encode.go 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "bytes"
  6. "encoding"
  7. "errors"
  8. "fmt"
  9. "io"
  10. "reflect"
  11. "sort"
  12. "sync"
  13. )
  14. const (
  15. defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  16. )
  17. // AsSymbolFlag defines what should be encoded as symbols.
  18. type AsSymbolFlag uint8
  19. const (
  20. // AsSymbolDefault is default.
  21. // Currently, this means only encode struct field names as symbols.
  22. // The default is subject to change.
  23. AsSymbolDefault AsSymbolFlag = iota
  24. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  25. AsSymbolAll = 0xfe
  26. // AsSymbolNone means do not encode anything as a symbol.
  27. AsSymbolNone = 1 << iota
  28. // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
  29. AsSymbolMapStringKeysFlag
  30. // AsSymbolStructFieldName means encode struct field names as symbols.
  31. AsSymbolStructFieldNameFlag
  32. )
  33. // encWriter abstracts writing to a byte array or to an io.Writer.
  34. type encWriter interface {
  35. writeb([]byte)
  36. writestr(string)
  37. writen1(byte)
  38. writen2(byte, byte)
  39. atEndOfEncode()
  40. }
  41. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  42. type encDriver interface {
  43. IsBuiltinType(rt uintptr) bool
  44. EncodeBuiltin(rt uintptr, v interface{})
  45. EncodeNil()
  46. EncodeInt(i int64)
  47. EncodeUint(i uint64)
  48. EncodeBool(b bool)
  49. EncodeFloat32(f float32)
  50. EncodeFloat64(f float64)
  51. // encodeExtPreamble(xtag byte, length int)
  52. EncodeRawExt(re *RawExt, e *Encoder)
  53. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  54. EncodeArrayStart(length int)
  55. EncodeMapStart(length int)
  56. EncodeEnd()
  57. EncodeString(c charEncoding, v string)
  58. EncodeSymbol(v string)
  59. EncodeStringBytes(c charEncoding, v []byte)
  60. //TODO
  61. //encBignum(f *big.Int)
  62. //encStringRunes(c charEncoding, v []rune)
  63. }
  64. type encDriverAsis interface {
  65. EncodeAsis(v []byte)
  66. }
  67. type encNoSeparator struct{}
  68. func (_ encNoSeparator) EncodeEnd() {}
  69. type encStructFieldBytesV struct {
  70. b []byte
  71. v reflect.Value
  72. }
  73. type encStructFieldBytesVslice []encStructFieldBytesV
  74. func (p encStructFieldBytesVslice) Len() int { return len(p) }
  75. func (p encStructFieldBytesVslice) Less(i, j int) bool { return bytes.Compare(p[i].b, p[j].b) == -1 }
  76. func (p encStructFieldBytesVslice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
  77. type ioEncWriterWriter interface {
  78. WriteByte(c byte) error
  79. WriteString(s string) (n int, err error)
  80. Write(p []byte) (n int, err error)
  81. }
  82. type ioEncStringWriter interface {
  83. WriteString(s string) (n int, err error)
  84. }
  85. type EncodeOptions struct {
  86. // Encode a struct as an array, and not as a map
  87. StructToArray bool
  88. // Canonical representation means that encoding a value will always result in the same
  89. // sequence of bytes.
  90. //
  91. // This only affects maps, as the iteration order for maps is random.
  92. // In this case, the map keys will first be encoded into []byte, and then sorted,
  93. // before writing the sorted keys and the corresponding map values to the stream.
  94. Canonical bool
  95. // AsSymbols defines what should be encoded as symbols.
  96. //
  97. // Encoding as symbols can reduce the encoded size significantly.
  98. //
  99. // However, during decoding, each string to be encoded as a symbol must
  100. // be checked to see if it has been seen before. Consequently, encoding time
  101. // will increase if using symbols, because string comparisons has a clear cost.
  102. //
  103. // Sample values:
  104. // AsSymbolNone
  105. // AsSymbolAll
  106. // AsSymbolMapStringKeys
  107. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  108. AsSymbols AsSymbolFlag
  109. }
  110. // ---------------------------------------------
  111. type simpleIoEncWriterWriter struct {
  112. w io.Writer
  113. bw io.ByteWriter
  114. sw ioEncStringWriter
  115. }
  116. func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
  117. if o.bw != nil {
  118. return o.bw.WriteByte(c)
  119. }
  120. _, err = o.w.Write([]byte{c})
  121. return
  122. }
  123. func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
  124. if o.sw != nil {
  125. return o.sw.WriteString(s)
  126. }
  127. // return o.w.Write([]byte(s))
  128. return o.w.Write(bytesView(s))
  129. }
  130. func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
  131. return o.w.Write(p)
  132. }
  133. // ----------------------------------------
  134. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  135. type ioEncWriter struct {
  136. w ioEncWriterWriter
  137. // x [8]byte // temp byte array re-used internally for efficiency
  138. }
  139. func (z *ioEncWriter) writeb(bs []byte) {
  140. if len(bs) == 0 {
  141. return
  142. }
  143. n, err := z.w.Write(bs)
  144. if err != nil {
  145. panic(err)
  146. }
  147. if n != len(bs) {
  148. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n))
  149. }
  150. }
  151. func (z *ioEncWriter) writestr(s string) {
  152. n, err := z.w.WriteString(s)
  153. if err != nil {
  154. panic(err)
  155. }
  156. if n != len(s) {
  157. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n))
  158. }
  159. }
  160. func (z *ioEncWriter) writen1(b byte) {
  161. if err := z.w.WriteByte(b); err != nil {
  162. panic(err)
  163. }
  164. }
  165. func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
  166. z.writen1(b1)
  167. z.writen1(b2)
  168. }
  169. func (z *ioEncWriter) atEndOfEncode() {}
  170. // ----------------------------------------
  171. // bytesEncWriter implements encWriter and can write to an byte slice.
  172. // It is used by Marshal function.
  173. type bytesEncWriter struct {
  174. b []byte
  175. c int // cursor
  176. out *[]byte // write out on atEndOfEncode
  177. }
  178. func (z *bytesEncWriter) writeb(s []byte) {
  179. if len(s) > 0 {
  180. c := z.grow(len(s))
  181. copy(z.b[c:], s)
  182. }
  183. }
  184. func (z *bytesEncWriter) writestr(s string) {
  185. if len(s) > 0 {
  186. c := z.grow(len(s))
  187. copy(z.b[c:], s)
  188. }
  189. }
  190. func (z *bytesEncWriter) writen1(b1 byte) {
  191. c := z.grow(1)
  192. z.b[c] = b1
  193. }
  194. func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
  195. c := z.grow(2)
  196. z.b[c] = b1
  197. z.b[c+1] = b2
  198. }
  199. func (z *bytesEncWriter) atEndOfEncode() {
  200. *(z.out) = z.b[:z.c]
  201. }
  202. func (z *bytesEncWriter) grow(n int) (oldcursor int) {
  203. oldcursor = z.c
  204. z.c = oldcursor + n
  205. if z.c > len(z.b) {
  206. if z.c > cap(z.b) {
  207. // Tried using appendslice logic: (if cap < 1024, *2, else *1.25).
  208. // However, it was too expensive, causing too many iterations of copy.
  209. // Using bytes.Buffer model was much better (2*cap + n)
  210. bs := make([]byte, 2*cap(z.b)+n)
  211. copy(bs, z.b[:oldcursor])
  212. z.b = bs
  213. } else {
  214. z.b = z.b[:cap(z.b)]
  215. }
  216. }
  217. return
  218. }
  219. // ---------------------------------------------
  220. type encFnInfoX struct {
  221. e *Encoder
  222. ti *typeInfo
  223. xfFn Ext
  224. xfTag uint64
  225. seq seqType
  226. }
  227. type encFnInfo struct {
  228. // use encFnInfo as a value receiver.
  229. // keep most of it less-used variables accessible via a pointer (*encFnInfoX).
  230. // As sweet spot for value-receiver is 3 words, keep everything except
  231. // encDriver (which everyone needs) directly accessible.
  232. // ensure encFnInfoX is set for everyone who needs it i.e.
  233. // rawExt, ext, builtin, (selfer|binary|text)Marshal, kSlice, kStruct, kMap, kInterface, fastpath
  234. ee encDriver
  235. *encFnInfoX
  236. }
  237. func (f encFnInfo) builtin(rv reflect.Value) {
  238. f.ee.EncodeBuiltin(f.ti.rtid, rv.Interface())
  239. }
  240. func (f encFnInfo) rawExt(rv reflect.Value) {
  241. // rev := rv.Interface().(RawExt)
  242. // f.ee.EncodeRawExt(&rev, f.e)
  243. var re *RawExt
  244. if rv.CanAddr() {
  245. re = rv.Addr().Interface().(*RawExt)
  246. } else {
  247. rev := rv.Interface().(RawExt)
  248. re = &rev
  249. }
  250. f.ee.EncodeRawExt(re, f.e)
  251. }
  252. func (f encFnInfo) ext(rv reflect.Value) {
  253. // if this is a struct|array and it was addressable, then pass the address directly (not the value)
  254. if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
  255. rv = rv.Addr()
  256. }
  257. f.ee.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
  258. }
  259. func (f encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
  260. if indir == 0 {
  261. v = rv.Interface()
  262. } else if indir == -1 {
  263. // If a non-pointer was passed to Encode(), then that value is not addressable.
  264. // Take addr if addresable, else copy value to an addressable value.
  265. if rv.CanAddr() {
  266. v = rv.Addr().Interface()
  267. } else {
  268. rv2 := reflect.New(rv.Type())
  269. rv2.Elem().Set(rv)
  270. v = rv2.Interface()
  271. // fmt.Printf("rv.Type: %v, rv2.Type: %v, v: %v\n", rv.Type(), rv2.Type(), v)
  272. }
  273. } else {
  274. for j := int8(0); j < indir; j++ {
  275. if rv.IsNil() {
  276. f.ee.EncodeNil()
  277. return
  278. }
  279. rv = rv.Elem()
  280. }
  281. v = rv.Interface()
  282. }
  283. return v, true
  284. }
  285. func (f encFnInfo) selferMarshal(rv reflect.Value) {
  286. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
  287. v.(Selfer).CodecEncodeSelf(f.e)
  288. }
  289. }
  290. func (f encFnInfo) binaryMarshal(rv reflect.Value) {
  291. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
  292. bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
  293. f.e.marshal(bs, fnerr, false, c_RAW)
  294. }
  295. }
  296. func (f encFnInfo) textMarshal(rv reflect.Value) {
  297. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
  298. // debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
  299. bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
  300. f.e.marshal(bs, fnerr, false, c_UTF8)
  301. }
  302. }
  303. func (f encFnInfo) jsonMarshal(rv reflect.Value) {
  304. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
  305. bs, fnerr := v.(jsonMarshaler).MarshalJSON()
  306. f.e.marshal(bs, fnerr, true, c_UTF8)
  307. }
  308. }
  309. func (f encFnInfo) kBool(rv reflect.Value) {
  310. f.ee.EncodeBool(rv.Bool())
  311. }
  312. func (f encFnInfo) kString(rv reflect.Value) {
  313. f.ee.EncodeString(c_UTF8, rv.String())
  314. }
  315. func (f encFnInfo) kFloat64(rv reflect.Value) {
  316. f.ee.EncodeFloat64(rv.Float())
  317. }
  318. func (f encFnInfo) kFloat32(rv reflect.Value) {
  319. f.ee.EncodeFloat32(float32(rv.Float()))
  320. }
  321. func (f encFnInfo) kInt(rv reflect.Value) {
  322. f.ee.EncodeInt(rv.Int())
  323. }
  324. func (f encFnInfo) kUint(rv reflect.Value) {
  325. f.ee.EncodeUint(rv.Uint())
  326. }
  327. func (f encFnInfo) kInvalid(rv reflect.Value) {
  328. f.ee.EncodeNil()
  329. }
  330. func (f encFnInfo) kErr(rv reflect.Value) {
  331. f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  332. }
  333. func (f encFnInfo) kSlice(rv reflect.Value) {
  334. ti := f.ti
  335. // array may be non-addressable, so we have to manage with care
  336. // (don't call rv.Bytes, rv.Slice, etc).
  337. // E.g. type struct S{B [2]byte};
  338. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  339. if f.seq != seqTypeArray {
  340. if rv.IsNil() {
  341. f.ee.EncodeNil()
  342. return
  343. }
  344. // If in this method, then there was no extension function defined.
  345. // So it's okay to treat as []byte.
  346. if ti.rtid == uint8SliceTypId {
  347. f.ee.EncodeStringBytes(c_RAW, rv.Bytes())
  348. return
  349. }
  350. }
  351. rtelem := ti.rt.Elem()
  352. l := rv.Len()
  353. if rtelem.Kind() == reflect.Uint8 {
  354. switch f.seq {
  355. case seqTypeArray:
  356. // if l == 0 { f.ee.encodeStringBytes(c_RAW, nil) } else
  357. if rv.CanAddr() {
  358. f.ee.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
  359. } else {
  360. var bs []byte
  361. if l <= cap(f.e.b) {
  362. bs = f.e.b[:l]
  363. } else {
  364. bs = make([]byte, l)
  365. }
  366. reflect.Copy(reflect.ValueOf(bs), rv)
  367. // TODO: Test that reflect.Copy works instead of manual one-by-one
  368. // for i := 0; i < l; i++ {
  369. // bs[i] = byte(rv.Index(i).Uint())
  370. // }
  371. f.ee.EncodeStringBytes(c_RAW, bs)
  372. }
  373. case seqTypeSlice:
  374. f.ee.EncodeStringBytes(c_RAW, rv.Bytes())
  375. case seqTypeChan:
  376. bs := f.e.b[:0]
  377. // do not use range, so that the number of elements encoded
  378. // does not change, and encoding does not hang waiting on someone to close chan.
  379. // for b := range rv.Interface().(<-chan byte) {
  380. // bs = append(bs, b)
  381. // }
  382. ch := rv.Interface().(<-chan byte)
  383. for i := 0; i < l; i++ {
  384. bs = append(bs, <-ch)
  385. }
  386. f.ee.EncodeStringBytes(c_RAW, bs)
  387. }
  388. return
  389. }
  390. if ti.mbs {
  391. if l%2 == 1 {
  392. f.e.errorf("mapBySlice requires even slice length, but got %v", l)
  393. return
  394. }
  395. f.ee.EncodeMapStart(l / 2)
  396. } else {
  397. f.ee.EncodeArrayStart(l)
  398. }
  399. e := f.e
  400. if l > 0 {
  401. for rtelem.Kind() == reflect.Ptr {
  402. rtelem = rtelem.Elem()
  403. }
  404. // if kind is reflect.Interface, do not pre-determine the
  405. // encoding type, because preEncodeValue may break it down to
  406. // a concrete type and kInterface will bomb.
  407. var fn encFn
  408. if rtelem.Kind() != reflect.Interface {
  409. rtelemid := reflect.ValueOf(rtelem).Pointer()
  410. fn = e.getEncFn(rtelemid, rtelem, true, true)
  411. }
  412. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  413. for j := 0; j < l; j++ {
  414. if f.seq == seqTypeChan {
  415. if rv2, ok2 := rv.Recv(); ok2 {
  416. e.encodeValue(rv2, fn)
  417. }
  418. } else {
  419. e.encodeValue(rv.Index(j), fn)
  420. }
  421. }
  422. }
  423. f.ee.EncodeEnd()
  424. }
  425. func (f encFnInfo) kStruct(rv reflect.Value) {
  426. fti := f.ti
  427. e := f.e
  428. tisfi := fti.sfip
  429. toMap := !(fti.toArray || e.h.StructToArray)
  430. newlen := len(fti.sfi)
  431. // Use sync.Pool to reduce allocating slices unnecessarily.
  432. // The cost of the occasional locking is less than the cost of locking.
  433. var fkvs []encStructFieldKV
  434. var pool *sync.Pool
  435. var poolv interface{}
  436. idxpool := newlen / 8
  437. if encStructPoolLen != 4 {
  438. panic(errors.New("encStructPoolLen must be equal to 4")) // defensive, in case it is changed
  439. }
  440. if idxpool < encStructPoolLen {
  441. pool = &encStructPool[idxpool]
  442. poolv = pool.Get()
  443. switch vv := poolv.(type) {
  444. case *[8]encStructFieldKV:
  445. fkvs = vv[:newlen]
  446. case *[16]encStructFieldKV:
  447. fkvs = vv[:newlen]
  448. case *[32]encStructFieldKV:
  449. fkvs = vv[:newlen]
  450. case *[64]encStructFieldKV:
  451. fkvs = vv[:newlen]
  452. }
  453. }
  454. if fkvs == nil {
  455. fkvs = make([]encStructFieldKV, newlen)
  456. }
  457. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  458. if toMap {
  459. tisfi = fti.sfi
  460. }
  461. newlen = 0
  462. var kv encStructFieldKV
  463. for _, si := range tisfi {
  464. kv.v = si.field(rv, false)
  465. // if si.i != -1 {
  466. // rvals[newlen] = rv.Field(int(si.i))
  467. // } else {
  468. // rvals[newlen] = rv.FieldByIndex(si.is)
  469. // }
  470. if toMap {
  471. if si.omitEmpty && isEmptyValue(kv.v) {
  472. continue
  473. }
  474. kv.k = si.encName
  475. } else {
  476. // use the zero value.
  477. // if a reference or struct, set to nil (so you do not output too much)
  478. if si.omitEmpty && isEmptyValue(kv.v) {
  479. switch kv.v.Kind() {
  480. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array,
  481. reflect.Map, reflect.Slice:
  482. kv.v = reflect.Value{} //encode as nil
  483. }
  484. }
  485. }
  486. fkvs[newlen] = kv
  487. newlen++
  488. }
  489. // debugf(">>>> kStruct: newlen: %v", newlen)
  490. // sep := !e.be
  491. ee := f.ee //don't dereference everytime
  492. if toMap {
  493. ee.EncodeMapStart(newlen)
  494. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  495. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  496. for j := 0; j < newlen; j++ {
  497. kv = fkvs[j]
  498. if asSymbols {
  499. ee.EncodeSymbol(kv.k)
  500. } else {
  501. ee.EncodeString(c_UTF8, kv.k)
  502. }
  503. e.encodeValue(kv.v, encFn{})
  504. }
  505. } else {
  506. ee.EncodeArrayStart(newlen)
  507. for j := 0; j < newlen; j++ {
  508. kv = fkvs[j]
  509. e.encodeValue(kv.v, encFn{})
  510. }
  511. }
  512. ee.EncodeEnd()
  513. // do not use defer. Instead, use explicit pool return at end of function.
  514. // defer has a cost we are trying to avoid.
  515. // If there is a panic and these slices are not returned, it is ok.
  516. if pool != nil {
  517. pool.Put(poolv)
  518. }
  519. }
  520. // func (f encFnInfo) kPtr(rv reflect.Value) {
  521. // debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
  522. // if rv.IsNil() {
  523. // f.ee.encodeNil()
  524. // return
  525. // }
  526. // f.e.encodeValue(rv.Elem())
  527. // }
  528. func (f encFnInfo) kInterface(rv reflect.Value) {
  529. if rv.IsNil() {
  530. f.ee.EncodeNil()
  531. return
  532. }
  533. f.e.encodeValue(rv.Elem(), encFn{})
  534. }
  535. func (f encFnInfo) kMap(rv reflect.Value) {
  536. if rv.IsNil() {
  537. f.ee.EncodeNil()
  538. return
  539. }
  540. l := rv.Len()
  541. f.ee.EncodeMapStart(l)
  542. e := f.e
  543. if l == 0 {
  544. f.ee.EncodeEnd()
  545. return
  546. }
  547. var asSymbols bool
  548. // determine the underlying key and val encFn's for the map.
  549. // This eliminates some work which is done for each loop iteration i.e.
  550. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  551. //
  552. // However, if kind is reflect.Interface, do not pre-determine the
  553. // encoding type, because preEncodeValue may break it down to
  554. // a concrete type and kInterface will bomb.
  555. var keyFn, valFn encFn
  556. ti := f.ti
  557. rtkey := ti.rt.Key()
  558. rtval := ti.rt.Elem()
  559. rtkeyid := reflect.ValueOf(rtkey).Pointer()
  560. // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
  561. var keyTypeIsString = rtkeyid == stringTypId
  562. if keyTypeIsString {
  563. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  564. } else {
  565. for rtkey.Kind() == reflect.Ptr {
  566. rtkey = rtkey.Elem()
  567. }
  568. if rtkey.Kind() != reflect.Interface {
  569. rtkeyid = reflect.ValueOf(rtkey).Pointer()
  570. keyFn = e.getEncFn(rtkeyid, rtkey, true, true)
  571. }
  572. }
  573. for rtval.Kind() == reflect.Ptr {
  574. rtval = rtval.Elem()
  575. }
  576. if rtval.Kind() != reflect.Interface {
  577. rtvalid := reflect.ValueOf(rtval).Pointer()
  578. valFn = e.getEncFn(rtvalid, rtval, true, true)
  579. }
  580. mks := rv.MapKeys()
  581. // for j, lmks := 0, len(mks); j < lmks; j++ {
  582. ee := f.ee //don't dereference everytime
  583. if e.h.Canonical {
  584. // first encode each key to a []byte first, then sort them, then record
  585. // println(">>>>>>>> CANONICAL <<<<<<<<")
  586. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  587. e2 := NewEncoderBytes(&mksv, e.hh)
  588. mksbv := make([]encStructFieldBytesV, len(mks))
  589. for i, k := range mks {
  590. l := len(mksv)
  591. e2.MustEncode(k)
  592. mksbv[i].v = k
  593. mksbv[i].b = mksv[l:]
  594. // fmt.Printf(">>>>> %s\n", mksv[l:])
  595. }
  596. sort.Sort(encStructFieldBytesVslice(mksbv))
  597. for j := range mksbv {
  598. e.asis(mksbv[j].b)
  599. e.encodeValue(rv.MapIndex(mksbv[j].v), valFn)
  600. }
  601. } else {
  602. for j := range mks {
  603. if keyTypeIsString {
  604. if asSymbols {
  605. ee.EncodeSymbol(mks[j].String())
  606. } else {
  607. ee.EncodeString(c_UTF8, mks[j].String())
  608. }
  609. } else {
  610. e.encodeValue(mks[j], keyFn)
  611. }
  612. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  613. }
  614. }
  615. ee.EncodeEnd()
  616. }
  617. // --------------------------------------------------
  618. // encFn encapsulates the captured variables and the encode function.
  619. // This way, we only do some calculations one times, and pass to the
  620. // code block that should be called (encapsulated in a function)
  621. // instead of executing the checks every time.
  622. type encFn struct {
  623. i encFnInfo
  624. f func(encFnInfo, reflect.Value)
  625. }
  626. // --------------------------------------------------
  627. type rtidEncFn struct {
  628. rtid uintptr
  629. fn encFn
  630. }
  631. // An Encoder writes an object to an output stream in the codec format.
  632. type Encoder struct {
  633. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  634. e encDriver
  635. // NOTE: Encoder shouldn't call it's write methods,
  636. // as the handler MAY need to do some coordination.
  637. w encWriter
  638. s []rtidEncFn
  639. be bool // is binary encoding
  640. js bool // is json handle
  641. wi ioEncWriter
  642. wb bytesEncWriter
  643. h *BasicHandle
  644. as encDriverAsis
  645. hh Handle
  646. f map[uintptr]encFn
  647. b [scratchByteArrayLen]byte
  648. }
  649. // NewEncoder returns an Encoder for encoding into an io.Writer.
  650. //
  651. // For efficiency, Users are encouraged to pass in a memory buffered writer
  652. // (eg bufio.Writer, bytes.Buffer).
  653. func NewEncoder(w io.Writer, h Handle) *Encoder {
  654. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
  655. ww, ok := w.(ioEncWriterWriter)
  656. if !ok {
  657. sww := simpleIoEncWriterWriter{w: w}
  658. sww.bw, _ = w.(io.ByteWriter)
  659. sww.sw, _ = w.(ioEncStringWriter)
  660. ww = &sww
  661. //ww = bufio.NewWriterSize(w, defEncByteBufSize)
  662. }
  663. e.wi.w = ww
  664. e.w = &e.wi
  665. _, e.js = h.(*JsonHandle)
  666. e.e = h.newEncDriver(e)
  667. e.as, _ = e.e.(encDriverAsis)
  668. return e
  669. }
  670. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  671. // into a byte slice, using zero-copying to temporary slices.
  672. //
  673. // It will potentially replace the output byte slice pointed to.
  674. // After encoding, the out parameter contains the encoded contents.
  675. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  676. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
  677. in := *out
  678. if in == nil {
  679. in = make([]byte, defEncByteBufSize)
  680. }
  681. e.wb.b, e.wb.out = in, out
  682. e.w = &e.wb
  683. _, e.js = h.(*JsonHandle)
  684. e.e = h.newEncDriver(e)
  685. e.as, _ = e.e.(encDriverAsis)
  686. return e
  687. }
  688. // Encode writes an object into a stream.
  689. //
  690. // Encoding can be configured via the struct tag for the fields.
  691. // The "codec" key in struct field's tag value is the key name,
  692. // followed by an optional comma and options.
  693. // Note that the "json" key is used in the absence of the "codec" key.
  694. //
  695. // To set an option on all fields (e.g. omitempty on all fields), you
  696. // can create a field called _struct, and set flags on it.
  697. //
  698. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  699. // - the field's tag is "-", OR
  700. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  701. //
  702. // When encoding as a map, the first string in the tag (before the comma)
  703. // is the map key string to use when encoding.
  704. //
  705. // However, struct values may encode as arrays. This happens when:
  706. // - StructToArray Encode option is set, OR
  707. // - the tag on the _struct field sets the "toarray" option
  708. //
  709. // Values with types that implement MapBySlice are encoded as stream maps.
  710. //
  711. // The empty values (for omitempty option) are false, 0, any nil pointer
  712. // or interface value, and any array, slice, map, or string of length zero.
  713. //
  714. // Anonymous fields are encoded inline except:
  715. // - the struct tag specifies a replacement name (first value)
  716. // - the field is of an interface type
  717. //
  718. // Examples:
  719. //
  720. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  721. // type MyStruct struct {
  722. // _struct bool `codec:",omitempty"` //set omitempty for every field
  723. // Field1 string `codec:"-"` //skip this field
  724. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  725. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  726. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  727. // io.Reader //use key "Reader".
  728. // MyStruct `codec:"my1" //use key "my1".
  729. // MyStruct //inline it
  730. // ...
  731. // }
  732. //
  733. // type MyStruct struct {
  734. // _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
  735. // //and encode struct as an array
  736. // }
  737. //
  738. // The mode of encoding is based on the type of the value. When a value is seen:
  739. // - If a Selfer, call its CodecEncodeSelf method
  740. // - If an extension is registered for it, call that extension function
  741. // - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
  742. // - Else encode it based on its reflect.Kind
  743. //
  744. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  745. // Some formats support symbols (e.g. binc) and will properly encode the string
  746. // only once in the stream, and use a tag to refer to it thereafter.
  747. func (e *Encoder) Encode(v interface{}) (err error) {
  748. defer panicToErr(&err)
  749. e.encode(v)
  750. e.w.atEndOfEncode()
  751. return
  752. }
  753. // MustEncode is like Encode, but panics if unable to Encode.
  754. // This provides insight to the code location that triggered the error.
  755. func (e *Encoder) MustEncode(v interface{}) {
  756. e.encode(v)
  757. e.w.atEndOfEncode()
  758. }
  759. // comment out these (Must)Write methods. They were only put there to support cbor.
  760. // However, users already have access to the streams, and can write directly.
  761. //
  762. // // Write allows users write to the Encoder stream directly.
  763. // func (e *Encoder) Write(bs []byte) (err error) {
  764. // defer panicToErr(&err)
  765. // e.w.writeb(bs)
  766. // return
  767. // }
  768. // // MustWrite is like write, but panics if unable to Write.
  769. // func (e *Encoder) MustWrite(bs []byte) {
  770. // e.w.writeb(bs)
  771. // }
  772. func (e *Encoder) encode(iv interface{}) {
  773. // if ics, ok := iv.(Selfer); ok {
  774. // ics.CodecEncodeSelf(e)
  775. // return
  776. // }
  777. switch v := iv.(type) {
  778. case nil:
  779. e.e.EncodeNil()
  780. case Selfer:
  781. v.CodecEncodeSelf(e)
  782. case reflect.Value:
  783. e.encodeValue(v, encFn{})
  784. case string:
  785. e.e.EncodeString(c_UTF8, v)
  786. case bool:
  787. e.e.EncodeBool(v)
  788. case int:
  789. e.e.EncodeInt(int64(v))
  790. case int8:
  791. e.e.EncodeInt(int64(v))
  792. case int16:
  793. e.e.EncodeInt(int64(v))
  794. case int32:
  795. e.e.EncodeInt(int64(v))
  796. case int64:
  797. e.e.EncodeInt(v)
  798. case uint:
  799. e.e.EncodeUint(uint64(v))
  800. case uint8:
  801. e.e.EncodeUint(uint64(v))
  802. case uint16:
  803. e.e.EncodeUint(uint64(v))
  804. case uint32:
  805. e.e.EncodeUint(uint64(v))
  806. case uint64:
  807. e.e.EncodeUint(v)
  808. case float32:
  809. e.e.EncodeFloat32(v)
  810. case float64:
  811. e.e.EncodeFloat64(v)
  812. case []uint8:
  813. e.e.EncodeStringBytes(c_RAW, v)
  814. case *string:
  815. e.e.EncodeString(c_UTF8, *v)
  816. case *bool:
  817. e.e.EncodeBool(*v)
  818. case *int:
  819. e.e.EncodeInt(int64(*v))
  820. case *int8:
  821. e.e.EncodeInt(int64(*v))
  822. case *int16:
  823. e.e.EncodeInt(int64(*v))
  824. case *int32:
  825. e.e.EncodeInt(int64(*v))
  826. case *int64:
  827. e.e.EncodeInt(*v)
  828. case *uint:
  829. e.e.EncodeUint(uint64(*v))
  830. case *uint8:
  831. e.e.EncodeUint(uint64(*v))
  832. case *uint16:
  833. e.e.EncodeUint(uint64(*v))
  834. case *uint32:
  835. e.e.EncodeUint(uint64(*v))
  836. case *uint64:
  837. e.e.EncodeUint(*v)
  838. case *float32:
  839. e.e.EncodeFloat32(*v)
  840. case *float64:
  841. e.e.EncodeFloat64(*v)
  842. case *[]uint8:
  843. e.e.EncodeStringBytes(c_RAW, *v)
  844. default:
  845. // canonical mode is not supported for fastpath of maps (but is fine for slices)
  846. const checkCodecSelfer1 = true // in case T is passed, where *T is a Selfer, still checkCodecSelfer
  847. if e.h.Canonical {
  848. if !fastpathEncodeTypeSwitchSlice(iv, e) {
  849. e.encodeI(iv, false, checkCodecSelfer1)
  850. }
  851. } else {
  852. if !fastpathEncodeTypeSwitch(iv, e) {
  853. e.encodeI(iv, false, checkCodecSelfer1)
  854. }
  855. }
  856. }
  857. }
  858. func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer bool) {
  859. if rv, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
  860. rt := rv.Type()
  861. rtid := reflect.ValueOf(rt).Pointer()
  862. fn := e.getEncFn(rtid, rt, checkFastpath, checkCodecSelfer)
  863. fn.f(fn.i, rv)
  864. }
  865. }
  866. func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, proceed bool) {
  867. LOOP:
  868. for {
  869. switch rv.Kind() {
  870. case reflect.Ptr, reflect.Interface:
  871. if rv.IsNil() {
  872. e.e.EncodeNil()
  873. return
  874. }
  875. rv = rv.Elem()
  876. continue LOOP
  877. case reflect.Slice, reflect.Map:
  878. if rv.IsNil() {
  879. e.e.EncodeNil()
  880. return
  881. }
  882. case reflect.Invalid, reflect.Func:
  883. e.e.EncodeNil()
  884. return
  885. }
  886. break
  887. }
  888. return rv, true
  889. }
  890. func (e *Encoder) encodeValue(rv reflect.Value, fn encFn) {
  891. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  892. if rv, proceed := e.preEncodeValue(rv); proceed {
  893. if fn.f == nil {
  894. rt := rv.Type()
  895. rtid := reflect.ValueOf(rt).Pointer()
  896. fn = e.getEncFn(rtid, rt, true, true)
  897. }
  898. fn.f(fn.i, rv)
  899. }
  900. }
  901. func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn encFn) {
  902. // rtid := reflect.ValueOf(rt).Pointer()
  903. var ok bool
  904. if useMapForCodecCache {
  905. fn, ok = e.f[rtid]
  906. } else {
  907. for _, v := range e.s {
  908. if v.rtid == rtid {
  909. fn, ok = v.fn, true
  910. break
  911. }
  912. }
  913. }
  914. if ok {
  915. return
  916. }
  917. // fi.encFnInfoX = new(encFnInfoX)
  918. ti := getTypeInfo(rtid, rt)
  919. var fi encFnInfo
  920. fi.ee = e.e
  921. if checkCodecSelfer && ti.cs {
  922. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  923. fn.f = (encFnInfo).selferMarshal
  924. } else if rtid == rawExtTypId {
  925. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  926. fn.f = (encFnInfo).rawExt
  927. } else if e.e.IsBuiltinType(rtid) {
  928. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  929. fn.f = (encFnInfo).builtin
  930. } else if xfFn := e.h.getExt(rtid); xfFn != nil {
  931. // fi.encFnInfoX = new(encFnInfoX)
  932. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  933. fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
  934. fn.f = (encFnInfo).ext
  935. } else if supportMarshalInterfaces && e.be && ti.bm {
  936. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  937. fn.f = (encFnInfo).binaryMarshal
  938. } else if supportMarshalInterfaces && !e.be && e.js && ti.jm {
  939. //If JSON, we should check JSONMarshal before textMarshal
  940. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  941. fn.f = (encFnInfo).jsonMarshal
  942. } else if supportMarshalInterfaces && !e.be && ti.tm {
  943. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  944. fn.f = (encFnInfo).textMarshal
  945. } else {
  946. rk := rt.Kind()
  947. // if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
  948. if fastpathEnabled && checkFastpath && (rk == reflect.Slice || (rk == reflect.Map && !e.h.Canonical)) {
  949. if rt.PkgPath() == "" {
  950. if idx := fastpathAV.index(rtid); idx != -1 {
  951. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  952. fn.f = fastpathAV[idx].encfn
  953. }
  954. } else {
  955. ok = false
  956. // use mapping for underlying type if there
  957. var rtu reflect.Type
  958. if rk == reflect.Map {
  959. rtu = reflect.MapOf(rt.Key(), rt.Elem())
  960. } else {
  961. rtu = reflect.SliceOf(rt.Elem())
  962. }
  963. rtuid := reflect.ValueOf(rtu).Pointer()
  964. if idx := fastpathAV.index(rtuid); idx != -1 {
  965. xfnf := fastpathAV[idx].encfn
  966. xrt := fastpathAV[idx].rt
  967. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  968. fn.f = func(xf encFnInfo, xrv reflect.Value) {
  969. xfnf(xf, xrv.Convert(xrt))
  970. }
  971. }
  972. }
  973. }
  974. if fn.f == nil {
  975. switch rk {
  976. case reflect.Bool:
  977. fn.f = (encFnInfo).kBool
  978. case reflect.String:
  979. fn.f = (encFnInfo).kString
  980. case reflect.Float64:
  981. fn.f = (encFnInfo).kFloat64
  982. case reflect.Float32:
  983. fn.f = (encFnInfo).kFloat32
  984. case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
  985. fn.f = (encFnInfo).kInt
  986. case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16, reflect.Uintptr:
  987. fn.f = (encFnInfo).kUint
  988. case reflect.Invalid:
  989. fn.f = (encFnInfo).kInvalid
  990. case reflect.Chan:
  991. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeChan}
  992. fn.f = (encFnInfo).kSlice
  993. case reflect.Slice:
  994. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeSlice}
  995. fn.f = (encFnInfo).kSlice
  996. case reflect.Array:
  997. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeArray}
  998. fn.f = (encFnInfo).kSlice
  999. case reflect.Struct:
  1000. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1001. fn.f = (encFnInfo).kStruct
  1002. // case reflect.Ptr:
  1003. // fn.f = (encFnInfo).kPtr
  1004. case reflect.Interface:
  1005. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1006. fn.f = (encFnInfo).kInterface
  1007. case reflect.Map:
  1008. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1009. fn.f = (encFnInfo).kMap
  1010. default:
  1011. fn.f = (encFnInfo).kErr
  1012. }
  1013. }
  1014. }
  1015. fn.i = fi
  1016. if useMapForCodecCache {
  1017. if e.f == nil {
  1018. e.f = make(map[uintptr]encFn, 32)
  1019. }
  1020. e.f[rtid] = fn
  1021. } else {
  1022. if e.s == nil {
  1023. e.s = make([]rtidEncFn, 0, 32)
  1024. }
  1025. e.s = append(e.s, rtidEncFn{rtid, fn})
  1026. }
  1027. return
  1028. }
  1029. func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1030. if fnerr != nil {
  1031. panic(fnerr)
  1032. }
  1033. if bs == nil {
  1034. e.e.EncodeNil()
  1035. } else if asis {
  1036. e.asis(bs)
  1037. } else {
  1038. e.e.EncodeStringBytes(c, bs)
  1039. }
  1040. }
  1041. func (e *Encoder) asis(v []byte) {
  1042. if e.as == nil {
  1043. e.w.writeb(v)
  1044. } else {
  1045. e.as.EncodeAsis(v)
  1046. }
  1047. }
  1048. func (e *Encoder) errorf(format string, params ...interface{}) {
  1049. err := fmt.Errorf(format, params...)
  1050. panic(err)
  1051. }
  1052. // ----------------------------------------
  1053. type encStructFieldKV struct {
  1054. k string
  1055. v reflect.Value
  1056. }
  1057. const encStructPoolLen = 4
  1058. // encStructPool is an array of sync.Pool.
  1059. // Each element of the array pools one of encStructPool(8|16|32|64).
  1060. // It allows the re-use of slices up to 64 in length.
  1061. // A performance cost of encoding structs was collecting
  1062. // which values were empty and should be omitted.
  1063. // We needed slices of reflect.Value and string to collect them.
  1064. // This shared pool reduces the amount of unnecessary creation we do.
  1065. // The cost is that of locking sometimes, but sync.Pool is efficient
  1066. // enough to reduce thread contention.
  1067. var encStructPool [encStructPoolLen]sync.Pool
  1068. func init() {
  1069. encStructPool[0].New = func() interface{} { return new([8]encStructFieldKV) }
  1070. encStructPool[1].New = func() interface{} { return new([16]encStructFieldKV) }
  1071. encStructPool[2].New = func() interface{} { return new([32]encStructFieldKV) }
  1072. encStructPool[3].New = func() interface{} { return new([64]encStructFieldKV) }
  1073. }
  1074. // ----------------------------------------
  1075. // func encErr(format string, params ...interface{}) {
  1076. // doPanic(msgTagEnc, format, params...)
  1077. // }