encode.go 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "runtime"
  11. "sort"
  12. "strconv"
  13. "time"
  14. )
  15. // defEncByteBufSize is the default size of []byte used
  16. // for bufio buffer or []byte (when nil passed)
  17. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  18. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  19. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  20. type encDriver interface {
  21. EncodeNil()
  22. EncodeInt(i int64)
  23. EncodeUint(i uint64)
  24. EncodeBool(b bool)
  25. EncodeFloat32(f float32)
  26. EncodeFloat64(f float64)
  27. // encodeExtPreamble(xtag byte, length int)
  28. EncodeRawExt(re *RawExt)
  29. EncodeExt(v interface{}, xtag uint64, ext Ext)
  30. EncodeStringEnc(c charEncoding, v string) // c cannot be cRAW
  31. // EncodeSymbol(v string)
  32. EncodeStringBytesRaw(v []byte)
  33. EncodeTime(time.Time)
  34. //encBignum(f *big.Int)
  35. //encStringRunes(c charEncoding, v []rune)
  36. WriteArrayStart(length int)
  37. WriteArrayEnd()
  38. WriteMapStart(length int)
  39. WriteMapEnd()
  40. reset()
  41. atEndOfEncode()
  42. }
  43. type encDriverContainerTracker interface {
  44. WriteArrayElem()
  45. WriteMapElemKey()
  46. WriteMapElemValue()
  47. }
  48. type encDriverAsis interface {
  49. EncodeAsis(v []byte)
  50. }
  51. type encodeError struct {
  52. codecError
  53. }
  54. func (e encodeError) Error() string {
  55. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  56. }
  57. type encDriverNoopContainerWriter struct{}
  58. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  59. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  60. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  61. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  62. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  63. // func (encDriverNoopContainerWriter) WriteArrayElem() {}
  64. // func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  65. // func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  66. // type encDriverTrackContainerWriter struct {
  67. // c containerState
  68. // }
  69. // func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  70. // func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  71. // func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  72. // func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  73. // func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  74. // func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  75. // func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  76. // func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  77. // EncodeOptions captures configuration options during encode.
  78. type EncodeOptions struct {
  79. // WriterBufferSize is the size of the buffer used when writing.
  80. //
  81. // if > 0, we use a smart buffer internally for performance purposes.
  82. WriterBufferSize int
  83. // ChanRecvTimeout is the timeout used when selecting from a chan.
  84. //
  85. // Configuring this controls how we receive from a chan during the encoding process.
  86. // - If ==0, we only consume the elements currently available in the chan.
  87. // - if <0, we consume until the chan is closed.
  88. // - If >0, we consume until this timeout.
  89. ChanRecvTimeout time.Duration
  90. // StructToArray specifies to encode a struct as an array, and not as a map
  91. StructToArray bool
  92. // Canonical representation means that encoding a value will always result in the same
  93. // sequence of bytes.
  94. //
  95. // This only affects maps, as the iteration order for maps is random.
  96. //
  97. // The implementation MAY use the natural sort order for the map keys if possible:
  98. //
  99. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  100. // then the map keys are first sorted in natural order and then written
  101. // with corresponding map values to the strema.
  102. // - If there is no natural sort order, then the map keys will first be
  103. // encoded into []byte, and then sorted,
  104. // before writing the sorted keys and the corresponding map values to the stream.
  105. //
  106. Canonical bool
  107. // CheckCircularRef controls whether we check for circular references
  108. // and error fast during an encode.
  109. //
  110. // If enabled, an error is received if a pointer to a struct
  111. // references itself either directly or through one of its fields (iteratively).
  112. //
  113. // This is opt-in, as there may be a performance hit to checking circular references.
  114. CheckCircularRef bool
  115. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  116. // when checking if a value is empty.
  117. //
  118. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  119. RecursiveEmptyCheck bool
  120. // Raw controls whether we encode Raw values.
  121. // This is a "dangerous" option and must be explicitly set.
  122. // If set, we blindly encode Raw values as-is, without checking
  123. // if they are a correct representation of a value in that format.
  124. // If unset, we error out.
  125. Raw bool
  126. // StringToRaw controls how strings are encoded.
  127. //
  128. // As a go string is just an (immutable) sequence of bytes,
  129. // it can be encoded either as raw bytes or as a UTF string.
  130. //
  131. // By default, strings are encoded as UTF-8.
  132. // but can be treated as []byte during an encode.
  133. //
  134. // Note that things which we know (by definition) to be UTF-8
  135. // are ALWAYS encoded as UTF-8 strings.
  136. // These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
  137. StringToRaw bool
  138. // // AsSymbols defines what should be encoded as symbols.
  139. // //
  140. // // Encoding as symbols can reduce the encoded size significantly.
  141. // //
  142. // // However, during decoding, each string to be encoded as a symbol must
  143. // // be checked to see if it has been seen before. Consequently, encoding time
  144. // // will increase if using symbols, because string comparisons has a clear cost.
  145. // //
  146. // // Sample values:
  147. // // AsSymbolNone
  148. // // AsSymbolAll
  149. // // AsSymbolMapStringKeys
  150. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  151. // AsSymbols AsSymbolFlag
  152. }
  153. // ---------------------------------------------
  154. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  155. e.e.EncodeRawExt(rv2i(rv).(*RawExt))
  156. }
  157. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  158. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn)
  159. }
  160. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  161. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  162. }
  163. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  164. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  165. e.marshalRaw(bs, fnerr)
  166. }
  167. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  168. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  169. e.marshalUtf8(bs, fnerr)
  170. }
  171. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  172. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  173. e.marshalAsis(bs, fnerr)
  174. }
  175. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  176. e.rawBytes(rv2i(rv).(Raw))
  177. }
  178. func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
  179. e.e.EncodeBool(rvGetBool(rv))
  180. }
  181. func (e *Encoder) kTime(f *codecFnInfo, rv reflect.Value) {
  182. e.e.EncodeTime(rvGetTime(rv))
  183. }
  184. func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
  185. if e.h.StringToRaw {
  186. e.e.EncodeStringBytesRaw(bytesView(rvGetString(rv)))
  187. } else {
  188. e.e.EncodeStringEnc(cUTF8, rvGetString(rv))
  189. }
  190. }
  191. // func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
  192. // if e.h.StringToRaw {
  193. // e.kStringToRaw(f, rv)
  194. // } else {
  195. // e.kStringEnc(f, rv)
  196. // }
  197. // }
  198. // func (e *Encoder) kStringToRaw(f *codecFnInfo, rv reflect.Value) {
  199. // e.e.EncodeStringBytesRaw(bytesView(rvGetString(rv)))
  200. // }
  201. // func (e *Encoder) kStringEnc(f *codecFnInfo, rv reflect.Value) {
  202. // e.e.EncodeStringEnc(cUTF8, rvGetString(rv))
  203. // }
  204. func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
  205. e.e.EncodeFloat64(rvGetFloat64(rv))
  206. }
  207. func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
  208. e.e.EncodeFloat32(rvGetFloat32(rv))
  209. }
  210. func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
  211. e.e.EncodeInt(int64(rvGetInt(rv)))
  212. }
  213. func (e *Encoder) kInt8(f *codecFnInfo, rv reflect.Value) {
  214. e.e.EncodeInt(int64(rvGetInt8(rv)))
  215. }
  216. func (e *Encoder) kInt16(f *codecFnInfo, rv reflect.Value) {
  217. e.e.EncodeInt(int64(rvGetInt16(rv)))
  218. }
  219. func (e *Encoder) kInt32(f *codecFnInfo, rv reflect.Value) {
  220. e.e.EncodeInt(int64(rvGetInt32(rv)))
  221. }
  222. func (e *Encoder) kInt64(f *codecFnInfo, rv reflect.Value) {
  223. e.e.EncodeInt(int64(rvGetInt64(rv)))
  224. }
  225. func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
  226. e.e.EncodeUint(uint64(rvGetUint(rv)))
  227. }
  228. func (e *Encoder) kUint8(f *codecFnInfo, rv reflect.Value) {
  229. e.e.EncodeUint(uint64(rvGetUint8(rv)))
  230. }
  231. func (e *Encoder) kUint16(f *codecFnInfo, rv reflect.Value) {
  232. e.e.EncodeUint(uint64(rvGetUint16(rv)))
  233. }
  234. func (e *Encoder) kUint32(f *codecFnInfo, rv reflect.Value) {
  235. e.e.EncodeUint(uint64(rvGetUint32(rv)))
  236. }
  237. func (e *Encoder) kUint64(f *codecFnInfo, rv reflect.Value) {
  238. e.e.EncodeUint(uint64(rvGetUint64(rv)))
  239. }
  240. func (e *Encoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
  241. e.e.EncodeUint(uint64(rvGetUintptr(rv)))
  242. }
  243. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  244. e.e.EncodeNil()
  245. }
  246. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  247. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  248. }
  249. func chanToSlice(rv reflect.Value, rtelem reflect.Type, timeout time.Duration) (rvcs reflect.Value) {
  250. // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  251. rvcs = reflect.Zero(reflect.SliceOf(rtelem))
  252. if timeout < 0 { // consume until close
  253. for {
  254. recv, recvOk := rv.Recv()
  255. if !recvOk {
  256. break
  257. }
  258. rvcs = reflect.Append(rvcs, recv)
  259. }
  260. } else {
  261. cases := make([]reflect.SelectCase, 2)
  262. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  263. if timeout == 0 {
  264. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  265. } else {
  266. tt := time.NewTimer(timeout)
  267. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv4i(tt.C)}
  268. }
  269. for {
  270. chosen, recv, recvOk := reflect.Select(cases)
  271. if chosen == 1 || !recvOk {
  272. break
  273. }
  274. rvcs = reflect.Append(rvcs, recv)
  275. }
  276. }
  277. return
  278. }
  279. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  280. // array may be non-addressable, so we have to manage with care
  281. // (don't call rv.Bytes, rv.Slice, etc).
  282. // E.g. type struct S{B [2]byte};
  283. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  284. mbs := f.ti.mbs
  285. if f.seq != seqTypeArray {
  286. if rvIsNil(rv) {
  287. e.e.EncodeNil()
  288. return
  289. }
  290. // If in this method, then there was no extension function defined.
  291. // So it's okay to treat as []byte.
  292. if !mbs && f.ti.rtid == uint8SliceTypId {
  293. e.e.EncodeStringBytesRaw(rvGetBytes(rv))
  294. return
  295. }
  296. }
  297. if f.seq == seqTypeChan && f.ti.chandir&uint8(reflect.RecvDir) == 0 {
  298. e.errorf("send-only channel cannot be encoded")
  299. }
  300. rtelem := f.ti.elem
  301. var l int
  302. // if a slice, array or chan of bytes, treat specially
  303. if !mbs && uint8TypId == rt2id(rtelem) { // NOT rtelem.Kind() == reflect.Uint8
  304. switch f.seq {
  305. case seqTypeSlice:
  306. e.e.EncodeStringBytesRaw(rvGetBytes(rv))
  307. case seqTypeArray:
  308. e.e.EncodeStringBytesRaw(rvGetArrayBytesRO(rv, e.b[:]))
  309. case seqTypeChan:
  310. e.kSliceBytesChan(rv)
  311. }
  312. return
  313. }
  314. // if chan, consume chan into a slice, and work off that slice.
  315. if f.seq == seqTypeChan {
  316. rv = chanToSlice(rv, rtelem, e.h.ChanRecvTimeout)
  317. }
  318. l = rv.Len() // rv may be slice or array
  319. if mbs {
  320. if l%2 == 1 {
  321. e.errorf("mapBySlice requires even slice length, but got %v", l)
  322. return
  323. }
  324. e.mapStart(l / 2)
  325. } else {
  326. e.arrayStart(l)
  327. }
  328. if l > 0 {
  329. var fn *codecFn
  330. for rtelem.Kind() == reflect.Ptr {
  331. rtelem = rtelem.Elem()
  332. }
  333. // if kind is reflect.Interface, do not pre-determine the
  334. // encoding type, because preEncodeValue may break it down to
  335. // a concrete type and kInterface will bomb.
  336. if rtelem.Kind() != reflect.Interface {
  337. fn = e.h.fn(rtelem)
  338. }
  339. for j := 0; j < l; j++ {
  340. if mbs {
  341. if j%2 == 0 {
  342. e.mapElemKey()
  343. } else {
  344. e.mapElemValue()
  345. }
  346. } else {
  347. e.arrayElem()
  348. }
  349. e.encodeValue(rv.Index(j), fn)
  350. }
  351. }
  352. if mbs {
  353. e.mapEnd()
  354. } else {
  355. e.arrayEnd()
  356. }
  357. }
  358. func (e *Encoder) kSliceBytesChan(rv reflect.Value) {
  359. // do not use range, so that the number of elements encoded
  360. // does not change, and encoding does not hang waiting on someone to close chan.
  361. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  362. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  363. // if rvIsNil(rv) {
  364. // e.e.EncodeNil()
  365. // return
  366. // }
  367. bs := e.b[:0]
  368. irv := rv2i(rv)
  369. ch, ok := irv.(<-chan byte)
  370. if !ok {
  371. ch = irv.(chan byte)
  372. }
  373. L1:
  374. switch timeout := e.h.ChanRecvTimeout; {
  375. case timeout == 0: // only consume available
  376. for {
  377. select {
  378. case b := <-ch:
  379. bs = append(bs, b)
  380. default:
  381. break L1
  382. }
  383. }
  384. case timeout > 0: // consume until timeout
  385. tt := time.NewTimer(timeout)
  386. for {
  387. select {
  388. case b := <-ch:
  389. bs = append(bs, b)
  390. case <-tt.C:
  391. // close(tt.C)
  392. break L1
  393. }
  394. }
  395. default: // consume until close
  396. for b := range ch {
  397. bs = append(bs, b)
  398. }
  399. }
  400. e.e.EncodeStringBytesRaw(bs)
  401. }
  402. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  403. sfn := structFieldNode{v: rv, update: false}
  404. if f.ti.toArray || e.h.StructToArray { // toArray
  405. e.arrayStart(len(f.ti.sfiSrc))
  406. for _, si := range f.ti.sfiSrc {
  407. e.arrayElem()
  408. e.encodeValue(sfn.field(si), nil)
  409. }
  410. e.arrayEnd()
  411. } else {
  412. e.mapStart(len(f.ti.sfiSort))
  413. for _, si := range f.ti.sfiSort {
  414. e.mapElemKey()
  415. e.kStructFieldKey(f.ti.keyType, si.encNameAsciiAlphaNum, si.encName)
  416. e.mapElemValue()
  417. e.encodeValue(sfn.field(si), nil)
  418. }
  419. e.mapEnd()
  420. }
  421. }
  422. func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
  423. encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
  424. }
  425. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  426. var newlen int
  427. toMap := !(f.ti.toArray || e.h.StructToArray)
  428. var mf map[string]interface{}
  429. if f.ti.isFlag(tiflagMissingFielder) {
  430. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  431. toMap = true
  432. newlen += len(mf)
  433. } else if f.ti.isFlag(tiflagMissingFielderPtr) {
  434. if rv.CanAddr() {
  435. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  436. } else {
  437. // make a new addressable value of same one, and use it
  438. rv2 := reflect.New(rv.Type())
  439. rvSetDirect(rv2.Elem(), rv)
  440. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  441. }
  442. toMap = true
  443. newlen += len(mf)
  444. }
  445. newlen += len(f.ti.sfiSrc)
  446. // Use sync.Pool to reduce allocating slices unnecessarily.
  447. // The cost of sync.Pool is less than the cost of new allocation.
  448. //
  449. // Each element of the array pools one of encStructPool(8|16|32|64).
  450. // It allows the re-use of slices up to 64 in length.
  451. // A performance cost of encoding structs was collecting
  452. // which values were empty and should be omitted.
  453. // We needed slices of reflect.Value and string to collect them.
  454. // This shared pool reduces the amount of unnecessary creation we do.
  455. // The cost is that of locking sometimes, but sync.Pool is efficient
  456. // enough to reduce thread contention.
  457. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  458. // var spool sfiRvPooler
  459. var fkvs = e.slist.get(newlen)
  460. recur := e.h.RecursiveEmptyCheck
  461. sfn := structFieldNode{v: rv, update: false}
  462. var kv sfiRv
  463. var j int
  464. if toMap {
  465. newlen = 0
  466. for _, si := range f.ti.sfiSort { // use sorted array
  467. // kv.r = si.field(rv, false)
  468. kv.r = sfn.field(si)
  469. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  470. continue
  471. }
  472. kv.v = si // si.encName
  473. fkvs[newlen] = kv
  474. newlen++
  475. }
  476. var mflen int
  477. for k, v := range mf {
  478. if k == "" {
  479. delete(mf, k)
  480. continue
  481. }
  482. if f.ti.infoFieldOmitempty && isEmptyValue(rv4i(v), e.h.TypeInfos, recur, recur) {
  483. delete(mf, k)
  484. continue
  485. }
  486. mflen++
  487. }
  488. // encode it all
  489. e.mapStart(newlen + mflen)
  490. for j = 0; j < newlen; j++ {
  491. kv = fkvs[j]
  492. e.mapElemKey()
  493. e.kStructFieldKey(f.ti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  494. e.mapElemValue()
  495. e.encodeValue(kv.r, nil)
  496. }
  497. // now, add the others
  498. for k, v := range mf {
  499. e.mapElemKey()
  500. e.kStructFieldKey(f.ti.keyType, false, k)
  501. e.mapElemValue()
  502. e.encode(v)
  503. }
  504. e.mapEnd()
  505. } else {
  506. newlen = len(f.ti.sfiSrc)
  507. // kv.v = nil
  508. for i, si := range f.ti.sfiSrc { // use unsorted array (to match sequence in struct)
  509. // kv.r = si.field(rv, false)
  510. kv.r = sfn.field(si)
  511. // use the zero value.
  512. // if a reference or struct, set to nil (so you do not output too much)
  513. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  514. switch kv.r.Kind() {
  515. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  516. kv.r = reflect.Value{} //encode as nil
  517. }
  518. }
  519. fkvs[i] = kv
  520. }
  521. // encode it all
  522. e.arrayStart(newlen)
  523. for j = 0; j < newlen; j++ {
  524. e.arrayElem()
  525. e.encodeValue(fkvs[j].r, nil)
  526. }
  527. e.arrayEnd()
  528. }
  529. // do not use defer. Instead, use explicit pool return at end of function.
  530. // defer has a cost we are trying to avoid.
  531. // If there is a panic and these slices are not returned, it is ok.
  532. // spool.end()
  533. e.slist.put(fkvs)
  534. }
  535. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  536. if rvIsNil(rv) {
  537. e.e.EncodeNil()
  538. return
  539. }
  540. l := rv.Len()
  541. e.mapStart(l)
  542. if l == 0 {
  543. e.mapEnd()
  544. return
  545. }
  546. // var asSymbols bool
  547. // determine the underlying key and val encFn's for the map.
  548. // This eliminates some work which is done for each loop iteration i.e.
  549. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  550. //
  551. // However, if kind is reflect.Interface, do not pre-determine the
  552. // encoding type, because preEncodeValue may break it down to
  553. // a concrete type and kInterface will bomb.
  554. var keyFn, valFn *codecFn
  555. // rtkeyid := rt2id(f.ti.key)
  556. ktypeKind := f.ti.key.Kind()
  557. vtypeKind := f.ti.elem.Kind()
  558. rtval := f.ti.elem
  559. rtvalkind := vtypeKind
  560. for rtvalkind == reflect.Ptr {
  561. rtval = rtval.Elem()
  562. rtvalkind = rtval.Kind()
  563. }
  564. if rtvalkind != reflect.Interface {
  565. valFn = e.h.fn(rtval)
  566. }
  567. var rvv = mapAddressableRV(f.ti.elem, vtypeKind)
  568. if e.h.Canonical {
  569. e.kMapCanonical(f.ti.key, f.ti.elem, rv, rvv, valFn)
  570. e.mapEnd()
  571. return
  572. }
  573. rtkey := f.ti.key
  574. var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
  575. if !keyTypeIsString {
  576. for rtkey.Kind() == reflect.Ptr {
  577. rtkey = rtkey.Elem()
  578. }
  579. if rtkey.Kind() != reflect.Interface {
  580. // rtkeyid = rt2id(rtkey)
  581. keyFn = e.h.fn(rtkey)
  582. }
  583. }
  584. var rvk = mapAddressableRV(f.ti.key, ktypeKind)
  585. it := mapRange(rv, rvk, rvv, true)
  586. for it.Next() {
  587. e.mapElemKey()
  588. if keyTypeIsString {
  589. if e.h.StringToRaw {
  590. e.e.EncodeStringBytesRaw(bytesView(it.Key().String()))
  591. } else {
  592. e.e.EncodeStringEnc(cUTF8, it.Key().String())
  593. }
  594. } else {
  595. e.encodeValue(it.Key(), keyFn)
  596. }
  597. e.mapElemValue()
  598. iv := it.Value()
  599. e.encodeValue(iv, valFn)
  600. }
  601. it.Done()
  602. e.mapEnd()
  603. }
  604. func (e *Encoder) kMapCanonical(rtkey, rtval reflect.Type, rv, rvv reflect.Value, valFn *codecFn) {
  605. // we previously did out-of-band if an extension was registered.
  606. // This is not necessary, as the natural kind is sufficient for ordering.
  607. mks := rv.MapKeys()
  608. switch rtkey.Kind() {
  609. case reflect.Bool:
  610. mksv := make([]boolRv, len(mks))
  611. for i, k := range mks {
  612. v := &mksv[i]
  613. v.r = k
  614. v.v = k.Bool()
  615. }
  616. sort.Sort(boolRvSlice(mksv))
  617. for i := range mksv {
  618. e.mapElemKey()
  619. e.e.EncodeBool(mksv[i].v)
  620. e.mapElemValue()
  621. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  622. }
  623. case reflect.String:
  624. mksv := make([]stringRv, len(mks))
  625. for i, k := range mks {
  626. v := &mksv[i]
  627. v.r = k
  628. v.v = k.String()
  629. }
  630. sort.Sort(stringRvSlice(mksv))
  631. for i := range mksv {
  632. e.mapElemKey()
  633. if e.h.StringToRaw {
  634. e.e.EncodeStringBytesRaw(bytesView(mksv[i].v))
  635. } else {
  636. e.e.EncodeStringEnc(cUTF8, mksv[i].v)
  637. }
  638. e.mapElemValue()
  639. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  640. }
  641. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  642. mksv := make([]uint64Rv, len(mks))
  643. for i, k := range mks {
  644. v := &mksv[i]
  645. v.r = k
  646. v.v = k.Uint()
  647. }
  648. sort.Sort(uint64RvSlice(mksv))
  649. for i := range mksv {
  650. e.mapElemKey()
  651. e.e.EncodeUint(mksv[i].v)
  652. e.mapElemValue()
  653. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  654. }
  655. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  656. mksv := make([]int64Rv, len(mks))
  657. for i, k := range mks {
  658. v := &mksv[i]
  659. v.r = k
  660. v.v = k.Int()
  661. }
  662. sort.Sort(int64RvSlice(mksv))
  663. for i := range mksv {
  664. e.mapElemKey()
  665. e.e.EncodeInt(mksv[i].v)
  666. e.mapElemValue()
  667. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  668. }
  669. case reflect.Float32:
  670. mksv := make([]float64Rv, len(mks))
  671. for i, k := range mks {
  672. v := &mksv[i]
  673. v.r = k
  674. v.v = k.Float()
  675. }
  676. sort.Sort(float64RvSlice(mksv))
  677. for i := range mksv {
  678. e.mapElemKey()
  679. e.e.EncodeFloat32(float32(mksv[i].v))
  680. e.mapElemValue()
  681. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  682. }
  683. case reflect.Float64:
  684. mksv := make([]float64Rv, len(mks))
  685. for i, k := range mks {
  686. v := &mksv[i]
  687. v.r = k
  688. v.v = k.Float()
  689. }
  690. sort.Sort(float64RvSlice(mksv))
  691. for i := range mksv {
  692. e.mapElemKey()
  693. e.e.EncodeFloat64(mksv[i].v)
  694. e.mapElemValue()
  695. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  696. }
  697. case reflect.Struct:
  698. if rtkey == timeTyp {
  699. mksv := make([]timeRv, len(mks))
  700. for i, k := range mks {
  701. v := &mksv[i]
  702. v.r = k
  703. v.v = rv2i(k).(time.Time)
  704. }
  705. sort.Sort(timeRvSlice(mksv))
  706. for i := range mksv {
  707. e.mapElemKey()
  708. e.e.EncodeTime(mksv[i].v)
  709. e.mapElemValue()
  710. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
  711. }
  712. break
  713. }
  714. fallthrough
  715. default:
  716. // out-of-band
  717. // first encode each key to a []byte first, then sort them, then record
  718. // var bufp bytesBufPooler
  719. // var mksv []byte = bufp.get(len(mks) * 16)[:0]
  720. // var mksv []byte = make([]byte, 0, len(mks)*16)
  721. var mksv []byte = e.blist.get(len(mks) * 16)[:0]
  722. e2 := NewEncoderBytes(&mksv, e.hh)
  723. mksbv := make([]bytesRv, len(mks))
  724. for i, k := range mks {
  725. v := &mksbv[i]
  726. l := len(mksv)
  727. e2.MustEncode(k)
  728. v.r = k
  729. v.v = mksv[l:]
  730. }
  731. sort.Sort(bytesRvSlice(mksbv))
  732. for j := range mksbv {
  733. e.mapElemKey()
  734. e.asis(mksbv[j].v)
  735. e.mapElemValue()
  736. e.encodeValue(mapGet(rv, mksbv[j].r, rvv), valFn)
  737. }
  738. // bufp.end()
  739. e.blist.put(mksv)
  740. }
  741. }
  742. // Encoder writes an object to an output stream in a supported format.
  743. //
  744. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  745. // concurrently in multiple goroutines.
  746. //
  747. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  748. // so its state can be reused to decode new input streams repeatedly.
  749. // This is the idiomatic way to use.
  750. type Encoder struct {
  751. panicHdl
  752. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  753. e encDriver
  754. // NOTE: Encoder shouldn't call it's write methods,
  755. // as the handler MAY need to do some coordination.
  756. // w *encWriterSwitch
  757. // bw *bufio.Writer
  758. as encDriverAsis
  759. jenc *jsonEncDriver
  760. h *BasicHandle
  761. hh Handle
  762. // ---- cpu cache line boundary
  763. encWriterSwitch
  764. err error
  765. // ---- cpu cache line boundary
  766. // ---- writable fields during execution --- *try* to keep in sep cache line
  767. ci set // holds set of addresses found during an encoding (if CheckCircularRef=true)
  768. // cidef [1]interface{} // default ci
  769. b [(5 * 8)]byte // for encoding chan byte, (non-addressable) [N]byte, etc
  770. slist sfiRvFreelist
  771. blist bytesFreelist
  772. // ---- cpu cache line boundary?
  773. // b [scratchByteArrayLen]byte
  774. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  775. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  776. }
  777. // NewEncoder returns an Encoder for encoding into an io.Writer.
  778. //
  779. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  780. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  781. func NewEncoder(w io.Writer, h Handle) *Encoder {
  782. e := newEncoder(h)
  783. e.Reset(w)
  784. return e
  785. }
  786. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  787. // into a byte slice, using zero-copying to temporary slices.
  788. //
  789. // It will potentially replace the output byte slice pointed to.
  790. // After encoding, the out parameter contains the encoded contents.
  791. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  792. e := newEncoder(h)
  793. e.ResetBytes(out)
  794. return e
  795. }
  796. func newEncoder(h Handle) *Encoder {
  797. e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
  798. e.bytes = true
  799. if useFinalizers {
  800. runtime.SetFinalizer(e, (*Encoder).finalize)
  801. }
  802. // e.w = &e.encWriterSwitch
  803. e.hh = h
  804. e.esep = h.hasElemSeparators()
  805. return e
  806. }
  807. func (e *Encoder) w() *encWriterSwitch {
  808. return &e.encWriterSwitch
  809. }
  810. func (e *Encoder) resetCommon() {
  811. // e.w = &e.encWriterSwitch
  812. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  813. e.e = e.hh.newEncDriver(e)
  814. e.as, e.isas = e.e.(encDriverAsis)
  815. // e.cr, _ = e.e.(containerStateRecv)
  816. }
  817. if e.ci == nil {
  818. // e.ci = (set)(e.cidef[:0])
  819. } else {
  820. e.ci = e.ci[:0]
  821. }
  822. e.be = e.hh.isBinary()
  823. e.jenc = nil
  824. _, e.js = e.hh.(*JsonHandle)
  825. if e.js {
  826. e.jenc = e.e.(interface{ getJsonEncDriver() *jsonEncDriver }).getJsonEncDriver()
  827. }
  828. e.e.reset()
  829. e.c = 0
  830. e.err = nil
  831. }
  832. // Reset resets the Encoder with a new output stream.
  833. //
  834. // This accommodates using the state of the Encoder,
  835. // where it has "cached" information about sub-engines.
  836. func (e *Encoder) Reset(w io.Writer) {
  837. if w == nil {
  838. return
  839. }
  840. // var ok bool
  841. e.bytes = false
  842. if e.wf == nil {
  843. e.wf = new(bufioEncWriter)
  844. }
  845. // e.typ = entryTypeUnset
  846. // if e.h.WriterBufferSize > 0 {
  847. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  848. // // e.wi.bw = bw
  849. // // e.wi.sw = bw
  850. // // e.wi.fw = bw
  851. // // e.wi.ww = bw
  852. // if e.wf == nil {
  853. // e.wf = new(bufioEncWriter)
  854. // }
  855. // e.wf.reset(w, e.h.WriterBufferSize)
  856. // e.typ = entryTypeBufio
  857. // } else {
  858. // if e.wi == nil {
  859. // e.wi = new(ioEncWriter)
  860. // }
  861. // e.wi.reset(w)
  862. // e.typ = entryTypeIo
  863. // }
  864. e.wf.reset(w, e.h.WriterBufferSize, &e.blist)
  865. // e.typ = entryTypeBufio
  866. // e.w = e.wi
  867. e.resetCommon()
  868. }
  869. // ResetBytes resets the Encoder with a new destination output []byte.
  870. func (e *Encoder) ResetBytes(out *[]byte) {
  871. if out == nil {
  872. return
  873. }
  874. var in []byte = *out
  875. if in == nil {
  876. in = make([]byte, defEncByteBufSize)
  877. }
  878. e.bytes = true
  879. // e.typ = entryTypeBytes
  880. e.wb.reset(in, out)
  881. // e.w = &e.wb
  882. e.resetCommon()
  883. }
  884. // Encode writes an object into a stream.
  885. //
  886. // Encoding can be configured via the struct tag for the fields.
  887. // The key (in the struct tags) that we look at is configurable.
  888. //
  889. // By default, we look up the "codec" key in the struct field's tags,
  890. // and fall bak to the "json" key if "codec" is absent.
  891. // That key in struct field's tag value is the key name,
  892. // followed by an optional comma and options.
  893. //
  894. // To set an option on all fields (e.g. omitempty on all fields), you
  895. // can create a field called _struct, and set flags on it. The options
  896. // which can be set on _struct are:
  897. // - omitempty: so all fields are omitted if empty
  898. // - toarray: so struct is encoded as an array
  899. // - int: so struct key names are encoded as signed integers (instead of strings)
  900. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  901. // - float: so struct key names are encoded as floats (instead of strings)
  902. // More details on these below.
  903. //
  904. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  905. // - the field's tag is "-", OR
  906. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  907. //
  908. // When encoding as a map, the first string in the tag (before the comma)
  909. // is the map key string to use when encoding.
  910. // ...
  911. // This key is typically encoded as a string.
  912. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  913. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  914. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  915. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  916. // This is done with the int,uint or float option on the _struct field (see above).
  917. //
  918. // However, struct values may encode as arrays. This happens when:
  919. // - StructToArray Encode option is set, OR
  920. // - the tag on the _struct field sets the "toarray" option
  921. // Note that omitempty is ignored when encoding struct values as arrays,
  922. // as an entry must be encoded for each field, to maintain its position.
  923. //
  924. // Values with types that implement MapBySlice are encoded as stream maps.
  925. //
  926. // The empty values (for omitempty option) are false, 0, any nil pointer
  927. // or interface value, and any array, slice, map, or string of length zero.
  928. //
  929. // Anonymous fields are encoded inline except:
  930. // - the struct tag specifies a replacement name (first value)
  931. // - the field is of an interface type
  932. //
  933. // Examples:
  934. //
  935. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  936. // type MyStruct struct {
  937. // _struct bool `codec:",omitempty"` //set omitempty for every field
  938. // Field1 string `codec:"-"` //skip this field
  939. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  940. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  941. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  942. // io.Reader //use key "Reader".
  943. // MyStruct `codec:"my1" //use key "my1".
  944. // MyStruct //inline it
  945. // ...
  946. // }
  947. //
  948. // type MyStruct struct {
  949. // _struct bool `codec:",toarray"` //encode struct as an array
  950. // }
  951. //
  952. // type MyStruct struct {
  953. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  954. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  955. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  956. // }
  957. //
  958. // The mode of encoding is based on the type of the value. When a value is seen:
  959. // - If a Selfer, call its CodecEncodeSelf method
  960. // - If an extension is registered for it, call that extension function
  961. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  962. // - Else encode it based on its reflect.Kind
  963. //
  964. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  965. // Some formats support symbols (e.g. binc) and will properly encode the string
  966. // only once in the stream, and use a tag to refer to it thereafter.
  967. func (e *Encoder) Encode(v interface{}) (err error) {
  968. // tried to use closure, as runtime optimizes defer with no params.
  969. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  970. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  971. // defer func() { e.deferred(&err) }() }
  972. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  973. if e.err != nil {
  974. return e.err
  975. }
  976. if recoverPanicToErr {
  977. defer func() {
  978. // if error occurred during encoding, return that error;
  979. // else if error occurred on end'ing (i.e. during flush), return that error.
  980. err = e.w().endErr()
  981. x := recover()
  982. if x == nil {
  983. if e.err != err {
  984. e.err = err
  985. }
  986. } else {
  987. panicValToErr(e, x, &e.err)
  988. if e.err != err {
  989. err = e.err
  990. }
  991. }
  992. }()
  993. }
  994. // defer e.deferred(&err)
  995. e.mustEncode(v)
  996. return
  997. }
  998. // MustEncode is like Encode, but panics if unable to Encode.
  999. // This provides insight to the code location that triggered the error.
  1000. func (e *Encoder) MustEncode(v interface{}) {
  1001. if e.err != nil {
  1002. panic(e.err)
  1003. }
  1004. e.mustEncode(v)
  1005. }
  1006. func (e *Encoder) mustEncode(v interface{}) {
  1007. // if e.wf == nil {
  1008. // e.encode(v)
  1009. // e.e.atEndOfEncode()
  1010. // e.w().end()
  1011. // return
  1012. // }
  1013. // if e.wf.buf == nil {
  1014. // e.wf.buf = e.wf.bytesBufPooler.get(e.wf.sz)
  1015. // e.wf.buf = e.wf.buf[:cap(e.wf.buf)]
  1016. // }
  1017. e.calls++
  1018. e.encode(v)
  1019. e.calls--
  1020. if e.calls == 0 {
  1021. e.e.atEndOfEncode()
  1022. e.w().end()
  1023. if !e.h.ExplicitRelease {
  1024. e.Release()
  1025. }
  1026. }
  1027. }
  1028. // func (e *Encoder) deferred(err1 *error) {
  1029. // e.w().end()
  1030. // if recoverPanicToErr {
  1031. // if x := recover(); x != nil {
  1032. // panicValToErr(e, x, err1)
  1033. // panicValToErr(e, x, &e.err)
  1034. // }
  1035. // }
  1036. // }
  1037. //go:noinline -- as it is run by finalizer
  1038. func (e *Encoder) finalize() {
  1039. e.Release()
  1040. }
  1041. // Release releases shared (pooled) resources.
  1042. //
  1043. // It is important to call Release() when done with an Encoder, so those resources
  1044. // are released instantly for use by subsequently created Encoders.
  1045. func (e *Encoder) Release() {
  1046. // if e.wf != nil {
  1047. // e.wf.release()
  1048. // }
  1049. }
  1050. func (e *Encoder) encode(iv interface{}) {
  1051. // a switch with only concrete types can be optimized.
  1052. // consequently, we deal with nil and interfaces outside the switch.
  1053. if iv == nil {
  1054. e.e.EncodeNil()
  1055. return
  1056. }
  1057. rv, ok := isNil(iv)
  1058. if ok {
  1059. e.e.EncodeNil()
  1060. return
  1061. }
  1062. var vself Selfer
  1063. switch v := iv.(type) {
  1064. // case nil:
  1065. // case Selfer:
  1066. case Raw:
  1067. e.rawBytes(v)
  1068. case reflect.Value:
  1069. e.encodeValue(v, nil)
  1070. case string:
  1071. if e.h.StringToRaw {
  1072. e.e.EncodeStringBytesRaw(bytesView(v))
  1073. } else {
  1074. e.e.EncodeStringEnc(cUTF8, v)
  1075. }
  1076. case bool:
  1077. e.e.EncodeBool(v)
  1078. case int:
  1079. e.e.EncodeInt(int64(v))
  1080. case int8:
  1081. e.e.EncodeInt(int64(v))
  1082. case int16:
  1083. e.e.EncodeInt(int64(v))
  1084. case int32:
  1085. e.e.EncodeInt(int64(v))
  1086. case int64:
  1087. e.e.EncodeInt(v)
  1088. case uint:
  1089. e.e.EncodeUint(uint64(v))
  1090. case uint8:
  1091. e.e.EncodeUint(uint64(v))
  1092. case uint16:
  1093. e.e.EncodeUint(uint64(v))
  1094. case uint32:
  1095. e.e.EncodeUint(uint64(v))
  1096. case uint64:
  1097. e.e.EncodeUint(v)
  1098. case uintptr:
  1099. e.e.EncodeUint(uint64(v))
  1100. case float32:
  1101. e.e.EncodeFloat32(v)
  1102. case float64:
  1103. e.e.EncodeFloat64(v)
  1104. case time.Time:
  1105. e.e.EncodeTime(v)
  1106. case []uint8:
  1107. e.e.EncodeStringBytesRaw(v)
  1108. case *Raw:
  1109. e.rawBytes(*v)
  1110. case *string:
  1111. if e.h.StringToRaw {
  1112. e.e.EncodeStringBytesRaw(bytesView(*v))
  1113. } else {
  1114. e.e.EncodeStringEnc(cUTF8, *v)
  1115. }
  1116. case *bool:
  1117. e.e.EncodeBool(*v)
  1118. case *int:
  1119. e.e.EncodeInt(int64(*v))
  1120. case *int8:
  1121. e.e.EncodeInt(int64(*v))
  1122. case *int16:
  1123. e.e.EncodeInt(int64(*v))
  1124. case *int32:
  1125. e.e.EncodeInt(int64(*v))
  1126. case *int64:
  1127. e.e.EncodeInt(*v)
  1128. case *uint:
  1129. e.e.EncodeUint(uint64(*v))
  1130. case *uint8:
  1131. e.e.EncodeUint(uint64(*v))
  1132. case *uint16:
  1133. e.e.EncodeUint(uint64(*v))
  1134. case *uint32:
  1135. e.e.EncodeUint(uint64(*v))
  1136. case *uint64:
  1137. e.e.EncodeUint(*v)
  1138. case *uintptr:
  1139. e.e.EncodeUint(uint64(*v))
  1140. case *float32:
  1141. e.e.EncodeFloat32(*v)
  1142. case *float64:
  1143. e.e.EncodeFloat64(*v)
  1144. case *time.Time:
  1145. e.e.EncodeTime(*v)
  1146. case *[]uint8:
  1147. if *v == nil {
  1148. e.e.EncodeNil()
  1149. } else {
  1150. e.e.EncodeStringBytesRaw(*v)
  1151. }
  1152. default:
  1153. if vself, ok = iv.(Selfer); ok {
  1154. vself.CodecEncodeSelf(e)
  1155. } else if !fastpathEncodeTypeSwitch(iv, e) {
  1156. if !rv.IsValid() {
  1157. rv = rv4i(iv)
  1158. }
  1159. e.encodeValue(rv, nil)
  1160. }
  1161. }
  1162. }
  1163. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
  1164. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1165. // We considered using a uintptr (a pointer) retrievable via rv.UnsafeAddr.
  1166. // However, it is possible for the same pointer to point to 2 different types e.g.
  1167. // type T struct { tHelper }
  1168. // Here, for var v T; &v and &v.tHelper are the same pointer.
  1169. // Consequently, we need a tuple of type and pointer, which interface{} natively provides.
  1170. var sptr interface{} // uintptr
  1171. var rvp reflect.Value
  1172. var rvpValid bool
  1173. TOP:
  1174. switch rv.Kind() {
  1175. case reflect.Ptr:
  1176. if rvIsNil(rv) {
  1177. e.e.EncodeNil()
  1178. return
  1179. }
  1180. rvpValid = true
  1181. rvp = rv
  1182. rv = rv.Elem()
  1183. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1184. sptr = rv2i(rvp) // rv.UnsafeAddr()
  1185. break TOP
  1186. }
  1187. goto TOP
  1188. case reflect.Interface:
  1189. if rvIsNil(rv) {
  1190. e.e.EncodeNil()
  1191. return
  1192. }
  1193. rv = rv.Elem()
  1194. goto TOP
  1195. case reflect.Slice, reflect.Map:
  1196. if rvIsNil(rv) {
  1197. e.e.EncodeNil()
  1198. return
  1199. }
  1200. case reflect.Invalid, reflect.Func:
  1201. e.e.EncodeNil()
  1202. return
  1203. }
  1204. if sptr != nil && (&e.ci).add(sptr) {
  1205. // e.errorf("circular reference found: # %d", sptr)
  1206. e.errorf("circular reference found: # %p, %T", sptr, sptr)
  1207. }
  1208. var rt reflect.Type
  1209. if fn == nil {
  1210. rt = rv.Type()
  1211. fn = e.h.fn(rt)
  1212. }
  1213. if fn.i.addrE {
  1214. if rvpValid {
  1215. fn.fe(e, &fn.i, rvp)
  1216. } else if rv.CanAddr() {
  1217. fn.fe(e, &fn.i, rv.Addr())
  1218. } else {
  1219. if rt == nil {
  1220. rt = rv.Type()
  1221. }
  1222. rv2 := reflect.New(rt)
  1223. rvSetDirect(rv2.Elem(), rv)
  1224. fn.fe(e, &fn.i, rv2)
  1225. }
  1226. } else {
  1227. fn.fe(e, &fn.i, rv)
  1228. }
  1229. if sptr != 0 {
  1230. (&e.ci).remove(sptr)
  1231. }
  1232. }
  1233. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1234. // if fnerr != nil {
  1235. // panic(fnerr)
  1236. // }
  1237. // if bs == nil {
  1238. // e.e.EncodeNil()
  1239. // } else if asis {
  1240. // e.asis(bs)
  1241. // } else {
  1242. // e.e.EncodeStringBytesRaw(bs)
  1243. // }
  1244. // }
  1245. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1246. if fnerr != nil {
  1247. panic(fnerr)
  1248. }
  1249. if bs == nil {
  1250. e.e.EncodeNil()
  1251. } else {
  1252. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1253. }
  1254. }
  1255. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1256. if fnerr != nil {
  1257. panic(fnerr)
  1258. }
  1259. if bs == nil {
  1260. e.e.EncodeNil()
  1261. } else {
  1262. e.asis(bs)
  1263. }
  1264. }
  1265. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1266. if fnerr != nil {
  1267. panic(fnerr)
  1268. }
  1269. if bs == nil {
  1270. e.e.EncodeNil()
  1271. } else {
  1272. e.e.EncodeStringBytesRaw(bs)
  1273. }
  1274. }
  1275. func (e *Encoder) asis(v []byte) {
  1276. if e.isas {
  1277. e.as.EncodeAsis(v)
  1278. } else {
  1279. e.w().writeb(v)
  1280. }
  1281. }
  1282. func (e *Encoder) rawBytes(vv Raw) {
  1283. v := []byte(vv)
  1284. if !e.h.Raw {
  1285. e.errorf("Raw values cannot be encoded: %v", v)
  1286. }
  1287. e.asis(v)
  1288. }
  1289. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1290. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1291. }
  1292. // ---- container tracker methods
  1293. // Note: We update the .c after calling the callback.
  1294. // This way, the callback can know what the last status was.
  1295. func (e *Encoder) mapStart(length int) {
  1296. e.e.WriteMapStart(length)
  1297. e.c = containerMapStart
  1298. }
  1299. func (e *Encoder) mapElemKey() {
  1300. if e.js {
  1301. e.jenc.WriteMapElemKey()
  1302. }
  1303. e.c = containerMapKey
  1304. }
  1305. func (e *Encoder) mapElemValue() {
  1306. if e.js {
  1307. e.jenc.WriteMapElemValue()
  1308. }
  1309. e.c = containerMapValue
  1310. }
  1311. // // Note: This is harder to inline, as there are 2 function calls inside.
  1312. // func (e *Encoder) mapElemKeyOrValue(j uint8) {
  1313. // if j == 0 {
  1314. // if e.js {
  1315. // e.jenc.WriteMapElemKey()
  1316. // }
  1317. // e.c = containerMapKey
  1318. // } else {
  1319. // if e.js {
  1320. // e.jenc.WriteMapElemValue()
  1321. // }
  1322. // e.c = containerMapValue
  1323. // }
  1324. // }
  1325. func (e *Encoder) mapEnd() {
  1326. e.e.WriteMapEnd()
  1327. e.c = containerMapEnd
  1328. e.c = 0
  1329. }
  1330. func (e *Encoder) arrayStart(length int) {
  1331. e.e.WriteArrayStart(length)
  1332. e.c = containerArrayStart
  1333. }
  1334. func (e *Encoder) arrayElem() {
  1335. if e.js {
  1336. e.jenc.WriteArrayElem()
  1337. }
  1338. e.c = containerArrayElem
  1339. }
  1340. func (e *Encoder) arrayEnd() {
  1341. e.e.WriteArrayEnd()
  1342. e.c = 0
  1343. e.c = containerArrayEnd
  1344. }
  1345. // ----------
  1346. func (e *Encoder) sideEncode(v interface{}, bs *[]byte) {
  1347. rv := baseRV(v)
  1348. e2 := NewEncoderBytes(bs, e.hh)
  1349. e2.encodeValue(rv, e.h.fnNoExt(rv.Type()))
  1350. e2.e.atEndOfEncode()
  1351. e2.w().end()
  1352. }
  1353. func encStructFieldKey(encName string, ee encDriver, w *encWriterSwitch,
  1354. keyType valueType, encNameAsciiAlphaNum bool, js bool) {
  1355. var m must
  1356. // use if-else-if, not switch (which compiles to binary-search)
  1357. // since keyType is typically valueTypeString, branch prediction is pretty good.
  1358. if keyType == valueTypeString {
  1359. if js && encNameAsciiAlphaNum { // keyType == valueTypeString
  1360. w.writeqstr(encName)
  1361. // ----
  1362. // w.writen1('"')
  1363. // w.writestr(encName)
  1364. // w.writen1('"')
  1365. // ----
  1366. // w.writestr(`"` + encName + `"`)
  1367. // ----
  1368. // // do concat myself, so it is faster than the generic string concat
  1369. // b := make([]byte, len(encName)+2)
  1370. // copy(b[1:], encName)
  1371. // b[0] = '"'
  1372. // b[len(b)-1] = '"'
  1373. // w.writeb(b)
  1374. } else { // keyType == valueTypeString
  1375. ee.EncodeStringEnc(cUTF8, encName)
  1376. }
  1377. } else if keyType == valueTypeInt {
  1378. ee.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  1379. } else if keyType == valueTypeUint {
  1380. ee.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  1381. } else if keyType == valueTypeFloat {
  1382. ee.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  1383. }
  1384. }
  1385. // type encExtPreambler interface {
  1386. // encodeExtPreamble(tag uint8, length int)
  1387. // }
  1388. // func encBytesExt(rv interface{}, xtag uint64, ext Ext, h Handle, e encDriver) {
  1389. // var bs []byte
  1390. // var bufp bytesBufPooler
  1391. // if ext == SelfExt {
  1392. // bs = bufp.get(1024)[:0]
  1393. // rv2 := rv4i(v)
  1394. // NewEncoderBytes(&bs, h).encodeValue(rv2, h.fnNoExt(rv2.Type()))
  1395. // } else {
  1396. // bs = ext.WriteExt(v)
  1397. // }
  1398. // if bs == nil {
  1399. // e.EncodeNil()
  1400. // return
  1401. // }
  1402. // if e.h.WriteExt {
  1403. // e.encodeExtPreamble(uint8(xtag), len(bs))
  1404. // e.w.writeb(bs)
  1405. // } else {
  1406. // e.EncodeStringBytesRaw(bs)
  1407. // }
  1408. // if ext == SelfExt {
  1409. // bufp.end()
  1410. // }
  1411. // }
  1412. // func encStringAsRawBytesMaybe(ee encDriver, s string, stringToRaw bool) {
  1413. // if stringToRaw {
  1414. // ee.EncodeStringBytesRaw(bytesView(s))
  1415. // } else {
  1416. // ee.EncodeStringEnc(cUTF8, s)
  1417. // }
  1418. // }