encode.go 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "sort"
  11. "strconv"
  12. "sync"
  13. "time"
  14. )
  15. const defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  16. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  17. /*
  18. // encWriter abstracts writing to a byte array or to an io.Writer.
  19. //
  20. //
  21. // Deprecated: Use encWriterSwitch instead.
  22. type encWriter interface {
  23. writeb([]byte)
  24. writestr(string)
  25. writen1(byte)
  26. writen2(byte, byte)
  27. atEndOfEncode()
  28. }
  29. */
  30. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  31. type encDriver interface {
  32. EncodeNil()
  33. EncodeInt(i int64)
  34. EncodeUint(i uint64)
  35. EncodeBool(b bool)
  36. EncodeFloat32(f float32)
  37. EncodeFloat64(f float64)
  38. // encodeExtPreamble(xtag byte, length int)
  39. EncodeRawExt(re *RawExt, e *Encoder)
  40. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  41. // Deprecated: try to use EncodeStringEnc instead
  42. EncodeString(c charEncoding, v string)
  43. // c cannot be cRAW
  44. EncodeStringEnc(c charEncoding, v string)
  45. // EncodeSymbol(v string)
  46. // Deprecated: try to use EncodeStringBytesRaw instead
  47. EncodeStringBytes(c charEncoding, v []byte)
  48. EncodeStringBytesRaw(v []byte)
  49. EncodeTime(time.Time)
  50. //encBignum(f *big.Int)
  51. //encStringRunes(c charEncoding, v []rune)
  52. WriteArrayStart(length int)
  53. WriteArrayElem()
  54. WriteArrayEnd()
  55. WriteMapStart(length int)
  56. WriteMapElemKey()
  57. WriteMapElemValue()
  58. WriteMapEnd()
  59. reset()
  60. atEndOfEncode()
  61. }
  62. type encDriverAsis interface {
  63. EncodeAsis(v []byte)
  64. }
  65. type encodeError struct {
  66. codecError
  67. }
  68. func (e encodeError) Error() string {
  69. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  70. }
  71. type encDriverNoopContainerWriter struct{}
  72. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  73. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  74. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  75. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  76. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  77. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  78. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  79. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  80. type encDriverTrackContainerWriter struct {
  81. c containerState
  82. }
  83. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  84. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  85. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  86. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  87. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  88. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  89. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  90. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  91. // type ioEncWriterWriter interface {
  92. // WriteByte(c byte) error
  93. // WriteString(s string) (n int, err error)
  94. // Write(p []byte) (n int, err error)
  95. // }
  96. // EncodeOptions captures configuration options during encode.
  97. type EncodeOptions struct {
  98. // WriterBufferSize is the size of the buffer used when writing.
  99. //
  100. // if > 0, we use a smart buffer internally for performance purposes.
  101. WriterBufferSize int
  102. // ChanRecvTimeout is the timeout used when selecting from a chan.
  103. //
  104. // Configuring this controls how we receive from a chan during the encoding process.
  105. // - If ==0, we only consume the elements currently available in the chan.
  106. // - if <0, we consume until the chan is closed.
  107. // - If >0, we consume until this timeout.
  108. ChanRecvTimeout time.Duration
  109. // StructToArray specifies to encode a struct as an array, and not as a map
  110. StructToArray bool
  111. // Canonical representation means that encoding a value will always result in the same
  112. // sequence of bytes.
  113. //
  114. // This only affects maps, as the iteration order for maps is random.
  115. //
  116. // The implementation MAY use the natural sort order for the map keys if possible:
  117. //
  118. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  119. // then the map keys are first sorted in natural order and then written
  120. // with corresponding map values to the strema.
  121. // - If there is no natural sort order, then the map keys will first be
  122. // encoded into []byte, and then sorted,
  123. // before writing the sorted keys and the corresponding map values to the stream.
  124. //
  125. Canonical bool
  126. // CheckCircularRef controls whether we check for circular references
  127. // and error fast during an encode.
  128. //
  129. // If enabled, an error is received if a pointer to a struct
  130. // references itself either directly or through one of its fields (iteratively).
  131. //
  132. // This is opt-in, as there may be a performance hit to checking circular references.
  133. CheckCircularRef bool
  134. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  135. // when checking if a value is empty.
  136. //
  137. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  138. RecursiveEmptyCheck bool
  139. // Raw controls whether we encode Raw values.
  140. // This is a "dangerous" option and must be explicitly set.
  141. // If set, we blindly encode Raw values as-is, without checking
  142. // if they are a correct representation of a value in that format.
  143. // If unset, we error out.
  144. Raw bool
  145. // // AsSymbols defines what should be encoded as symbols.
  146. // //
  147. // // Encoding as symbols can reduce the encoded size significantly.
  148. // //
  149. // // However, during decoding, each string to be encoded as a symbol must
  150. // // be checked to see if it has been seen before. Consequently, encoding time
  151. // // will increase if using symbols, because string comparisons has a clear cost.
  152. // //
  153. // // Sample values:
  154. // // AsSymbolNone
  155. // // AsSymbolAll
  156. // // AsSymbolMapStringKeys
  157. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  158. // AsSymbols AsSymbolFlag
  159. }
  160. // ---------------------------------------------
  161. /*
  162. type ioEncStringWriter interface {
  163. WriteString(s string) (n int, err error)
  164. }
  165. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  166. type ioEncWriter struct {
  167. w io.Writer
  168. ww io.Writer
  169. bw io.ByteWriter
  170. sw ioEncStringWriter
  171. fw ioFlusher
  172. b [8]byte
  173. }
  174. func (z *ioEncWriter) reset(w io.Writer) {
  175. z.w = w
  176. var ok bool
  177. if z.bw, ok = w.(io.ByteWriter); !ok {
  178. z.bw = z
  179. }
  180. if z.sw, ok = w.(ioEncStringWriter); !ok {
  181. z.sw = z
  182. }
  183. z.fw, _ = w.(ioFlusher)
  184. z.ww = w
  185. }
  186. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  187. z.b[0] = b
  188. _, err = z.w.Write(z.b[:1])
  189. return
  190. }
  191. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  192. return z.w.Write(bytesView(s))
  193. }
  194. func (z *ioEncWriter) writeb(bs []byte) {
  195. if _, err := z.ww.Write(bs); err != nil {
  196. panic(err)
  197. }
  198. }
  199. func (z *ioEncWriter) writestr(s string) {
  200. if _, err := z.sw.WriteString(s); err != nil {
  201. panic(err)
  202. }
  203. }
  204. func (z *ioEncWriter) writen1(b byte) {
  205. if err := z.bw.WriteByte(b); err != nil {
  206. panic(err)
  207. }
  208. }
  209. func (z *ioEncWriter) writen2(b1, b2 byte) {
  210. var err error
  211. if err = z.bw.WriteByte(b1); err == nil {
  212. if err = z.bw.WriteByte(b2); err == nil {
  213. return
  214. }
  215. }
  216. panic(err)
  217. }
  218. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  219. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  220. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  221. // panic(err)
  222. // }
  223. // }
  224. //go:noinline (so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined)
  225. func (z *ioEncWriter) atEndOfEncode() {
  226. if z.fw != nil {
  227. if err := z.fw.Flush(); err != nil {
  228. panic(err)
  229. }
  230. }
  231. }
  232. */
  233. // ---------------------------------------------
  234. // bufioEncWriter
  235. type bufioEncWriter struct {
  236. buf []byte
  237. w io.Writer
  238. n int
  239. // _ [2]uint64 // padding
  240. // a int
  241. // b [4]byte
  242. // err
  243. }
  244. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  245. z.w = w
  246. z.n = 0
  247. if bufsize == 0 {
  248. z.buf = make([]byte, 256)
  249. } else if cap(z.buf) < bufsize {
  250. z.buf = make([]byte, bufsize)
  251. } else {
  252. z.buf = z.buf[:bufsize]
  253. }
  254. }
  255. //go:noinline
  256. func (z *bufioEncWriter) flush() {
  257. n, err := z.w.Write(z.buf[:z.n])
  258. z.n -= n
  259. if z.n > 0 && err == nil {
  260. err = io.ErrShortWrite
  261. }
  262. if err != nil {
  263. if n > 0 && z.n > 0 {
  264. copy(z.buf, z.buf[n:z.n+n])
  265. }
  266. panic(err)
  267. }
  268. }
  269. func (z *bufioEncWriter) writeb(s []byte) {
  270. LOOP:
  271. a := len(z.buf) - z.n
  272. if len(s) > a {
  273. z.n += copy(z.buf[z.n:], s[:a])
  274. s = s[a:]
  275. z.flush()
  276. goto LOOP
  277. }
  278. z.n += copy(z.buf[z.n:], s)
  279. }
  280. func (z *bufioEncWriter) writestr(s string) {
  281. // z.writeb(bytesView(s)) // inlined below
  282. LOOP:
  283. a := len(z.buf) - z.n
  284. if len(s) > a {
  285. z.n += copy(z.buf[z.n:], s[:a])
  286. s = s[a:]
  287. z.flush()
  288. goto LOOP
  289. }
  290. z.n += copy(z.buf[z.n:], s)
  291. }
  292. func (z *bufioEncWriter) writen1(b1 byte) {
  293. if 1 > len(z.buf)-z.n {
  294. z.flush()
  295. }
  296. z.buf[z.n] = b1
  297. z.n++
  298. }
  299. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  300. if 2 > len(z.buf)-z.n {
  301. z.flush()
  302. }
  303. z.buf[z.n+1] = b2
  304. z.buf[z.n] = b1
  305. z.n += 2
  306. }
  307. func (z *bufioEncWriter) atEndOfEncode() {
  308. if z.n > 0 {
  309. z.flush()
  310. }
  311. }
  312. // ---------------------------------------------
  313. // bytesEncAppender implements encWriter and can write to an byte slice.
  314. type bytesEncAppender struct {
  315. b []byte
  316. out *[]byte
  317. }
  318. func (z *bytesEncAppender) writeb(s []byte) {
  319. z.b = append(z.b, s...)
  320. }
  321. func (z *bytesEncAppender) writestr(s string) {
  322. z.b = append(z.b, s...)
  323. }
  324. func (z *bytesEncAppender) writen1(b1 byte) {
  325. z.b = append(z.b, b1)
  326. }
  327. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  328. z.b = append(z.b, b1, b2)
  329. }
  330. func (z *bytesEncAppender) atEndOfEncode() {
  331. *(z.out) = z.b
  332. }
  333. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  334. z.b = in[:0]
  335. z.out = out
  336. }
  337. // ---------------------------------------------
  338. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  339. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  340. }
  341. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  342. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  343. }
  344. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  345. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  346. }
  347. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  348. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  349. e.marshalRaw(bs, fnerr)
  350. }
  351. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  352. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  353. e.marshalUtf8(bs, fnerr)
  354. }
  355. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  356. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  357. e.marshalAsis(bs, fnerr)
  358. }
  359. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  360. e.rawBytes(rv2i(rv).(Raw))
  361. }
  362. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  363. e.e.EncodeNil()
  364. }
  365. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  366. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  367. }
  368. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  369. ti := f.ti
  370. ee := e.e
  371. // array may be non-addressable, so we have to manage with care
  372. // (don't call rv.Bytes, rv.Slice, etc).
  373. // E.g. type struct S{B [2]byte};
  374. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  375. if f.seq != seqTypeArray {
  376. if rv.IsNil() {
  377. ee.EncodeNil()
  378. return
  379. }
  380. // If in this method, then there was no extension function defined.
  381. // So it's okay to treat as []byte.
  382. if ti.rtid == uint8SliceTypId {
  383. ee.EncodeStringBytesRaw(rv.Bytes())
  384. return
  385. }
  386. }
  387. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  388. e.errorf("send-only channel cannot be encoded")
  389. }
  390. elemsep := e.esep
  391. rtelem := ti.elem
  392. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  393. var l int
  394. // if a slice, array or chan of bytes, treat specially
  395. if rtelemIsByte {
  396. switch f.seq {
  397. case seqTypeSlice:
  398. ee.EncodeStringBytesRaw(rv.Bytes())
  399. case seqTypeArray:
  400. l = rv.Len()
  401. if rv.CanAddr() {
  402. ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  403. } else {
  404. var bs []byte
  405. if l <= cap(e.b) {
  406. bs = e.b[:l]
  407. } else {
  408. bs = make([]byte, l)
  409. }
  410. reflect.Copy(reflect.ValueOf(bs), rv)
  411. ee.EncodeStringBytesRaw(bs)
  412. }
  413. case seqTypeChan:
  414. // do not use range, so that the number of elements encoded
  415. // does not change, and encoding does not hang waiting on someone to close chan.
  416. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  417. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  418. if rv.IsNil() {
  419. ee.EncodeNil()
  420. break
  421. }
  422. bs := e.b[:0]
  423. irv := rv2i(rv)
  424. ch, ok := irv.(<-chan byte)
  425. if !ok {
  426. ch = irv.(chan byte)
  427. }
  428. L1:
  429. switch timeout := e.h.ChanRecvTimeout; {
  430. case timeout == 0: // only consume available
  431. for {
  432. select {
  433. case b := <-ch:
  434. bs = append(bs, b)
  435. default:
  436. break L1
  437. }
  438. }
  439. case timeout > 0: // consume until timeout
  440. tt := time.NewTimer(timeout)
  441. for {
  442. select {
  443. case b := <-ch:
  444. bs = append(bs, b)
  445. case <-tt.C:
  446. // close(tt.C)
  447. break L1
  448. }
  449. }
  450. default: // consume until close
  451. for b := range ch {
  452. bs = append(bs, b)
  453. }
  454. }
  455. ee.EncodeStringBytesRaw(bs)
  456. }
  457. return
  458. }
  459. // if chan, consume chan into a slice, and work off that slice.
  460. var rvcs reflect.Value
  461. if f.seq == seqTypeChan {
  462. rvcs = reflect.Zero(reflect.SliceOf(rtelem))
  463. timeout := e.h.ChanRecvTimeout
  464. if timeout < 0 { // consume until close
  465. for {
  466. recv, recvOk := rv.Recv()
  467. if !recvOk {
  468. break
  469. }
  470. rvcs = reflect.Append(rvcs, recv)
  471. }
  472. } else {
  473. cases := make([]reflect.SelectCase, 2)
  474. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  475. if timeout == 0 {
  476. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  477. } else {
  478. tt := time.NewTimer(timeout)
  479. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  480. }
  481. for {
  482. chosen, recv, recvOk := reflect.Select(cases)
  483. if chosen == 1 || !recvOk {
  484. break
  485. }
  486. rvcs = reflect.Append(rvcs, recv)
  487. }
  488. }
  489. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  490. }
  491. l = rv.Len()
  492. if ti.mbs {
  493. if l%2 == 1 {
  494. e.errorf("mapBySlice requires even slice length, but got %v", l)
  495. return
  496. }
  497. ee.WriteMapStart(l / 2)
  498. } else {
  499. ee.WriteArrayStart(l)
  500. }
  501. if l > 0 {
  502. var fn *codecFn
  503. for rtelem.Kind() == reflect.Ptr {
  504. rtelem = rtelem.Elem()
  505. }
  506. // if kind is reflect.Interface, do not pre-determine the
  507. // encoding type, because preEncodeValue may break it down to
  508. // a concrete type and kInterface will bomb.
  509. if rtelem.Kind() != reflect.Interface {
  510. fn = e.cfer().get(rtelem, true, true)
  511. }
  512. for j := 0; j < l; j++ {
  513. if elemsep {
  514. if ti.mbs {
  515. if j%2 == 0 {
  516. ee.WriteMapElemKey()
  517. } else {
  518. ee.WriteMapElemValue()
  519. }
  520. } else {
  521. ee.WriteArrayElem()
  522. }
  523. }
  524. e.encodeValue(rv.Index(j), fn, true)
  525. }
  526. }
  527. if ti.mbs {
  528. ee.WriteMapEnd()
  529. } else {
  530. ee.WriteArrayEnd()
  531. }
  532. }
  533. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  534. fti := f.ti
  535. elemsep := e.esep
  536. tisfi := fti.sfiSrc
  537. toMap := !(fti.toArray || e.h.StructToArray)
  538. if toMap {
  539. tisfi = fti.sfiSort
  540. }
  541. ee := e.e
  542. sfn := structFieldNode{v: rv, update: false}
  543. if toMap {
  544. ee.WriteMapStart(len(tisfi))
  545. if elemsep {
  546. for _, si := range tisfi {
  547. ee.WriteMapElemKey()
  548. // ee.EncodeStringEnc(cUTF8, si.encName)
  549. e.kStructFieldKey(fti.keyType, si)
  550. ee.WriteMapElemValue()
  551. e.encodeValue(sfn.field(si), nil, true)
  552. }
  553. } else {
  554. for _, si := range tisfi {
  555. // ee.EncodeStringEnc(cUTF8, si.encName)
  556. e.kStructFieldKey(fti.keyType, si)
  557. e.encodeValue(sfn.field(si), nil, true)
  558. }
  559. }
  560. ee.WriteMapEnd()
  561. } else {
  562. ee.WriteArrayStart(len(tisfi))
  563. if elemsep {
  564. for _, si := range tisfi {
  565. ee.WriteArrayElem()
  566. e.encodeValue(sfn.field(si), nil, true)
  567. }
  568. } else {
  569. for _, si := range tisfi {
  570. e.encodeValue(sfn.field(si), nil, true)
  571. }
  572. }
  573. ee.WriteArrayEnd()
  574. }
  575. }
  576. func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
  577. var m must
  578. // use if-else-if, not switch (which compiles to binary-search)
  579. // since keyType is typically valueTypeString, branch prediction is pretty good.
  580. if keyType == valueTypeString {
  581. if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
  582. e.w.writen1('"')
  583. e.w.writestr(s.encName)
  584. e.w.writen1('"')
  585. } else { // keyType == valueTypeString
  586. e.e.EncodeStringEnc(cUTF8, s.encName)
  587. }
  588. } else if keyType == valueTypeInt {
  589. e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
  590. } else if keyType == valueTypeUint {
  591. e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
  592. } else if keyType == valueTypeFloat {
  593. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
  594. }
  595. }
  596. func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
  597. var m must
  598. // use if-else-if, not switch (which compiles to binary-search)
  599. // since keyType is typically valueTypeString, branch prediction is pretty good.
  600. if keyType == valueTypeString {
  601. e.e.EncodeStringEnc(cUTF8, encName)
  602. } else if keyType == valueTypeInt {
  603. e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  604. } else if keyType == valueTypeUint {
  605. e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  606. } else if keyType == valueTypeFloat {
  607. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  608. }
  609. }
  610. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  611. fti := f.ti
  612. elemsep := e.esep
  613. tisfi := fti.sfiSrc
  614. var newlen int
  615. toMap := !(fti.toArray || e.h.StructToArray)
  616. var mf map[string]interface{}
  617. if f.ti.mf {
  618. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  619. toMap = true
  620. newlen += len(mf)
  621. } else if f.ti.mfp {
  622. if rv.CanAddr() {
  623. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  624. } else {
  625. // make a new addressable value of same one, and use it
  626. rv2 := reflect.New(rv.Type())
  627. rv2.Elem().Set(rv)
  628. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  629. }
  630. toMap = true
  631. newlen += len(mf)
  632. }
  633. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  634. if toMap {
  635. tisfi = fti.sfiSort
  636. }
  637. newlen += len(tisfi)
  638. ee := e.e
  639. // Use sync.Pool to reduce allocating slices unnecessarily.
  640. // The cost of sync.Pool is less than the cost of new allocation.
  641. //
  642. // Each element of the array pools one of encStructPool(8|16|32|64).
  643. // It allows the re-use of slices up to 64 in length.
  644. // A performance cost of encoding structs was collecting
  645. // which values were empty and should be omitted.
  646. // We needed slices of reflect.Value and string to collect them.
  647. // This shared pool reduces the amount of unnecessary creation we do.
  648. // The cost is that of locking sometimes, but sync.Pool is efficient
  649. // enough to reduce thread contention.
  650. var spool *sync.Pool
  651. var poolv interface{}
  652. var fkvs []sfiRv
  653. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  654. if newlen <= 8 {
  655. spool, poolv = pool.sfiRv8()
  656. fkvs = poolv.(*[8]sfiRv)[:newlen]
  657. } else if newlen <= 16 {
  658. spool, poolv = pool.sfiRv16()
  659. fkvs = poolv.(*[16]sfiRv)[:newlen]
  660. } else if newlen <= 32 {
  661. spool, poolv = pool.sfiRv32()
  662. fkvs = poolv.(*[32]sfiRv)[:newlen]
  663. } else if newlen <= 64 {
  664. spool, poolv = pool.sfiRv64()
  665. fkvs = poolv.(*[64]sfiRv)[:newlen]
  666. } else if newlen <= 128 {
  667. spool, poolv = pool.sfiRv128()
  668. fkvs = poolv.(*[128]sfiRv)[:newlen]
  669. } else {
  670. fkvs = make([]sfiRv, newlen)
  671. }
  672. newlen = 0
  673. var kv sfiRv
  674. recur := e.h.RecursiveEmptyCheck
  675. sfn := structFieldNode{v: rv, update: false}
  676. for _, si := range tisfi {
  677. // kv.r = si.field(rv, false)
  678. kv.r = sfn.field(si)
  679. if toMap {
  680. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  681. continue
  682. }
  683. kv.v = si // si.encName
  684. } else {
  685. // use the zero value.
  686. // if a reference or struct, set to nil (so you do not output too much)
  687. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  688. switch kv.r.Kind() {
  689. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  690. kv.r = reflect.Value{} //encode as nil
  691. }
  692. }
  693. }
  694. fkvs[newlen] = kv
  695. newlen++
  696. }
  697. var mflen int
  698. for k, v := range mf {
  699. if k == "" {
  700. delete(mf, k)
  701. continue
  702. }
  703. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  704. delete(mf, k)
  705. continue
  706. }
  707. mflen++
  708. }
  709. if toMap {
  710. ee.WriteMapStart(newlen + mflen)
  711. if elemsep {
  712. for j := 0; j < newlen; j++ {
  713. kv = fkvs[j]
  714. ee.WriteMapElemKey()
  715. // ee.EncodeStringEnc(cUTF8, kv.v)
  716. e.kStructFieldKey(fti.keyType, kv.v)
  717. ee.WriteMapElemValue()
  718. e.encodeValue(kv.r, nil, true)
  719. }
  720. } else {
  721. for j := 0; j < newlen; j++ {
  722. kv = fkvs[j]
  723. // ee.EncodeStringEnc(cUTF8, kv.v)
  724. e.kStructFieldKey(fti.keyType, kv.v)
  725. e.encodeValue(kv.r, nil, true)
  726. }
  727. }
  728. // now, add the others
  729. for k, v := range mf {
  730. ee.WriteMapElemKey()
  731. e.kStructFieldKeyName(fti.keyType, k)
  732. ee.WriteMapElemValue()
  733. e.encode(v)
  734. }
  735. ee.WriteMapEnd()
  736. } else {
  737. ee.WriteArrayStart(newlen)
  738. if elemsep {
  739. for j := 0; j < newlen; j++ {
  740. ee.WriteArrayElem()
  741. e.encodeValue(fkvs[j].r, nil, true)
  742. }
  743. } else {
  744. for j := 0; j < newlen; j++ {
  745. e.encodeValue(fkvs[j].r, nil, true)
  746. }
  747. }
  748. ee.WriteArrayEnd()
  749. }
  750. // do not use defer. Instead, use explicit pool return at end of function.
  751. // defer has a cost we are trying to avoid.
  752. // If there is a panic and these slices are not returned, it is ok.
  753. if spool != nil {
  754. spool.Put(poolv)
  755. }
  756. }
  757. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  758. ee := e.e
  759. if rv.IsNil() {
  760. ee.EncodeNil()
  761. return
  762. }
  763. l := rv.Len()
  764. ee.WriteMapStart(l)
  765. elemsep := e.esep
  766. if l == 0 {
  767. ee.WriteMapEnd()
  768. return
  769. }
  770. // var asSymbols bool
  771. // determine the underlying key and val encFn's for the map.
  772. // This eliminates some work which is done for each loop iteration i.e.
  773. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  774. //
  775. // However, if kind is reflect.Interface, do not pre-determine the
  776. // encoding type, because preEncodeValue may break it down to
  777. // a concrete type and kInterface will bomb.
  778. var keyFn, valFn *codecFn
  779. ti := f.ti
  780. rtkey0 := ti.key
  781. rtkey := rtkey0
  782. rtval0 := ti.elem
  783. rtval := rtval0
  784. // rtkeyid := rt2id(rtkey0)
  785. for rtval.Kind() == reflect.Ptr {
  786. rtval = rtval.Elem()
  787. }
  788. if rtval.Kind() != reflect.Interface {
  789. valFn = e.cfer().get(rtval, true, true)
  790. }
  791. mks := rv.MapKeys()
  792. if e.h.Canonical {
  793. e.kMapCanonical(rtkey, rv, mks, valFn)
  794. ee.WriteMapEnd()
  795. return
  796. }
  797. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  798. if !keyTypeIsString {
  799. for rtkey.Kind() == reflect.Ptr {
  800. rtkey = rtkey.Elem()
  801. }
  802. if rtkey.Kind() != reflect.Interface {
  803. // rtkeyid = rt2id(rtkey)
  804. keyFn = e.cfer().get(rtkey, true, true)
  805. }
  806. }
  807. // for j, lmks := 0, len(mks); j < lmks; j++ {
  808. for j := range mks {
  809. if elemsep {
  810. ee.WriteMapElemKey()
  811. }
  812. if keyTypeIsString {
  813. ee.EncodeStringEnc(cUTF8, mks[j].String())
  814. } else {
  815. e.encodeValue(mks[j], keyFn, true)
  816. }
  817. if elemsep {
  818. ee.WriteMapElemValue()
  819. }
  820. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  821. }
  822. ee.WriteMapEnd()
  823. }
  824. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  825. ee := e.e
  826. elemsep := e.esep
  827. // we previously did out-of-band if an extension was registered.
  828. // This is not necessary, as the natural kind is sufficient for ordering.
  829. switch rtkey.Kind() {
  830. case reflect.Bool:
  831. mksv := make([]boolRv, len(mks))
  832. for i, k := range mks {
  833. v := &mksv[i]
  834. v.r = k
  835. v.v = k.Bool()
  836. }
  837. sort.Sort(boolRvSlice(mksv))
  838. for i := range mksv {
  839. if elemsep {
  840. ee.WriteMapElemKey()
  841. }
  842. ee.EncodeBool(mksv[i].v)
  843. if elemsep {
  844. ee.WriteMapElemValue()
  845. }
  846. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  847. }
  848. case reflect.String:
  849. mksv := make([]stringRv, len(mks))
  850. for i, k := range mks {
  851. v := &mksv[i]
  852. v.r = k
  853. v.v = k.String()
  854. }
  855. sort.Sort(stringRvSlice(mksv))
  856. for i := range mksv {
  857. if elemsep {
  858. ee.WriteMapElemKey()
  859. }
  860. ee.EncodeStringEnc(cUTF8, mksv[i].v)
  861. if elemsep {
  862. ee.WriteMapElemValue()
  863. }
  864. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  865. }
  866. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  867. mksv := make([]uintRv, len(mks))
  868. for i, k := range mks {
  869. v := &mksv[i]
  870. v.r = k
  871. v.v = k.Uint()
  872. }
  873. sort.Sort(uintRvSlice(mksv))
  874. for i := range mksv {
  875. if elemsep {
  876. ee.WriteMapElemKey()
  877. }
  878. ee.EncodeUint(mksv[i].v)
  879. if elemsep {
  880. ee.WriteMapElemValue()
  881. }
  882. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  883. }
  884. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  885. mksv := make([]intRv, len(mks))
  886. for i, k := range mks {
  887. v := &mksv[i]
  888. v.r = k
  889. v.v = k.Int()
  890. }
  891. sort.Sort(intRvSlice(mksv))
  892. for i := range mksv {
  893. if elemsep {
  894. ee.WriteMapElemKey()
  895. }
  896. ee.EncodeInt(mksv[i].v)
  897. if elemsep {
  898. ee.WriteMapElemValue()
  899. }
  900. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  901. }
  902. case reflect.Float32:
  903. mksv := make([]floatRv, len(mks))
  904. for i, k := range mks {
  905. v := &mksv[i]
  906. v.r = k
  907. v.v = k.Float()
  908. }
  909. sort.Sort(floatRvSlice(mksv))
  910. for i := range mksv {
  911. if elemsep {
  912. ee.WriteMapElemKey()
  913. }
  914. ee.EncodeFloat32(float32(mksv[i].v))
  915. if elemsep {
  916. ee.WriteMapElemValue()
  917. }
  918. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  919. }
  920. case reflect.Float64:
  921. mksv := make([]floatRv, len(mks))
  922. for i, k := range mks {
  923. v := &mksv[i]
  924. v.r = k
  925. v.v = k.Float()
  926. }
  927. sort.Sort(floatRvSlice(mksv))
  928. for i := range mksv {
  929. if elemsep {
  930. ee.WriteMapElemKey()
  931. }
  932. ee.EncodeFloat64(mksv[i].v)
  933. if elemsep {
  934. ee.WriteMapElemValue()
  935. }
  936. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  937. }
  938. case reflect.Struct:
  939. if rv.Type() == timeTyp {
  940. mksv := make([]timeRv, len(mks))
  941. for i, k := range mks {
  942. v := &mksv[i]
  943. v.r = k
  944. v.v = rv2i(k).(time.Time)
  945. }
  946. sort.Sort(timeRvSlice(mksv))
  947. for i := range mksv {
  948. if elemsep {
  949. ee.WriteMapElemKey()
  950. }
  951. ee.EncodeTime(mksv[i].v)
  952. if elemsep {
  953. ee.WriteMapElemValue()
  954. }
  955. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  956. }
  957. break
  958. }
  959. fallthrough
  960. default:
  961. // out-of-band
  962. // first encode each key to a []byte first, then sort them, then record
  963. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  964. e2 := NewEncoderBytes(&mksv, e.hh)
  965. mksbv := make([]bytesRv, len(mks))
  966. for i, k := range mks {
  967. v := &mksbv[i]
  968. l := len(mksv)
  969. e2.MustEncode(k)
  970. v.r = k
  971. v.v = mksv[l:]
  972. }
  973. sort.Sort(bytesRvSlice(mksbv))
  974. for j := range mksbv {
  975. if elemsep {
  976. ee.WriteMapElemKey()
  977. }
  978. e.asis(mksbv[j].v)
  979. if elemsep {
  980. ee.WriteMapElemValue()
  981. }
  982. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  983. }
  984. }
  985. }
  986. // // --------------------------------------------------
  987. type encWriterSwitch struct {
  988. // wi *ioEncWriter
  989. wf bufioEncWriter
  990. wb bytesEncAppender
  991. // typ entryType
  992. wx bool // if bytes, wx=true
  993. esep bool // whether it has elem separators
  994. isas bool // whether e.as != nil
  995. js bool // captured here, so that no need to piggy back on *codecFner for this
  996. be bool // captured here, so that no need to piggy back on *codecFner for this
  997. _ [2]byte // padding
  998. // _ [2]uint64 // padding
  999. // _ uint64 // padding
  1000. }
  1001. func (z *encWriterSwitch) writeb(s []byte) {
  1002. if z.wx {
  1003. z.wb.writeb(s)
  1004. } else {
  1005. z.wf.writeb(s)
  1006. }
  1007. }
  1008. func (z *encWriterSwitch) writestr(s string) {
  1009. if z.wx {
  1010. z.wb.writestr(s)
  1011. } else {
  1012. z.wf.writestr(s)
  1013. }
  1014. }
  1015. func (z *encWriterSwitch) writen1(b1 byte) {
  1016. if z.wx {
  1017. z.wb.writen1(b1)
  1018. } else {
  1019. z.wf.writen1(b1)
  1020. }
  1021. }
  1022. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1023. if z.wx {
  1024. z.wb.writen2(b1, b2)
  1025. } else {
  1026. z.wf.writen2(b1, b2)
  1027. }
  1028. }
  1029. func (z *encWriterSwitch) atEndOfEncode() {
  1030. if z.wx {
  1031. z.wb.atEndOfEncode()
  1032. } else {
  1033. z.wf.atEndOfEncode()
  1034. }
  1035. }
  1036. /*
  1037. // ------------------------------------------
  1038. func (z *encWriterSwitch) writeb(s []byte) {
  1039. switch z.typ {
  1040. case entryTypeBytes:
  1041. z.wb.writeb(s)
  1042. case entryTypeIo:
  1043. z.wi.writeb(s)
  1044. default:
  1045. z.wf.writeb(s)
  1046. }
  1047. }
  1048. func (z *encWriterSwitch) writestr(s string) {
  1049. switch z.typ {
  1050. case entryTypeBytes:
  1051. z.wb.writestr(s)
  1052. case entryTypeIo:
  1053. z.wi.writestr(s)
  1054. default:
  1055. z.wf.writestr(s)
  1056. }
  1057. }
  1058. func (z *encWriterSwitch) writen1(b1 byte) {
  1059. switch z.typ {
  1060. case entryTypeBytes:
  1061. z.wb.writen1(b1)
  1062. case entryTypeIo:
  1063. z.wi.writen1(b1)
  1064. default:
  1065. z.wf.writen1(b1)
  1066. }
  1067. }
  1068. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1069. switch z.typ {
  1070. case entryTypeBytes:
  1071. z.wb.writen2(b1, b2)
  1072. case entryTypeIo:
  1073. z.wi.writen2(b1, b2)
  1074. default:
  1075. z.wf.writen2(b1, b2)
  1076. }
  1077. }
  1078. func (z *encWriterSwitch) atEndOfEncode() {
  1079. switch z.typ {
  1080. case entryTypeBytes:
  1081. z.wb.atEndOfEncode()
  1082. case entryTypeIo:
  1083. z.wi.atEndOfEncode()
  1084. default:
  1085. z.wf.atEndOfEncode()
  1086. }
  1087. }
  1088. // ------------------------------------------
  1089. func (z *encWriterSwitch) writeb(s []byte) {
  1090. if z.wx {
  1091. z.wb.writeb(s)
  1092. } else {
  1093. z.wi.writeb(s)
  1094. }
  1095. }
  1096. func (z *encWriterSwitch) writestr(s string) {
  1097. if z.wx {
  1098. z.wb.writestr(s)
  1099. } else {
  1100. z.wi.writestr(s)
  1101. }
  1102. }
  1103. func (z *encWriterSwitch) writen1(b1 byte) {
  1104. if z.wx {
  1105. z.wb.writen1(b1)
  1106. } else {
  1107. z.wi.writen1(b1)
  1108. }
  1109. }
  1110. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1111. if z.wx {
  1112. z.wb.writen2(b1, b2)
  1113. } else {
  1114. z.wi.writen2(b1, b2)
  1115. }
  1116. }
  1117. func (z *encWriterSwitch) atEndOfEncode() {
  1118. if z.wx {
  1119. z.wb.atEndOfEncode()
  1120. } else {
  1121. z.wi.atEndOfEncode()
  1122. }
  1123. }
  1124. */
  1125. // Encoder writes an object to an output stream in a supported format.
  1126. //
  1127. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1128. // concurrently in multiple goroutines.
  1129. //
  1130. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1131. // so its state can be reused to decode new input streams repeatedly.
  1132. // This is the idiomatic way to use.
  1133. type Encoder struct {
  1134. panicHdl
  1135. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1136. e encDriver
  1137. // NOTE: Encoder shouldn't call it's write methods,
  1138. // as the handler MAY need to do some coordination.
  1139. w *encWriterSwitch
  1140. // bw *bufio.Writer
  1141. as encDriverAsis
  1142. err error
  1143. h *BasicHandle
  1144. // ---- cpu cache line boundary? + 3
  1145. encWriterSwitch
  1146. codecFnPooler
  1147. ci set
  1148. // ---- writable fields during execution --- *try* to keep in sep cache line
  1149. // ---- cpu cache line boundary?
  1150. // b [scratchByteArrayLen]byte
  1151. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1152. b [cacheLineSize - (8 * 2)]byte // used for encoding a chan or (non-addressable) array of bytes
  1153. }
  1154. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1155. //
  1156. // For efficiency, Users are encouraged to pass in a memory buffered writer
  1157. // (eg bufio.Writer, bytes.Buffer).
  1158. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1159. e := newEncoder(h)
  1160. e.Reset(w)
  1161. return e
  1162. }
  1163. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1164. // into a byte slice, using zero-copying to temporary slices.
  1165. //
  1166. // It will potentially replace the output byte slice pointed to.
  1167. // After encoding, the out parameter contains the encoded contents.
  1168. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1169. e := newEncoder(h)
  1170. e.ResetBytes(out)
  1171. return e
  1172. }
  1173. func newEncoder(h Handle) *Encoder {
  1174. e := &Encoder{h: h.getBasicHandle(), err: errEncoderNotInitialized}
  1175. e.w = &e.encWriterSwitch
  1176. e.hh = h
  1177. e.esep = h.hasElemSeparators()
  1178. return e
  1179. }
  1180. func (e *Encoder) resetCommon() {
  1181. // e.w = &e.encWriterSwitch
  1182. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1183. e.e = e.hh.newEncDriver(e)
  1184. e.as, e.isas = e.e.(encDriverAsis)
  1185. // e.cr, _ = e.e.(containerStateRecv)
  1186. }
  1187. e.be = e.hh.isBinary()
  1188. _, e.js = e.hh.(*JsonHandle)
  1189. e.e.reset()
  1190. e.err = nil
  1191. }
  1192. // Reset resets the Encoder with a new output stream.
  1193. //
  1194. // This accommodates using the state of the Encoder,
  1195. // where it has "cached" information about sub-engines.
  1196. func (e *Encoder) Reset(w io.Writer) {
  1197. if w == nil {
  1198. return
  1199. }
  1200. // var ok bool
  1201. e.wx = false
  1202. // e.typ = entryTypeUnset
  1203. // if e.h.WriterBufferSize > 0 {
  1204. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1205. // // e.wi.bw = bw
  1206. // // e.wi.sw = bw
  1207. // // e.wi.fw = bw
  1208. // // e.wi.ww = bw
  1209. // if e.wf == nil {
  1210. // e.wf = new(bufioEncWriter)
  1211. // }
  1212. // e.wf.reset(w, e.h.WriterBufferSize)
  1213. // e.typ = entryTypeBufio
  1214. // } else {
  1215. // if e.wi == nil {
  1216. // e.wi = new(ioEncWriter)
  1217. // }
  1218. // e.wi.reset(w)
  1219. // e.typ = entryTypeIo
  1220. // }
  1221. e.wf.reset(w, e.h.WriterBufferSize)
  1222. // e.typ = entryTypeBufio
  1223. // e.w = e.wi
  1224. e.resetCommon()
  1225. }
  1226. // ResetBytes resets the Encoder with a new destination output []byte.
  1227. func (e *Encoder) ResetBytes(out *[]byte) {
  1228. if out == nil {
  1229. return
  1230. }
  1231. var in []byte
  1232. if out != nil {
  1233. in = *out
  1234. }
  1235. if in == nil {
  1236. in = make([]byte, defEncByteBufSize)
  1237. }
  1238. e.wx = true
  1239. // e.typ = entryTypeBytes
  1240. e.wb.reset(in, out)
  1241. // e.w = &e.wb
  1242. e.resetCommon()
  1243. }
  1244. // Encode writes an object into a stream.
  1245. //
  1246. // Encoding can be configured via the struct tag for the fields.
  1247. // The key (in the struct tags) that we look at is configurable.
  1248. //
  1249. // By default, we look up the "codec" key in the struct field's tags,
  1250. // and fall bak to the "json" key if "codec" is absent.
  1251. // That key in struct field's tag value is the key name,
  1252. // followed by an optional comma and options.
  1253. //
  1254. // To set an option on all fields (e.g. omitempty on all fields), you
  1255. // can create a field called _struct, and set flags on it. The options
  1256. // which can be set on _struct are:
  1257. // - omitempty: so all fields are omitted if empty
  1258. // - toarray: so struct is encoded as an array
  1259. // - int: so struct key names are encoded as signed integers (instead of strings)
  1260. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1261. // - float: so struct key names are encoded as floats (instead of strings)
  1262. // More details on these below.
  1263. //
  1264. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1265. // - the field's tag is "-", OR
  1266. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1267. //
  1268. // When encoding as a map, the first string in the tag (before the comma)
  1269. // is the map key string to use when encoding.
  1270. // ...
  1271. // This key is typically encoded as a string.
  1272. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1273. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1274. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1275. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1276. // This is done with the int,uint or float option on the _struct field (see above).
  1277. //
  1278. // However, struct values may encode as arrays. This happens when:
  1279. // - StructToArray Encode option is set, OR
  1280. // - the tag on the _struct field sets the "toarray" option
  1281. // Note that omitempty is ignored when encoding struct values as arrays,
  1282. // as an entry must be encoded for each field, to maintain its position.
  1283. //
  1284. // Values with types that implement MapBySlice are encoded as stream maps.
  1285. //
  1286. // The empty values (for omitempty option) are false, 0, any nil pointer
  1287. // or interface value, and any array, slice, map, or string of length zero.
  1288. //
  1289. // Anonymous fields are encoded inline except:
  1290. // - the struct tag specifies a replacement name (first value)
  1291. // - the field is of an interface type
  1292. //
  1293. // Examples:
  1294. //
  1295. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1296. // type MyStruct struct {
  1297. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1298. // Field1 string `codec:"-"` //skip this field
  1299. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1300. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1301. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1302. // io.Reader //use key "Reader".
  1303. // MyStruct `codec:"my1" //use key "my1".
  1304. // MyStruct //inline it
  1305. // ...
  1306. // }
  1307. //
  1308. // type MyStruct struct {
  1309. // _struct bool `codec:",toarray"` //encode struct as an array
  1310. // }
  1311. //
  1312. // type MyStruct struct {
  1313. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1314. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1315. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1316. // }
  1317. //
  1318. // The mode of encoding is based on the type of the value. When a value is seen:
  1319. // - If a Selfer, call its CodecEncodeSelf method
  1320. // - If an extension is registered for it, call that extension function
  1321. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1322. // - Else encode it based on its reflect.Kind
  1323. //
  1324. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1325. // Some formats support symbols (e.g. binc) and will properly encode the string
  1326. // only once in the stream, and use a tag to refer to it thereafter.
  1327. func (e *Encoder) Encode(v interface{}) (err error) {
  1328. // tried to use closure, as runtime optimizes defer with no params.
  1329. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1330. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1331. // defer func() { e.deferred(&err) }() }
  1332. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1333. defer e.deferred(&err)
  1334. e.MustEncode(v)
  1335. return
  1336. }
  1337. // MustEncode is like Encode, but panics if unable to Encode.
  1338. // This provides insight to the code location that triggered the error.
  1339. func (e *Encoder) MustEncode(v interface{}) {
  1340. if e.err != nil {
  1341. panic(e.err)
  1342. }
  1343. e.encode(v)
  1344. e.e.atEndOfEncode()
  1345. e.w.atEndOfEncode()
  1346. e.alwaysAtEnd()
  1347. }
  1348. func (e *Encoder) deferred(err1 *error) {
  1349. e.alwaysAtEnd()
  1350. if recoverPanicToErr {
  1351. if x := recover(); x != nil {
  1352. panicValToErr(e, x, err1)
  1353. panicValToErr(e, x, &e.err)
  1354. }
  1355. }
  1356. }
  1357. // func (e *Encoder) alwaysAtEnd() {
  1358. // e.codecFnPooler.alwaysAtEnd()
  1359. // }
  1360. func (e *Encoder) encode(iv interface{}) {
  1361. if iv == nil || definitelyNil(iv) {
  1362. e.e.EncodeNil()
  1363. return
  1364. }
  1365. if v, ok := iv.(Selfer); ok {
  1366. v.CodecEncodeSelf(e)
  1367. return
  1368. }
  1369. // a switch with only concrete types can be optimized.
  1370. // consequently, we deal with nil and interfaces outside.
  1371. switch v := iv.(type) {
  1372. case Raw:
  1373. e.rawBytes(v)
  1374. case reflect.Value:
  1375. e.encodeValue(v, nil, true)
  1376. case string:
  1377. e.e.EncodeStringEnc(cUTF8, v)
  1378. case bool:
  1379. e.e.EncodeBool(v)
  1380. case int:
  1381. e.e.EncodeInt(int64(v))
  1382. case int8:
  1383. e.e.EncodeInt(int64(v))
  1384. case int16:
  1385. e.e.EncodeInt(int64(v))
  1386. case int32:
  1387. e.e.EncodeInt(int64(v))
  1388. case int64:
  1389. e.e.EncodeInt(v)
  1390. case uint:
  1391. e.e.EncodeUint(uint64(v))
  1392. case uint8:
  1393. e.e.EncodeUint(uint64(v))
  1394. case uint16:
  1395. e.e.EncodeUint(uint64(v))
  1396. case uint32:
  1397. e.e.EncodeUint(uint64(v))
  1398. case uint64:
  1399. e.e.EncodeUint(v)
  1400. case uintptr:
  1401. e.e.EncodeUint(uint64(v))
  1402. case float32:
  1403. e.e.EncodeFloat32(v)
  1404. case float64:
  1405. e.e.EncodeFloat64(v)
  1406. case time.Time:
  1407. e.e.EncodeTime(v)
  1408. case []uint8:
  1409. e.e.EncodeStringBytesRaw(v)
  1410. case *Raw:
  1411. e.rawBytes(*v)
  1412. case *string:
  1413. e.e.EncodeStringEnc(cUTF8, *v)
  1414. case *bool:
  1415. e.e.EncodeBool(*v)
  1416. case *int:
  1417. e.e.EncodeInt(int64(*v))
  1418. case *int8:
  1419. e.e.EncodeInt(int64(*v))
  1420. case *int16:
  1421. e.e.EncodeInt(int64(*v))
  1422. case *int32:
  1423. e.e.EncodeInt(int64(*v))
  1424. case *int64:
  1425. e.e.EncodeInt(*v)
  1426. case *uint:
  1427. e.e.EncodeUint(uint64(*v))
  1428. case *uint8:
  1429. e.e.EncodeUint(uint64(*v))
  1430. case *uint16:
  1431. e.e.EncodeUint(uint64(*v))
  1432. case *uint32:
  1433. e.e.EncodeUint(uint64(*v))
  1434. case *uint64:
  1435. e.e.EncodeUint(*v)
  1436. case *uintptr:
  1437. e.e.EncodeUint(uint64(*v))
  1438. case *float32:
  1439. e.e.EncodeFloat32(*v)
  1440. case *float64:
  1441. e.e.EncodeFloat64(*v)
  1442. case *time.Time:
  1443. e.e.EncodeTime(*v)
  1444. case *[]uint8:
  1445. e.e.EncodeStringBytesRaw(*v)
  1446. default:
  1447. if !fastpathEncodeTypeSwitch(iv, e) {
  1448. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1449. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1450. }
  1451. }
  1452. }
  1453. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1454. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1455. var sptr uintptr
  1456. var rvp reflect.Value
  1457. var rvpValid bool
  1458. TOP:
  1459. switch rv.Kind() {
  1460. case reflect.Ptr:
  1461. if rv.IsNil() {
  1462. e.e.EncodeNil()
  1463. return
  1464. }
  1465. rvpValid = true
  1466. rvp = rv
  1467. rv = rv.Elem()
  1468. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1469. // TODO: Movable pointers will be an issue here. Future problem.
  1470. sptr = rv.UnsafeAddr()
  1471. break TOP
  1472. }
  1473. goto TOP
  1474. case reflect.Interface:
  1475. if rv.IsNil() {
  1476. e.e.EncodeNil()
  1477. return
  1478. }
  1479. rv = rv.Elem()
  1480. goto TOP
  1481. case reflect.Slice, reflect.Map:
  1482. if rv.IsNil() {
  1483. e.e.EncodeNil()
  1484. return
  1485. }
  1486. case reflect.Invalid, reflect.Func:
  1487. e.e.EncodeNil()
  1488. return
  1489. }
  1490. if sptr != 0 && (&e.ci).add(sptr) {
  1491. e.errorf("circular reference found: # %d", sptr)
  1492. }
  1493. if fn == nil {
  1494. rt := rv.Type()
  1495. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1496. fn = e.cfer().get(rt, checkFastpath, true)
  1497. }
  1498. if fn.i.addrE {
  1499. if rvpValid {
  1500. fn.fe(e, &fn.i, rvp)
  1501. } else if rv.CanAddr() {
  1502. fn.fe(e, &fn.i, rv.Addr())
  1503. } else {
  1504. rv2 := reflect.New(rv.Type())
  1505. rv2.Elem().Set(rv)
  1506. fn.fe(e, &fn.i, rv2)
  1507. }
  1508. } else {
  1509. fn.fe(e, &fn.i, rv)
  1510. }
  1511. if sptr != 0 {
  1512. (&e.ci).remove(sptr)
  1513. }
  1514. }
  1515. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1516. // if fnerr != nil {
  1517. // panic(fnerr)
  1518. // }
  1519. // if bs == nil {
  1520. // e.e.EncodeNil()
  1521. // } else if asis {
  1522. // e.asis(bs)
  1523. // } else {
  1524. // e.e.EncodeStringBytes(c, bs)
  1525. // }
  1526. // }
  1527. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1528. if fnerr != nil {
  1529. panic(fnerr)
  1530. }
  1531. if bs == nil {
  1532. e.e.EncodeNil()
  1533. } else {
  1534. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1535. }
  1536. }
  1537. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1538. if fnerr != nil {
  1539. panic(fnerr)
  1540. }
  1541. if bs == nil {
  1542. e.e.EncodeNil()
  1543. } else {
  1544. e.asis(bs)
  1545. }
  1546. }
  1547. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1548. if fnerr != nil {
  1549. panic(fnerr)
  1550. }
  1551. if bs == nil {
  1552. e.e.EncodeNil()
  1553. } else {
  1554. e.e.EncodeStringBytesRaw(bs)
  1555. }
  1556. }
  1557. func (e *Encoder) asis(v []byte) {
  1558. if e.isas {
  1559. e.as.EncodeAsis(v)
  1560. } else {
  1561. e.w.writeb(v)
  1562. }
  1563. }
  1564. func (e *Encoder) rawBytes(vv Raw) {
  1565. v := []byte(vv)
  1566. if !e.h.Raw {
  1567. e.errorf("Raw values cannot be encoded: %v", v)
  1568. }
  1569. e.asis(v)
  1570. }
  1571. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1572. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1573. }