  585. }
  586. }
  587. var rvk = mapAddressableRV(f.ti.key, ktypeKind)
  588. var it mapIter
  589. mapRange(&it, rv, rvk, rvv, true)
  590. validKV := it.ValidKV()
  591. var vx reflect.Value
  592. for it.Next() {
  593. e.mapElemKey()
  594. if validKV {
  595. vx = it.Key()
  596. } else {
  597. vx = rvk
  598. }
  599. if keyTypeIsString {
  600. e.e.EncodeString(vx.String())
  601. // if e.h.StringToRaw {
  602. // e.e.EncodeStringBytesRaw(bytesView(vx.String()))
  603. // } else {
  604. // e.e.EncodeStringEnc(cUTF8, vx.String())
  605. // }
  606. } else {
  607. e.encodeValue(vx, keyFn)
  608. }
  609. e.mapElemValue()
  610. if validKV {
  611. vx = it.Value()
  612. } else {
  613. vx = rvv
  614. }
  615. e.encodeValue(vx, valFn)
  616. }
  617. it.Done()
  618. e.mapEnd()
  619. }
  620. func (e *Encoder) kMapCanonical(rtkey, rtval reflect.Type, rv, rvv reflect.Value, valFn *codecFn) {
  621. // we previously did out-of-band if an extension was registered.
  622. // This is not necessary, as the natural kind is sufficient for ordering.
  623. mks := rv.MapKeys()
  624. switch rtkey.Kind() {
  625. case reflect.Bool:
  626. mksv := make([]boolRv, len(mks))
  627. for i, k := range mks {
  628. v := &mksv[i]
  629. v.r = k
  630. v.v = k.Bool()
  631. }
  632. sort.Sort(boolRvSlice(mksv))
  633. for i := range mksv {
  634. e.mapElemKey()
  635. e.e.EncodeBool(mksv[i].v)
  636. e.mapElemValue()
  637. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  638. }
  639. case reflect.String:
  640. mksv := make([]stringRv, len(mks))
  641. for i, k := range mks {
  642. v := &mksv[i]
  643. v.r = k
  644. v.v = k.String()
  645. }
  646. sort.Sort(stringRvSlice(mksv))
  647. for i := range mksv {
  648. e.mapElemKey()
  649. e.e.EncodeString(mksv[i].v)
  650. // if e.h.StringToRaw {
  651. // e.e.EncodeStringBytesRaw(bytesView(mksv[i].v))
  652. // } else {
  653. // e.e.EncodeStringEnc(cUTF8, mksv[i].v)
  654. // }
  655. e.mapElemValue()
  656. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  657. }
  658. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  659. mksv := make([]uint64Rv, len(mks))
  660. for i, k := range mks {
  661. v := &mksv[i]
  662. v.r = k
  663. v.v = k.Uint()
  664. }
  665. sort.Sort(uint64RvSlice(mksv))
  666. for i := range mksv {
  667. e.mapElemKey()
  668. e.e.EncodeUint(mksv[i].v)
  669. e.mapElemValue()
  670. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  671. }
  672. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  673. mksv := make([]int64Rv, len(mks))
  674. for i, k := range mks {
  675. v := &mksv[i]
  676. v.r = k
  677. v.v = k.Int()
  678. }
  679. sort.Sort(int64RvSlice(mksv))
  680. for i := range mksv {
  681. e.mapElemKey()
  682. e.e.EncodeInt(mksv[i].v)
  683. e.mapElemValue()
  684. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  685. }
  686. case reflect.Float32:
  687. mksv := make([]float64Rv, len(mks))
  688. for i, k := range mks {
  689. v := &mksv[i]
  690. v.r = k
  691. v.v = k.Float()
  692. }
  693. sort.Sort(float64RvSlice(mksv))
  694. for i := range mksv {
  695. e.mapElemKey()
  696. e.e.EncodeFloat32(float32(mksv[i].v))
  697. e.mapElemValue()
  698. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  699. }
  700. case reflect.Float64:
  701. mksv := make([]float64Rv, len(mks))
  702. for i, k := range mks {
  703. v := &mksv[i]
  704. v.r = k
  705. v.v = k.Float()
  706. }
  707. sort.Sort(float64RvSlice(mksv))
  708. for i := range mksv {
  709. e.mapElemKey()
  710. e.e.EncodeFloat64(mksv[i].v)
  711. e.mapElemValue()
  712. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  713. }
  714. case reflect.Struct:
  715. if rtkey == timeTyp {
  716. mksv := make([]timeRv, len(mks))
  717. for i, k := range mks {
  718. v := &mksv[i]
  719. v.r = k
  720. v.v = rv2i(k).(time.Time)
  721. }
  722. sort.Sort(timeRvSlice(mksv))
  723. for i := range mksv {
  724. e.mapElemKey()
  725. e.e.EncodeTime(mksv[i].v)
  726. e.mapElemValue()
  727. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
  728. }
  729. break
  730. }
  731. fallthrough
  732. default:
  733. // out-of-band
  734. // first encode each key to a []byte first, then sort them, then record
  735. // var bufp bytesBufPooler
  736. // var mksv []byte = bufp.get(len(mks) * 16)[:0]
  737. // var mksv []byte = make([]byte, 0, len(mks)*16)
  738. var mksv []byte = e.blist.get(len(mks) * 16)[:0]
  739. e2 := NewEncoderBytes(&mksv, e.hh)
  740. mksbv := make([]bytesRv, len(mks))
  741. for i, k := range mks {
  742. v := &mksbv[i]
  743. l := len(mksv)
  744. e2.MustEncode(k)
  745. v.r = k
  746. v.v = mksv[l:]
  747. }
  748. sort.Sort(bytesRvSlice(mksbv))
  749. for j := range mksbv {
  750. e.mapElemKey()
  751. e.encWr.writeb(mksbv[j].v) // e.asis(mksbv[j].v)
  752. e.mapElemValue()
  753. e.encodeValue(mapGet(rv, mksbv[j].r, rvv), valFn)
  754. }
  755. // bufp.end()
  756. e.blist.put(mksv)
  757. }
  758. }
  759. // Encoder writes an object to an output stream in a supported format.
  760. //
  761. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  762. // concurrently in multiple goroutines.
  763. //
  764. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  765. // so its state can be reused to decode new input streams repeatedly.
  766. // This is the idiomatic way to use.
  767. type Encoder struct {
  768. panicHdl
  769. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  770. e encDriver
  771. // NOTE: Encoder shouldn't call it's write methods,
  772. // as the handler MAY need to do some coordination.
  773. // w *encWr
  774. // bw *bufio.Writer
  775. // as encDriverAsis
  776. // jenc *jsonEncDriver
  777. h *BasicHandle
  778. encWr
  779. // ---- cpu cache line boundary
  780. hh Handle
  781. blist bytesFreelist
  782. err error
  783. // ---- cpu cache line boundary
  784. // ---- writable fields during execution --- *try* to keep in sep cache line
  785. ci set // holds set of addresses found during an encoding (if CheckCircularRef=true)
  786. // cidef [1]interface{} // default ci
  787. slist sfiRvFreelist
  788. b [(2 * 8)]byte // for encoding chan byte, (non-addressable) [N]byte, etc
  789. // ---- cpu cache line boundary?
  790. // b [scratchByteArrayLen]byte
  791. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  792. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  793. }
  794. // NewEncoder returns an Encoder for encoding into an io.Writer.
  795. //
  796. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  797. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  798. func NewEncoder(w io.Writer, h Handle) *Encoder {
  799. e := h.newEncDriver().encoder()
  800. e.Reset(w)
  801. return e
  802. }
  803. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  804. // into a byte slice, using zero-copying to temporary slices.
  805. //
  806. // It will potentially replace the output byte slice pointed to.
  807. // After encoding, the out parameter contains the encoded contents.
  808. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  809. e := h.newEncDriver().encoder()
  810. e.ResetBytes(out)
  811. return e
  812. }
  813. func (e *Encoder) init(h Handle) {
  814. e.err = errEncoderNotInitialized
  815. e.bytes = true
  816. // if useFinalizers {
  817. // runtime.SetFinalizer(e, (*Encoder).finalize)
  818. // }
  819. // e.w = &e.encWr
  820. e.hh = h
  821. e.h = basicHandle(h)
  822. // e.esep = h.hasElemSeparators()
  823. // e.as, e.isas = e.e.(encDriverAsis)
  824. e.be = e.hh.isBinary()
  825. }
  826. func (e *Encoder) w() *encWr {
  827. return &e.encWr
  828. }
  829. func (e *Encoder) resetCommon() {
  830. e.e.reset()
  831. if e.ci == nil {
  832. // e.ci = (set)(e.cidef[:0])
  833. } else {
  834. e.ci = e.ci[:0]
  835. }
  836. e.c = 0
  837. e.err = nil
  838. }
  839. // Reset resets the Encoder with a new output stream.
  840. //
  841. // This accommodates using the state of the Encoder,
  842. // where it has "cached" information about sub-engines.
  843. func (e *Encoder) Reset(w io.Writer) {
  844. if w == nil {
  845. return
  846. }
  847. // var ok bool
  848. e.bytes = false
  849. if e.wf == nil {
  850. e.wf = new(bufioEncWriter)
  851. }
  852. // e.typ = entryTypeUnset
  853. // if e.h.WriterBufferSize > 0 {
  854. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  855. // // e.wi.bw = bw
  856. // // e.wi.sw = bw
  857. // // e.wi.fw = bw
  858. // // e.wi.ww = bw
  859. // if e.wf == nil {
  860. // e.wf = new(bufioEncWriter)
  861. // }
  862. // e.wf.reset(w, e.h.WriterBufferSize)
  863. // e.typ = entryTypeBufio
  864. // } else {
  865. // if e.wi == nil {
  866. // e.wi = new(ioEncWriter)
  867. // }
  868. // e.wi.reset(w)
  869. // e.typ = entryTypeIo
  870. // }
  871. e.wf.reset(w, e.h.WriterBufferSize, &e.blist)
  872. // e.typ = entryTypeBufio
  873. // e.w = e.wi
  874. e.resetCommon()
  875. }
  876. // ResetBytes resets the Encoder with a new destination output []byte.
  877. func (e *Encoder) ResetBytes(out *[]byte) {
  878. if out == nil {
  879. return
  880. }
  881. var in []byte = *out
  882. if in == nil {
  883. in = make([]byte, defEncByteBufSize)
  884. }
  885. e.bytes = true
  886. // e.typ = entryTypeBytes
  887. e.wb.reset(in, out)
  888. // e.w = &e.wb
  889. e.resetCommon()
  890. }
  891. // Encode writes an object into a stream.
  892. //
  893. // Encoding can be configured via the struct tag for the fields.
  894. // The key (in the struct tags) that we look at is configurable.
  895. //
  896. // By default, we look up the "codec" key in the struct field's tags,
  897. // and fall bak to the "json" key if "codec" is absent.
  898. // That key in struct field's tag value is the key name,
  899. // followed by an optional comma and options.
  900. //
  901. // To set an option on all fields (e.g. omitempty on all fields), you
  902. // can create a field called _struct, and set flags on it. The options
  903. // which can be set on _struct are:
  904. // - omitempty: so all fields are omitted if empty
  905. // - toarray: so struct is encoded as an array
  906. // - int: so struct key names are encoded as signed integers (instead of strings)
  907. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  908. // - float: so struct key names are encoded as floats (instead of strings)
  909. // More details on these below.
  910. //
  911. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  912. // - the field's tag is "-", OR
  913. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  914. //
  915. // When encoding as a map, the first string in the tag (before the comma)
  916. // is the map key string to use when encoding.
  917. // ...
  918. // This key is typically encoded as a string.
  919. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  920. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  921. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  922. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  923. // This is done with the int,uint or float option on the _struct field (see above).
  924. //
  925. // However, struct values may encode as arrays. This happens when:
  926. // - StructToArray Encode option is set, OR
  927. // - the tag on the _struct field sets the "toarray" option
  928. // Note that omitempty is ignored when encoding struct values as arrays,
  929. // as an entry must be encoded for each field, to maintain its position.
  930. //
  931. // Values with types that implement MapBySlice are encoded as stream maps.
  932. //
  933. // The empty values (for omitempty option) are false, 0, any nil pointer
  934. // or interface value, and any array, slice, map, or string of length zero.
  935. //
  936. // Anonymous fields are encoded inline except:
  937. // - the struct tag specifies a replacement name (first value)
  938. // - the field is of an interface type
  939. //
  940. // Examples:
  941. //
  942. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  943. // type MyStruct struct {
  944. // _struct bool `codec:",omitempty"` //set omitempty for every field
  945. // Field1 string `codec:"-"` //skip this field
  946. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  947. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  948. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  949. // io.Reader //use key "Reader".
  950. // MyStruct `codec:"my1" //use key "my1".
  951. // MyStruct //inline it
  952. // ...
  953. // }
  954. //
  955. // type MyStruct struct {
  956. // _struct bool `codec:",toarray"` //encode struct as an array
  957. // }
  958. //
  959. // type MyStruct struct {
  960. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  961. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  962. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  963. // }
  964. //
  965. // The mode of encoding is based on the type of the value. When a value is seen:
  966. // - If a Selfer, call its CodecEncodeSelf method
  967. // - If an extension is registered for it, call that extension function
  968. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  969. // - Else encode it based on its reflect.Kind
  970. //
  971. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  972. // Some formats support symbols (e.g. binc) and will properly encode the string
  973. // only once in the stream, and use a tag to refer to it thereafter.
  974. func (e *Encoder) Encode(v interface{}) (err error) {
  975. // tried to use closure, as runtime optimizes defer with no params.
  976. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  977. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  978. // defer func() { e.deferred(&err) }() }
  979. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  980. if e.err != nil {
  981. return e.err
  982. }
  983. if recoverPanicToErr {
  984. defer func() {
  985. // if error occurred during encoding, return that error;
  986. // else if error occurred on end'ing (i.e. during flush), return that error.
  987. err = e.w().endErr()
  988. x := recover()
  989. if x == nil {
  990. if e.err != err {
  991. e.err = err
  992. }
  993. } else {
  994. panicValToErr(e, x, &e.err)
  995. if e.err != err {
  996. err = e.err
  997. }
  998. }
  999. }()
  1000. }
  1001. // defer e.deferred(&err)
  1002. e.mustEncode(v)
  1003. return
  1004. }
  1005. // MustEncode is like Encode, but panics if unable to Encode.
  1006. // This provides insight to the code location that triggered the error.
  1007. func (e *Encoder) MustEncode(v interface{}) {
  1008. if e.err != nil {
  1009. panic(e.err)
  1010. }
  1011. e.mustEncode(v)
  1012. }
  1013. func (e *Encoder) mustEncode(v interface{}) {
  1014. // if e.wf == nil {
  1015. // e.encode(v)
  1016. // e.e.atEndOfEncode()
  1017. // e.w().end()
  1018. // return
  1019. // }
  1020. // if e.wf.buf == nil {
  1021. // e.wf.buf = e.wf.bytesBufPooler.get(e.wf.sz)
  1022. // e.wf.buf = e.wf.buf[:cap(e.wf.buf)]
  1023. // }
  1024. e.calls++
  1025. e.encode(v)
  1026. e.calls--
  1027. if e.calls == 0 {
  1028. e.e.atEndOfEncode()
  1029. e.w().end()
  1030. // if !e.h.ExplicitRelease {
  1031. // e.Release()
  1032. // }
  1033. }
  1034. }
  1035. // func (e *Encoder) deferred(err1 *error) {
  1036. // e.w().end()
  1037. // if recoverPanicToErr {
  1038. // if x := recover(); x != nil {
  1039. // panicValToErr(e, x, err1)
  1040. // panicValToErr(e, x, &e.err)
  1041. // }
  1042. // }
  1043. // }
  1044. // //go:noinline -- as it is run by finalizer
  1045. // func (e *Encoder) finalize() {
  1046. // e.Release()
  1047. // }
  1048. // Release releases shared (pooled) resources.
  1049. //
  1050. // It is important to call Release() when done with an Encoder, so those resources
  1051. // are released instantly for use by subsequently created Encoders.
  1052. //
  1053. // Deprecated: Release is a no-op as pooled resources are not used with an Encoder.
  1054. // This method is kept for compatibility reasons only.
  1055. func (e *Encoder) Release() {
  1056. // if e.wf != nil {
  1057. // e.wf.release()
  1058. // }
  1059. }
  1060. func (e *Encoder) encode(iv interface{}) {
  1061. // a switch with only concrete types can be optimized.
  1062. // consequently, we deal with nil and interfaces outside the switch.
  1063. if iv == nil {
  1064. e.e.EncodeNil()
  1065. return
  1066. }
  1067. rv, ok := isNil(iv)
  1068. if ok {
  1069. e.e.EncodeNil()
  1070. return
  1071. }
  1072. var vself Selfer
  1073. switch v := iv.(type) {
  1074. // case nil:
  1075. // case Selfer:
  1076. case Raw:
  1077. e.rawBytes(v)
  1078. case reflect.Value:
  1079. e.encodeValue(v, nil)
  1080. case string:
  1081. e.e.EncodeString(v)
  1082. // if e.h.StringToRaw {
  1083. // e.e.EncodeStringBytesRaw(bytesView(v))
  1084. // } else {
  1085. // e.e.EncodeStringEnc(cUTF8, v)
  1086. // }
  1087. case bool:
  1088. e.e.EncodeBool(v)
  1089. case int:
  1090. e.e.EncodeInt(int64(v))
  1091. case int8:
  1092. e.e.EncodeInt(int64(v))
  1093. case int16:
  1094. e.e.EncodeInt(int64(v))
  1095. case int32:
  1096. e.e.EncodeInt(int64(v))
  1097. case int64:
  1098. e.e.EncodeInt(v)
  1099. case uint:
  1100. e.e.EncodeUint(uint64(v))
  1101. case uint8:
  1102. e.e.EncodeUint(uint64(v))
  1103. case uint16:
  1104. e.e.EncodeUint(uint64(v))
  1105. case uint32:
  1106. e.e.EncodeUint(uint64(v))
  1107. case uint64:
  1108. e.e.EncodeUint(v)
  1109. case uintptr:
  1110. e.e.EncodeUint(uint64(v))
  1111. case float32:
  1112. e.e.EncodeFloat32(v)
  1113. case float64:
  1114. e.e.EncodeFloat64(v)
  1115. case time.Time:
  1116. e.e.EncodeTime(v)
  1117. case []uint8:
  1118. e.e.EncodeStringBytesRaw(v)
  1119. case *Raw:
  1120. e.rawBytes(*v)
  1121. case *string:
  1122. e.e.EncodeString(*v)
  1123. // if e.h.StringToRaw {
  1124. // e.e.EncodeStringBytesRaw(bytesView(*v))
  1125. // } else {
  1126. // e.e.EncodeStringEnc(cUTF8, *v)
  1127. // }
  1128. case *bool:
  1129. e.e.EncodeBool(*v)
  1130. case *int:
  1131. e.e.EncodeInt(int64(*v))
  1132. case *int8:
  1133. e.e.EncodeInt(int64(*v))
  1134. case *int16:
  1135. e.e.EncodeInt(int64(*v))
  1136. case *int32:
  1137. e.e.EncodeInt(int64(*v))
  1138. case *int64:
  1139. e.e.EncodeInt(*v)
  1140. case *uint:
  1141. e.e.EncodeUint(uint64(*v))
  1142. case *uint8:
  1143. e.e.EncodeUint(uint64(*v))
  1144. case *uint16:
  1145. e.e.EncodeUint(uint64(*v))
  1146. case *uint32:
  1147. e.e.EncodeUint(uint64(*v))
  1148. case *uint64:
  1149. e.e.EncodeUint(*v)
  1150. case *uintptr:
  1151. e.e.EncodeUint(uint64(*v))
  1152. case *float32:
  1153. e.e.EncodeFloat32(*v)
  1154. case *float64:
  1155. e.e.EncodeFloat64(*v)
  1156. case *time.Time:
  1157. e.e.EncodeTime(*v)
  1158. case *[]uint8:
  1159. if *v == nil {
  1160. e.e.EncodeNil()
  1161. } else {
  1162. e.e.EncodeStringBytesRaw(*v)
  1163. }
  1164. default:
  1165. if vself, ok = iv.(Selfer); ok {
  1166. vself.CodecEncodeSelf(e)
  1167. } else if !fastpathEncodeTypeSwitch(iv, e) {
  1168. if !rv.IsValid() {
  1169. rv = rv4i(iv)
  1170. }
  1171. e.encodeValue(rv, nil)
  1172. }
  1173. }
  1174. }
  1175. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
  1176. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1177. // We considered using a uintptr (a pointer) retrievable via rv.UnsafeAddr.
  1178. // However, it is possible for the same pointer to point to 2 different types e.g.
  1179. // type T struct { tHelper }
  1180. // Here, for var v T; &v and &v.tHelper are the same pointer.
  1181. // Consequently, we need a tuple of type and pointer, which interface{} natively provides.
  1182. var sptr interface{} // uintptr
  1183. var rvp reflect.Value
  1184. var rvpValid bool
  1185. TOP:
  1186. switch rv.Kind() {
  1187. case reflect.Ptr:
  1188. if rvIsNil(rv) {
  1189. e.e.EncodeNil()
  1190. return
  1191. }
  1192. rvpValid = true
  1193. rvp = rv
  1194. rv = rv.Elem()
  1195. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1196. sptr = rv2i(rvp) // rv.UnsafeAddr()
  1197. break TOP
  1198. }
  1199. goto TOP
  1200. case reflect.Interface:
  1201. if rvIsNil(rv) {
  1202. e.e.EncodeNil()
  1203. return
  1204. }
  1205. rv = rv.Elem()
  1206. goto TOP
  1207. case reflect.Slice, reflect.Map:
  1208. if rvIsNil(rv) {
  1209. e.e.EncodeNil()
  1210. return
  1211. }
  1212. case reflect.Invalid, reflect.Func:
  1213. e.e.EncodeNil()
  1214. return
  1215. }
  1216. if sptr != nil && (&e.ci).add(sptr) {
  1217. // e.errorf("circular reference found: # %d", sptr)
  1218. e.errorf("circular reference found: # %p, %T", sptr, sptr)
  1219. }
  1220. var rt reflect.Type
  1221. if fn == nil {
  1222. rt = rv.Type()
  1223. fn = e.h.fn(rt)
  1224. }
  1225. if fn.i.addrE {
  1226. if rvpValid {
  1227. fn.fe(e, &fn.i, rvp)
  1228. } else if rv.CanAddr() {
  1229. fn.fe(e, &fn.i, rv.Addr())
  1230. } else {
  1231. if rt == nil {
  1232. rt = rv.Type()
  1233. }
  1234. rv2 := reflect.New(rt)
  1235. rvSetDirect(rv2.Elem(), rv)
  1236. fn.fe(e, &fn.i, rv2)
  1237. }
  1238. } else {
  1239. fn.fe(e, &fn.i, rv)
  1240. }
  1241. if sptr != 0 {
  1242. (&e.ci).remove(sptr)
  1243. }
  1244. }
  1245. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1246. // if fnerr != nil {
  1247. // panic(fnerr)
  1248. // }
  1249. // if bs == nil {
  1250. // e.e.EncodeNil()
  1251. // } else if asis {
  1252. // e.asis(bs)
  1253. // } else {
  1254. // e.e.EncodeStringBytesRaw(bs)
  1255. // }
  1256. // }
  1257. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1258. if fnerr != nil {
  1259. panic(fnerr)
  1260. }
  1261. if bs == nil {
  1262. e.e.EncodeNil()
  1263. } else {
  1264. e.e.EncodeString(stringView(bs))
  1265. // e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1266. }
  1267. }
  1268. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1269. if fnerr != nil {
  1270. panic(fnerr)
  1271. }
  1272. if bs == nil {
  1273. e.e.EncodeNil()
  1274. } else {
  1275. e.encWr.writeb(bs) // e.asis(bs)
  1276. }
  1277. }
  1278. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1279. if fnerr != nil {
  1280. panic(fnerr)
  1281. }
  1282. if bs == nil {
  1283. e.e.EncodeNil()
  1284. } else {
  1285. e.e.EncodeStringBytesRaw(bs)
  1286. }
  1287. }
  1288. // func (e *Encoder) asis(v []byte) {
  1289. // if e.isas {
  1290. // e.as.EncodeAsis(v)
  1291. // } else {
  1292. // e.w().writeb(v)
  1293. // }
  1294. // }
  1295. func (e *Encoder) rawBytes(vv Raw) {
  1296. v := []byte(vv)
  1297. if !e.h.Raw {
  1298. e.errorf("Raw values cannot be encoded: %v", v)
  1299. }
  1300. e.encWr.writeb(v) // e.asis(v)
  1301. }
  1302. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1303. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1304. }
  1305. // ---- container tracker methods
  1306. // Note: We update the .c after calling the callback.
  1307. // This way, the callback can know what the last status was.
  1308. func (e *Encoder) mapStart(length int) {
  1309. e.e.WriteMapStart(length)
  1310. e.c = containerMapStart
  1311. }
  1312. func (e *Encoder) mapElemKey() {
  1313. if e.js {
  1314. e.jsondriver().WriteMapElemKey()
  1315. }
  1316. e.c = containerMapKey
  1317. }
  1318. func (e *Encoder) mapElemValue() {
  1319. if e.js {
  1320. e.jsondriver().WriteMapElemValue()
  1321. }
  1322. e.c = containerMapValue
  1323. }
  1324. // // Note: This is harder to inline, as there are 2 function calls inside.
  1325. // func (e *Encoder) mapElemKeyOrValue(j uint8) {
  1326. // if j == 0 {
  1327. // if e.js {
  1328. // e.jenc.WriteMapElemKey()
  1329. // }
  1330. // e.c = containerMapKey
  1331. // } else {
  1332. // if e.js {
  1333. // e.jenc.WriteMapElemValue()
  1334. // }
  1335. // e.c = containerMapValue
  1336. // }
  1337. // }
  1338. func (e *Encoder) mapEnd() {
  1339. e.e.WriteMapEnd()
  1340. // e.c = containerMapEnd
  1341. e.c = 0
  1342. }
  1343. func (e *Encoder) arrayStart(length int) {
  1344. e.e.WriteArrayStart(length)
  1345. e.c = containerArrayStart
  1346. }
  1347. func (e *Encoder) arrayElem() {
  1348. if e.js {
  1349. e.jsondriver().WriteArrayElem()
  1350. }
  1351. e.c = containerArrayElem
  1352. }
  1353. func (e *Encoder) arrayEnd() {
  1354. e.e.WriteArrayEnd()
  1355. e.c = 0
  1356. // e.c = containerArrayEnd
  1357. }
  1358. // ----------
  1359. func (e *Encoder) sideEncode(v interface{}, bs *[]byte) {
  1360. rv := baseRV(v)
  1361. e2 := NewEncoderBytes(bs, e.hh)
  1362. e2.encodeValue(rv, e.h.fnNoExt(rv.Type()))
  1363. e2.e.atEndOfEncode()
  1364. e2.w().end()
  1365. }
  1366. func encStructFieldKey(encName string, ee encDriver, w *encWr,
  1367. keyType valueType, encNameAsciiAlphaNum bool, js bool) {
  1368. var m must
  1369. // use if-else-if, not switch (which compiles to binary-search)
  1370. // since keyType is typically valueTypeString, branch prediction is pretty good.
  1371. if keyType == valueTypeString {
  1372. if js && encNameAsciiAlphaNum { // keyType == valueTypeString
  1373. w.writeqstr(encName)
  1374. // ----
  1375. // w.writen1('"')
  1376. // w.writestr(encName)
  1377. // w.writen1('"')
  1378. // ----
  1379. // w.writestr(`"` + encName + `"`)
  1380. // ----
  1381. // // do concat myself, so it is faster than the generic string concat
  1382. // b := make([]byte, len(encName)+2)
  1383. // copy(b[1:], encName)
  1384. // b[0] = '"'
  1385. // b[len(b)-1] = '"'
  1386. // w.writeb(b)
  1387. } else { // keyType == valueTypeString
  1388. ee.EncodeString(encName)
  1389. }
  1390. } else if keyType == valueTypeInt {
  1391. ee.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  1392. } else if keyType == valueTypeUint {
  1393. ee.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  1394. } else if keyType == valueTypeFloat {
  1395. ee.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  1396. }
  1397. }
  1398. // type encExtPreambler interface {
  1399. // encodeExtPreamble(tag uint8, length int)
  1400. // }
  1401. // func encBytesExt(rv interface{}, xtag uint64, ext Ext, h Handle, e encDriver) {
  1402. // var bs []byte
  1403. // var bufp bytesBufPooler
  1404. // if ext == SelfExt {
  1405. // bs = bufp.get(1024)[:0]
  1406. // rv2 := rv4i(v)
  1407. // NewEncoderBytes(&bs, h).encodeValue(rv2, h.fnNoExt(rv2.Type()))
  1408. // } else {
  1409. // bs = ext.WriteExt(v)
  1410. // }
  1411. // if bs == nil {
  1412. // e.EncodeNil()
  1413. // return
  1414. // }
  1415. // if e.h.WriteExt {
  1416. // e.encodeExtPreamble(uint8(xtag), len(bs))
  1417. // e.w.writeb(bs)
  1418. // } else {
  1419. // e.EncodeStringBytesRaw(bs)
  1420. // }
  1421. // if ext == SelfExt {
  1422. // bufp.end()
  1423. // }
  1424. // }
  1425. // func encStringAsRawBytesMaybe(ee encDriver, s string, stringToRaw bool) {
  1426. // if stringToRaw {
  1427. // ee.EncodeStringBytesRaw(bytesView(s))
  1428. // } else {
  1429. // ee.EncodeStringEnc(cUTF8, s)
  1430. // }
  1431. // }