encode.go 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "bufio"
  6. "encoding"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "sort"
  11. "sync"
  12. )
  13. const defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  14. // AsSymbolFlag defines what should be encoded as symbols.
  15. type AsSymbolFlag uint8
  16. const (
  17. // AsSymbolDefault means only encode struct field names as symbols.
  18. AsSymbolDefault AsSymbolFlag = iota
  19. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  20. AsSymbolAll = 0xfe
  21. // AsSymbolNone means do not encode anything as a symbol.
  22. AsSymbolNone = 1 << iota
  23. // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
  24. AsSymbolMapStringKeysFlag
  25. // AsSymbolStructFieldName means encode struct field names as symbols.
  26. AsSymbolStructFieldNameFlag
  27. )
  28. // encWriter abstracts writing to a byte array or to an io.Writer.
  29. type encWriter interface {
  30. writeb([]byte)
  31. writestr(string)
  32. writen1(byte)
  33. writen2(byte, byte)
  34. atEndOfEncode()
  35. }
  36. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  37. type encDriver interface {
  38. // IsBuiltinType(rt uintptr) bool
  39. EncodeBuiltin(rt uintptr, v interface{})
  40. EncodeNil()
  41. EncodeInt(i int64)
  42. EncodeUint(i uint64)
  43. EncodeBool(b bool)
  44. EncodeFloat32(f float32)
  45. EncodeFloat64(f float64)
  46. // encodeExtPreamble(xtag byte, length int)
  47. EncodeRawExt(re *RawExt, e *Encoder)
  48. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  49. WriteArrayStart(length int)
  50. WriteArrayElem()
  51. WriteArrayEnd()
  52. WriteMapStart(length int)
  53. WriteMapElemKey()
  54. WriteMapElemValue()
  55. WriteMapEnd()
  56. EncodeString(c charEncoding, v string)
  57. EncodeSymbol(v string)
  58. EncodeStringBytes(c charEncoding, v []byte)
  59. //TODO
  60. //encBignum(f *big.Int)
  61. //encStringRunes(c charEncoding, v []rune)
  62. reset()
  63. atEndOfEncode()
  64. }
  65. type ioEncStringWriter interface {
  66. WriteString(s string) (n int, err error)
  67. }
  68. type encDriverAsis interface {
  69. EncodeAsis(v []byte)
  70. }
  71. // type encNoSeparator struct{}
  72. // func (_ encNoSeparator) EncodeEnd() {}
  73. type encDriverNoopContainerWriter struct{}
  74. func (_ encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  75. func (_ encDriverNoopContainerWriter) WriteArrayElem() {}
  76. func (_ encDriverNoopContainerWriter) WriteArrayEnd() {}
  77. func (_ encDriverNoopContainerWriter) WriteMapStart(length int) {}
  78. func (_ encDriverNoopContainerWriter) WriteMapElemKey() {}
  79. func (_ encDriverNoopContainerWriter) WriteMapElemValue() {}
  80. func (_ encDriverNoopContainerWriter) WriteMapEnd() {}
  81. func (_ encDriverNoopContainerWriter) atEndOfEncode() {}
  82. // type ioEncWriterWriter interface {
  83. // WriteByte(c byte) error
  84. // WriteString(s string) (n int, err error)
  85. // Write(p []byte) (n int, err error)
  86. // }
  87. type EncodeOptions struct {
  88. // Encode a struct as an array, and not as a map
  89. StructToArray bool
  90. // Canonical representation means that encoding a value will always result in the same
  91. // sequence of bytes.
  92. //
  93. // This only affects maps, as the iteration order for maps is random.
  94. //
  95. // The implementation MAY use the natural sort order for the map keys if possible:
  96. //
  97. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  98. // then the map keys are first sorted in natural order and then written
  99. // with corresponding map values to the strema.
  100. // - If there is no natural sort order, then the map keys will first be
  101. // encoded into []byte, and then sorted,
  102. // before writing the sorted keys and the corresponding map values to the stream.
  103. //
  104. Canonical bool
  105. // CheckCircularRef controls whether we check for circular references
  106. // and error fast during an encode.
  107. //
  108. // If enabled, an error is received if a pointer to a struct
  109. // references itself either directly or through one of its fields (iteratively).
  110. //
  111. // This is opt-in, as there may be a performance hit to checking circular references.
  112. CheckCircularRef bool
  113. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  114. // when checking if a value is empty.
  115. //
  116. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  117. RecursiveEmptyCheck bool
  118. // Raw controls whether we encode Raw values.
  119. // This is a "dangerous" option and must be explicitly set.
  120. // If set, we blindly encode Raw values as-is, without checking
  121. // if they are a correct representation of a value in that format.
  122. // If unset, we error out.
  123. Raw bool
  124. // AsSymbols defines what should be encoded as symbols.
  125. //
  126. // Encoding as symbols can reduce the encoded size significantly.
  127. //
  128. // However, during decoding, each string to be encoded as a symbol must
  129. // be checked to see if it has been seen before. Consequently, encoding time
  130. // will increase if using symbols, because string comparisons has a clear cost.
  131. //
  132. // Sample values:
  133. // AsSymbolNone
  134. // AsSymbolAll
  135. // AsSymbolMapStringKeys
  136. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  137. AsSymbols AsSymbolFlag
  138. // WriterBufferSize is the size of the buffer used when writing.
  139. //
  140. // if > 0, we use a smart buffer internally for performance purposes.
  141. WriterBufferSize int
  142. }
  143. // ---------------------------------------------
  144. type simpleIoEncWriter struct {
  145. io.Writer
  146. }
  147. // type bufIoEncWriter struct {
  148. // w io.Writer
  149. // buf []byte
  150. // err error
  151. // }
  152. // func (x *bufIoEncWriter) Write(b []byte) (n int, err error) {
  153. // if x.err != nil {
  154. // return 0, x.err
  155. // }
  156. // if cap(x.buf)-len(x.buf) >= len(b) {
  157. // x.buf = append(x.buf, b)
  158. // return len(b), nil
  159. // }
  160. // n, err = x.w.Write(x.buf)
  161. // if err != nil {
  162. // x.err = err
  163. // return 0, x.err
  164. // }
  165. // n, err = x.w.Write(b)
  166. // x.err = err
  167. // return
  168. // }
  169. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  170. type ioEncWriter struct {
  171. w io.Writer
  172. ww io.Writer
  173. bw io.ByteWriter
  174. sw ioEncStringWriter
  175. fw ioFlusher
  176. b [8]byte
  177. }
  178. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  179. // x.bs[0] = b
  180. // _, err = x.ww.Write(x.bs[:])
  181. z.b[0] = b
  182. _, err = z.w.Write(z.b[:1])
  183. return
  184. }
  185. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  186. return z.w.Write(bytesView(s))
  187. }
  188. func (z *ioEncWriter) writeb(bs []byte) {
  189. // if len(bs) == 0 {
  190. // return
  191. // }
  192. if _, err := z.ww.Write(bs); err != nil {
  193. panic(err)
  194. }
  195. }
  196. func (z *ioEncWriter) writestr(s string) {
  197. // if len(s) == 0 {
  198. // return
  199. // }
  200. if _, err := z.sw.WriteString(s); err != nil {
  201. panic(err)
  202. }
  203. }
  204. func (z *ioEncWriter) writen1(b byte) {
  205. if err := z.bw.WriteByte(b); err != nil {
  206. panic(err)
  207. }
  208. }
  209. func (z *ioEncWriter) writen2(b1, b2 byte) {
  210. var err error
  211. if err = z.bw.WriteByte(b1); err == nil {
  212. if err = z.bw.WriteByte(b2); err == nil {
  213. return
  214. }
  215. }
  216. panic(err)
  217. }
  218. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  219. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  220. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  221. // panic(err)
  222. // }
  223. // }
  224. func (z *ioEncWriter) atEndOfEncode() {
  225. if z.fw != nil {
  226. z.fw.Flush()
  227. }
  228. }
  229. // ----------------------------------------
  230. // bytesEncWriter implements encWriter and can write to an byte slice.
  231. // It is used by Marshal function.
  232. type bytesEncWriter struct {
  233. b []byte
  234. c int // cursor
  235. out *[]byte // write out on atEndOfEncode
  236. }
  237. func (z *bytesEncWriter) writeb(s []byte) {
  238. oc, a := z.growNoAlloc(len(s))
  239. if a {
  240. z.growAlloc(len(s), oc)
  241. }
  242. copy(z.b[oc:], s)
  243. }
  244. func (z *bytesEncWriter) writestr(s string) {
  245. oc, a := z.growNoAlloc(len(s))
  246. if a {
  247. z.growAlloc(len(s), oc)
  248. }
  249. copy(z.b[oc:], s)
  250. }
  251. func (z *bytesEncWriter) writen1(b1 byte) {
  252. oc, a := z.growNoAlloc(1)
  253. if a {
  254. z.growAlloc(1, oc)
  255. }
  256. z.b[oc] = b1
  257. }
  258. func (z *bytesEncWriter) writen2(b1, b2 byte) {
  259. oc, a := z.growNoAlloc(2)
  260. if a {
  261. z.growAlloc(2, oc)
  262. }
  263. z.b[oc+1] = b2
  264. z.b[oc] = b1
  265. }
  266. func (z *bytesEncWriter) atEndOfEncode() {
  267. *(z.out) = z.b[:z.c]
  268. }
  269. // have a growNoalloc(n int), which can be inlined.
  270. // if allocation is needed, then call growAlloc(n int)
  271. func (z *bytesEncWriter) growNoAlloc(n int) (oldcursor int, allocNeeded bool) {
  272. oldcursor = z.c
  273. z.c = z.c + n
  274. if z.c > len(z.b) {
  275. if z.c > cap(z.b) {
  276. allocNeeded = true
  277. } else {
  278. z.b = z.b[:cap(z.b)]
  279. }
  280. }
  281. return
  282. }
  283. func (z *bytesEncWriter) growAlloc(n int, oldcursor int) {
  284. // appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
  285. // bytes.Buffer model (2*cap + n): much better
  286. // bs := make([]byte, 2*cap(z.b)+n)
  287. bs := make([]byte, growCap(cap(z.b), 1, n))
  288. copy(bs, z.b[:oldcursor])
  289. z.b = bs
  290. }
  291. // ---------------------------------------------
  292. func (e *Encoder) builtin(f *codecFnInfo, rv reflect.Value) {
  293. e.e.EncodeBuiltin(f.ti.rtid, rv2i(rv))
  294. }
  295. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  296. // rev := rv2i(rv).(RawExt)
  297. // e.e.EncodeRawExt(&rev, e)
  298. // var re *RawExt
  299. // if rv.CanAddr() {
  300. // re = rv2i(rv.Addr()).(*RawExt)
  301. // } else {
  302. // rev := rv2i(rv).(RawExt)
  303. // re = &rev
  304. // }
  305. // e.e.EncodeRawExt(re, e)
  306. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  307. }
  308. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  309. // if this is a struct|array and it was addressable, then pass the address directly (not the value)
  310. // if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
  311. // rv = rv.Addr()
  312. // }
  313. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  314. }
  315. // func rviptr(rv reflect.Value) (v interface{}) {
  316. // // If a non-pointer was passed to Encode(), then that value is not addressable.
  317. // // Take addr if addressable, else copy value to an addressable value.
  318. // if rv.CanAddr() {
  319. // v = rv2i(rv.Addr())
  320. // } else {
  321. // rv2 := reflect.New(rv.Type())
  322. // rv2.Elem().Set(rv)
  323. // v = rv2i(rv2)
  324. // }
  325. // return v
  326. // }
  327. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  328. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  329. }
  330. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  331. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  332. e.marshal(bs, fnerr, false, c_RAW)
  333. }
  334. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  335. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  336. e.marshal(bs, fnerr, false, c_UTF8)
  337. }
  338. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  339. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  340. e.marshal(bs, fnerr, true, c_UTF8)
  341. }
  342. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  343. e.rawBytes(rv2i(rv).(Raw))
  344. }
  345. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  346. e.e.EncodeNil()
  347. }
  348. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  349. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  350. }
  351. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  352. ti := f.ti
  353. ee := e.e
  354. // array may be non-addressable, so we have to manage with care
  355. // (don't call rv.Bytes, rv.Slice, etc).
  356. // E.g. type struct S{B [2]byte};
  357. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  358. if f.seq != seqTypeArray {
  359. if rv.IsNil() {
  360. ee.EncodeNil()
  361. return
  362. }
  363. // If in this method, then there was no extension function defined.
  364. // So it's okay to treat as []byte.
  365. if ti.rtid == uint8SliceTypId {
  366. ee.EncodeStringBytes(c_RAW, rv.Bytes())
  367. return
  368. }
  369. }
  370. elemsep := e.hh.hasElemSeparators()
  371. rtelem := ti.rt.Elem()
  372. l := rv.Len()
  373. if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
  374. switch f.seq {
  375. case seqTypeArray:
  376. if rv.CanAddr() {
  377. ee.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
  378. } else {
  379. var bs []byte
  380. if l <= cap(e.b) {
  381. bs = e.b[:l]
  382. } else {
  383. bs = make([]byte, l)
  384. }
  385. reflect.Copy(reflect.ValueOf(bs), rv)
  386. ee.EncodeStringBytes(c_RAW, bs)
  387. }
  388. return
  389. case seqTypeSlice:
  390. ee.EncodeStringBytes(c_RAW, rv.Bytes())
  391. return
  392. }
  393. }
  394. if ti.rtid == uint8SliceTypId && f.seq == seqTypeChan {
  395. bs := e.b[:0]
  396. // do not use range, so that the number of elements encoded
  397. // does not change, and encoding does not hang waiting on someone to close chan.
  398. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  399. ch := rv2i(rv).(<-chan byte)
  400. for i := 0; i < l; i++ {
  401. bs = append(bs, <-ch)
  402. }
  403. ee.EncodeStringBytes(c_RAW, bs)
  404. return
  405. }
  406. if ti.mbs {
  407. if l%2 == 1 {
  408. e.errorf("mapBySlice requires even slice length, but got %v", l)
  409. return
  410. }
  411. ee.WriteMapStart(l / 2)
  412. } else {
  413. ee.WriteArrayStart(l)
  414. }
  415. if l > 0 {
  416. var fn *codecFn
  417. for rtelem.Kind() == reflect.Ptr {
  418. rtelem = rtelem.Elem()
  419. }
  420. // if kind is reflect.Interface, do not pre-determine the
  421. // encoding type, because preEncodeValue may break it down to
  422. // a concrete type and kInterface will bomb.
  423. if rtelem.Kind() != reflect.Interface {
  424. fn = e.cf.get(rtelem, true, true)
  425. }
  426. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  427. for j := 0; j < l; j++ {
  428. if elemsep {
  429. if ti.mbs {
  430. if j%2 == 0 {
  431. ee.WriteMapElemKey()
  432. } else {
  433. ee.WriteMapElemValue()
  434. }
  435. } else {
  436. ee.WriteArrayElem()
  437. }
  438. }
  439. if f.seq == seqTypeChan {
  440. if rv2, ok2 := rv.Recv(); ok2 {
  441. e.encodeValue(rv2, fn, true)
  442. } else {
  443. ee.EncodeNil() // WE HAVE TO DO SOMETHING, so nil if nothing received.
  444. }
  445. } else {
  446. e.encodeValue(rv.Index(j), fn, true)
  447. }
  448. }
  449. }
  450. if ti.mbs {
  451. ee.WriteMapEnd()
  452. } else {
  453. ee.WriteArrayEnd()
  454. }
  455. }
  456. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  457. fti := f.ti
  458. elemsep := e.hh.hasElemSeparators()
  459. tisfi := fti.sfip
  460. toMap := !(fti.toArray || e.h.StructToArray)
  461. if toMap {
  462. tisfi = fti.sfi
  463. }
  464. ee := e.e
  465. sfn := structFieldNode{v: rv, update: false}
  466. if toMap {
  467. ee.WriteMapStart(len(tisfi))
  468. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  469. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  470. if !elemsep {
  471. for _, si := range tisfi {
  472. if asSymbols {
  473. ee.EncodeSymbol(si.encName)
  474. } else {
  475. ee.EncodeString(c_UTF8, si.encName)
  476. }
  477. e.encodeValue(sfn.field(si), nil, true)
  478. }
  479. } else {
  480. for _, si := range tisfi {
  481. ee.WriteMapElemKey()
  482. if asSymbols {
  483. ee.EncodeSymbol(si.encName)
  484. } else {
  485. ee.EncodeString(c_UTF8, si.encName)
  486. }
  487. ee.WriteMapElemValue()
  488. e.encodeValue(sfn.field(si), nil, true)
  489. }
  490. }
  491. ee.WriteMapEnd()
  492. } else {
  493. ee.WriteArrayStart(len(tisfi))
  494. if !elemsep {
  495. for _, si := range tisfi {
  496. e.encodeValue(sfn.field(si), nil, true)
  497. }
  498. } else {
  499. for _, si := range tisfi {
  500. ee.WriteArrayElem()
  501. e.encodeValue(sfn.field(si), nil, true)
  502. }
  503. }
  504. ee.WriteArrayEnd()
  505. }
  506. }
  507. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  508. fti := f.ti
  509. elemsep := e.hh.hasElemSeparators()
  510. tisfi := fti.sfip
  511. toMap := !(fti.toArray || e.h.StructToArray)
  512. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  513. if toMap {
  514. tisfi = fti.sfi
  515. }
  516. newlen := len(fti.sfi)
  517. ee := e.e
  518. // Use sync.Pool to reduce allocating slices unnecessarily.
  519. // The cost of sync.Pool is less than the cost of new allocation.
  520. //
  521. // Each element of the array pools one of encStructPool(8|16|32|64).
  522. // It allows the re-use of slices up to 64 in length.
  523. // A performance cost of encoding structs was collecting
  524. // which values were empty and should be omitted.
  525. // We needed slices of reflect.Value and string to collect them.
  526. // This shared pool reduces the amount of unnecessary creation we do.
  527. // The cost is that of locking sometimes, but sync.Pool is efficient
  528. // enough to reduce thread contention.
  529. var spool *sync.Pool
  530. var poolv interface{}
  531. var fkvs []stringRv
  532. if newlen <= 8 {
  533. spool, poolv = pool.stringRv8()
  534. fkvs = poolv.(*[8]stringRv)[:newlen]
  535. } else if newlen <= 16 {
  536. spool, poolv = pool.stringRv16()
  537. fkvs = poolv.(*[16]stringRv)[:newlen]
  538. } else if newlen <= 32 {
  539. spool, poolv = pool.stringRv32()
  540. fkvs = poolv.(*[32]stringRv)[:newlen]
  541. } else if newlen <= 64 {
  542. spool, poolv = pool.stringRv64()
  543. fkvs = poolv.(*[64]stringRv)[:newlen]
  544. } else if newlen <= 128 {
  545. spool, poolv = pool.stringRv128()
  546. fkvs = poolv.(*[128]stringRv)[:newlen]
  547. } else {
  548. fkvs = make([]stringRv, newlen)
  549. }
  550. newlen = 0
  551. var kv stringRv
  552. recur := e.h.RecursiveEmptyCheck
  553. sfn := structFieldNode{v: rv, update: false}
  554. for _, si := range tisfi {
  555. // kv.r = si.field(rv, false)
  556. kv.r = sfn.field(si)
  557. if toMap {
  558. if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
  559. continue
  560. }
  561. kv.v = si.encName
  562. } else {
  563. // use the zero value.
  564. // if a reference or struct, set to nil (so you do not output too much)
  565. if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
  566. switch kv.r.Kind() {
  567. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  568. kv.r = reflect.Value{} //encode as nil
  569. }
  570. }
  571. }
  572. fkvs[newlen] = kv
  573. newlen++
  574. }
  575. if toMap {
  576. ee.WriteMapStart(newlen)
  577. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  578. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  579. if !elemsep {
  580. for j := 0; j < newlen; j++ {
  581. kv = fkvs[j]
  582. if asSymbols {
  583. ee.EncodeSymbol(kv.v)
  584. } else {
  585. ee.EncodeString(c_UTF8, kv.v)
  586. }
  587. e.encodeValue(kv.r, nil, true)
  588. }
  589. } else {
  590. for j := 0; j < newlen; j++ {
  591. kv = fkvs[j]
  592. ee.WriteMapElemKey()
  593. if asSymbols {
  594. ee.EncodeSymbol(kv.v)
  595. } else {
  596. ee.EncodeString(c_UTF8, kv.v)
  597. }
  598. ee.WriteMapElemValue()
  599. e.encodeValue(kv.r, nil, true)
  600. }
  601. }
  602. ee.WriteMapEnd()
  603. } else {
  604. ee.WriteArrayStart(newlen)
  605. if !elemsep {
  606. for j := 0; j < newlen; j++ {
  607. e.encodeValue(fkvs[j].r, nil, true)
  608. }
  609. } else {
  610. for j := 0; j < newlen; j++ {
  611. ee.WriteArrayElem()
  612. e.encodeValue(fkvs[j].r, nil, true)
  613. }
  614. }
  615. ee.WriteArrayEnd()
  616. }
  617. // do not use defer. Instead, use explicit pool return at end of function.
  618. // defer has a cost we are trying to avoid.
  619. // If there is a panic and these slices are not returned, it is ok.
  620. if spool != nil {
  621. spool.Put(poolv)
  622. }
  623. }
  624. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  625. ee := e.e
  626. if rv.IsNil() {
  627. ee.EncodeNil()
  628. return
  629. }
  630. l := rv.Len()
  631. ee.WriteMapStart(l)
  632. elemsep := e.hh.hasElemSeparators()
  633. if l == 0 {
  634. ee.WriteMapEnd()
  635. return
  636. }
  637. var asSymbols bool
  638. // determine the underlying key and val encFn's for the map.
  639. // This eliminates some work which is done for each loop iteration i.e.
  640. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  641. //
  642. // However, if kind is reflect.Interface, do not pre-determine the
  643. // encoding type, because preEncodeValue may break it down to
  644. // a concrete type and kInterface will bomb.
  645. var keyFn, valFn *codecFn
  646. ti := f.ti
  647. rtkey0 := ti.rt.Key()
  648. rtkey := rtkey0
  649. rtval0 := ti.rt.Elem()
  650. rtval := rtval0
  651. rtkeyid := rt2id(rtkey0)
  652. for rtval.Kind() == reflect.Ptr {
  653. rtval = rtval.Elem()
  654. }
  655. if rtval.Kind() != reflect.Interface {
  656. valFn = e.cf.get(rtval, true, true)
  657. }
  658. mks := rv.MapKeys()
  659. if e.h.Canonical {
  660. e.kMapCanonical(rtkey, rv, mks, valFn, asSymbols)
  661. ee.WriteMapEnd()
  662. return
  663. }
  664. var keyTypeIsString = rtkeyid == stringTypId
  665. if keyTypeIsString {
  666. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  667. } else {
  668. for rtkey.Kind() == reflect.Ptr {
  669. rtkey = rtkey.Elem()
  670. }
  671. if rtkey.Kind() != reflect.Interface {
  672. rtkeyid = rt2id(rtkey)
  673. keyFn = e.cf.get(rtkey, true, true)
  674. }
  675. }
  676. // for j, lmks := 0, len(mks); j < lmks; j++ {
  677. for j := range mks {
  678. if elemsep {
  679. ee.WriteMapElemKey()
  680. }
  681. if keyTypeIsString {
  682. if asSymbols {
  683. ee.EncodeSymbol(mks[j].String())
  684. } else {
  685. ee.EncodeString(c_UTF8, mks[j].String())
  686. }
  687. } else {
  688. e.encodeValue(mks[j], keyFn, true)
  689. }
  690. if elemsep {
  691. ee.WriteMapElemValue()
  692. }
  693. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  694. }
  695. ee.WriteMapEnd()
  696. }
  697. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn, asSymbols bool) {
  698. ee := e.e
  699. elemsep := e.hh.hasElemSeparators()
  700. // we previously did out-of-band if an extension was registered.
  701. // This is not necessary, as the natural kind is sufficient for ordering.
  702. // WHAT IS THIS? rtkeyid can never be a []uint8, per spec
  703. // if rtkeyid == uint8SliceTypId {
  704. // mksv := make([]bytesRv, len(mks))
  705. // for i, k := range mks {
  706. // v := &mksv[i]
  707. // v.r = k
  708. // v.v = k.Bytes()
  709. // }
  710. // sort.Sort(bytesRvSlice(mksv))
  711. // for i := range mksv {
  712. // if elemsep {
  713. // ee.WriteMapElemKey()
  714. // }
  715. // ee.EncodeStringBytes(c_RAW, mksv[i].v)
  716. // if elemsep {
  717. // ee.WriteMapElemValue()
  718. // }
  719. // e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  720. // }
  721. // return
  722. // }
  723. switch rtkey.Kind() {
  724. case reflect.Bool:
  725. mksv := make([]boolRv, len(mks))
  726. for i, k := range mks {
  727. v := &mksv[i]
  728. v.r = k
  729. v.v = k.Bool()
  730. }
  731. sort.Sort(boolRvSlice(mksv))
  732. for i := range mksv {
  733. if elemsep {
  734. ee.WriteMapElemKey()
  735. }
  736. ee.EncodeBool(mksv[i].v)
  737. if elemsep {
  738. ee.WriteMapElemValue()
  739. }
  740. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  741. }
  742. case reflect.String:
  743. mksv := make([]stringRv, len(mks))
  744. for i, k := range mks {
  745. v := &mksv[i]
  746. v.r = k
  747. v.v = k.String()
  748. }
  749. sort.Sort(stringRvSlice(mksv))
  750. for i := range mksv {
  751. if elemsep {
  752. ee.WriteMapElemKey()
  753. }
  754. if asSymbols {
  755. ee.EncodeSymbol(mksv[i].v)
  756. } else {
  757. ee.EncodeString(c_UTF8, mksv[i].v)
  758. }
  759. if elemsep {
  760. ee.WriteMapElemValue()
  761. }
  762. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  763. }
  764. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  765. mksv := make([]uintRv, len(mks))
  766. for i, k := range mks {
  767. v := &mksv[i]
  768. v.r = k
  769. v.v = k.Uint()
  770. }
  771. sort.Sort(uintRvSlice(mksv))
  772. for i := range mksv {
  773. if elemsep {
  774. ee.WriteMapElemKey()
  775. }
  776. ee.EncodeUint(mksv[i].v)
  777. if elemsep {
  778. ee.WriteMapElemValue()
  779. }
  780. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  781. }
  782. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  783. mksv := make([]intRv, len(mks))
  784. for i, k := range mks {
  785. v := &mksv[i]
  786. v.r = k
  787. v.v = k.Int()
  788. }
  789. sort.Sort(intRvSlice(mksv))
  790. for i := range mksv {
  791. if elemsep {
  792. ee.WriteMapElemKey()
  793. }
  794. ee.EncodeInt(mksv[i].v)
  795. if elemsep {
  796. ee.WriteMapElemValue()
  797. }
  798. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  799. }
  800. case reflect.Float32:
  801. mksv := make([]floatRv, len(mks))
  802. for i, k := range mks {
  803. v := &mksv[i]
  804. v.r = k
  805. v.v = k.Float()
  806. }
  807. sort.Sort(floatRvSlice(mksv))
  808. for i := range mksv {
  809. if elemsep {
  810. ee.WriteMapElemKey()
  811. }
  812. ee.EncodeFloat32(float32(mksv[i].v))
  813. if elemsep {
  814. ee.WriteMapElemValue()
  815. }
  816. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  817. }
  818. case reflect.Float64:
  819. mksv := make([]floatRv, len(mks))
  820. for i, k := range mks {
  821. v := &mksv[i]
  822. v.r = k
  823. v.v = k.Float()
  824. }
  825. sort.Sort(floatRvSlice(mksv))
  826. for i := range mksv {
  827. if elemsep {
  828. ee.WriteMapElemKey()
  829. }
  830. ee.EncodeFloat64(mksv[i].v)
  831. if elemsep {
  832. ee.WriteMapElemValue()
  833. }
  834. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  835. }
  836. default:
  837. // out-of-band
  838. // first encode each key to a []byte first, then sort them, then record
  839. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  840. e2 := NewEncoderBytes(&mksv, e.hh)
  841. mksbv := make([]bytesRv, len(mks))
  842. for i, k := range mks {
  843. v := &mksbv[i]
  844. l := len(mksv)
  845. e2.MustEncode(k)
  846. v.r = k
  847. v.v = mksv[l:]
  848. }
  849. sort.Sort(bytesRvSlice(mksbv))
  850. for j := range mksbv {
  851. if elemsep {
  852. ee.WriteMapElemKey()
  853. }
  854. e.asis(mksbv[j].v)
  855. if elemsep {
  856. ee.WriteMapElemValue()
  857. }
  858. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  859. }
  860. }
  861. }
  862. // // --------------------------------------------------
  863. // An Encoder writes an object to an output stream in the codec format.
  864. type Encoder struct {
  865. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  866. e encDriver
  867. // NOTE: Encoder shouldn't call it's write methods,
  868. // as the handler MAY need to do some coordination.
  869. w encWriter
  870. hh Handle
  871. h *BasicHandle
  872. // ---- cpu cache line boundary?
  873. wi ioEncWriter
  874. wb bytesEncWriter
  875. bw bufio.Writer
  876. // cr containerStateRecv
  877. as encDriverAsis
  878. // ---- cpu cache line boundary?
  879. ci set
  880. err error
  881. b [scratchByteArrayLen]byte
  882. cf codecFner
  883. }
  884. // NewEncoder returns an Encoder for encoding into an io.Writer.
  885. //
  886. // For efficiency, Users are encouraged to pass in a memory buffered writer
  887. // (eg bufio.Writer, bytes.Buffer).
  888. func NewEncoder(w io.Writer, h Handle) *Encoder {
  889. e := newEncoder(h)
  890. e.Reset(w)
  891. return e
  892. }
  893. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  894. // into a byte slice, using zero-copying to temporary slices.
  895. //
  896. // It will potentially replace the output byte slice pointed to.
  897. // After encoding, the out parameter contains the encoded contents.
  898. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  899. e := newEncoder(h)
  900. e.ResetBytes(out)
  901. return e
  902. }
  903. func newEncoder(h Handle) *Encoder {
  904. e := &Encoder{hh: h, h: h.getBasicHandle()}
  905. e.e = h.newEncDriver(e)
  906. e.as, _ = e.e.(encDriverAsis)
  907. // e.cr, _ = e.e.(containerStateRecv)
  908. return e
  909. }
  910. // Reset the Encoder with a new output stream.
  911. //
  912. // This accommodates using the state of the Encoder,
  913. // where it has "cached" information about sub-engines.
  914. func (e *Encoder) Reset(w io.Writer) {
  915. var ok bool
  916. e.wi.w = w
  917. if e.h.WriterBufferSize > 0 {
  918. bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  919. e.bw = *bw
  920. e.wi.bw = &e.bw
  921. e.wi.sw = &e.bw
  922. e.wi.fw = &e.bw
  923. e.wi.ww = &e.bw
  924. } else {
  925. if e.wi.bw, ok = w.(io.ByteWriter); !ok {
  926. e.wi.bw = &e.wi
  927. }
  928. if e.wi.sw, ok = w.(ioEncStringWriter); !ok {
  929. e.wi.sw = &e.wi
  930. }
  931. e.wi.fw, _ = w.(ioFlusher)
  932. e.wi.ww = w
  933. }
  934. e.w = &e.wi
  935. e.e.reset()
  936. e.cf.reset(e.hh)
  937. e.err = nil
  938. }
  939. func (e *Encoder) ResetBytes(out *[]byte) {
  940. in := *out
  941. if in == nil {
  942. in = make([]byte, defEncByteBufSize)
  943. }
  944. e.wb.b, e.wb.out, e.wb.c = in, out, 0
  945. e.w = &e.wb
  946. e.e.reset()
  947. e.cf.reset(e.hh)
  948. e.err = nil
  949. }
  950. // Encode writes an object into a stream.
  951. //
  952. // Encoding can be configured via the struct tag for the fields.
  953. // The "codec" key in struct field's tag value is the key name,
  954. // followed by an optional comma and options.
  955. // Note that the "json" key is used in the absence of the "codec" key.
  956. //
  957. // To set an option on all fields (e.g. omitempty on all fields), you
  958. // can create a field called _struct, and set flags on it.
  959. //
  960. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  961. // - the field's tag is "-", OR
  962. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  963. //
  964. // When encoding as a map, the first string in the tag (before the comma)
  965. // is the map key string to use when encoding.
  966. //
  967. // However, struct values may encode as arrays. This happens when:
  968. // - StructToArray Encode option is set, OR
  969. // - the tag on the _struct field sets the "toarray" option
  970. // Note that omitempty is ignored when encoding struct values as arrays,
  971. // as an entry must be encoded for each field, to maintain its position.
  972. //
  973. // Values with types that implement MapBySlice are encoded as stream maps.
  974. //
  975. // The empty values (for omitempty option) are false, 0, any nil pointer
  976. // or interface value, and any array, slice, map, or string of length zero.
  977. //
  978. // Anonymous fields are encoded inline except:
  979. // - the struct tag specifies a replacement name (first value)
  980. // - the field is of an interface type
  981. //
  982. // Examples:
  983. //
  984. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  985. // type MyStruct struct {
  986. // _struct bool `codec:",omitempty"` //set omitempty for every field
  987. // Field1 string `codec:"-"` //skip this field
  988. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  989. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  990. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  991. // io.Reader //use key "Reader".
  992. // MyStruct `codec:"my1" //use key "my1".
  993. // MyStruct //inline it
  994. // ...
  995. // }
  996. //
  997. // type MyStruct struct {
  998. // _struct bool `codec:",toarray"` //encode struct as an array
  999. // }
  1000. //
  1001. // The mode of encoding is based on the type of the value. When a value is seen:
  1002. // - If a Selfer, call its CodecEncodeSelf method
  1003. // - If an extension is registered for it, call that extension function
  1004. // - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
  1005. // - Else encode it based on its reflect.Kind
  1006. //
  1007. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1008. // Some formats support symbols (e.g. binc) and will properly encode the string
  1009. // only once in the stream, and use a tag to refer to it thereafter.
  1010. func (e *Encoder) Encode(v interface{}) (err error) {
  1011. defer panicToErrs2(&e.err, &err)
  1012. e.MustEncode(v)
  1013. return
  1014. }
  1015. // MustEncode is like Encode, but panics if unable to Encode.
  1016. // This provides insight to the code location that triggered the error.
  1017. func (e *Encoder) MustEncode(v interface{}) {
  1018. if e.err != nil {
  1019. panic(e.err)
  1020. }
  1021. e.encode(v)
  1022. e.e.atEndOfEncode()
  1023. e.w.atEndOfEncode()
  1024. }
  1025. func (e *Encoder) encode(iv interface{}) {
  1026. if iv == nil || definitelyNil(iv) {
  1027. e.e.EncodeNil()
  1028. return
  1029. }
  1030. if v, ok := iv.(Selfer); ok {
  1031. v.CodecEncodeSelf(e)
  1032. return
  1033. }
  1034. switch v := iv.(type) {
  1035. // case nil:
  1036. // e.e.EncodeNil()
  1037. // case Selfer:
  1038. // v.CodecEncodeSelf(e)
  1039. case Raw:
  1040. e.rawBytes(v)
  1041. case reflect.Value:
  1042. e.encodeValue(v, nil, true)
  1043. case string:
  1044. e.e.EncodeString(c_UTF8, v)
  1045. case bool:
  1046. e.e.EncodeBool(v)
  1047. case int:
  1048. e.e.EncodeInt(int64(v))
  1049. case int8:
  1050. e.e.EncodeInt(int64(v))
  1051. case int16:
  1052. e.e.EncodeInt(int64(v))
  1053. case int32:
  1054. e.e.EncodeInt(int64(v))
  1055. case int64:
  1056. e.e.EncodeInt(v)
  1057. case uint:
  1058. e.e.EncodeUint(uint64(v))
  1059. case uint8:
  1060. e.e.EncodeUint(uint64(v))
  1061. case uint16:
  1062. e.e.EncodeUint(uint64(v))
  1063. case uint32:
  1064. e.e.EncodeUint(uint64(v))
  1065. case uint64:
  1066. e.e.EncodeUint(v)
  1067. case uintptr:
  1068. e.e.EncodeUint(uint64(v))
  1069. case float32:
  1070. e.e.EncodeFloat32(v)
  1071. case float64:
  1072. e.e.EncodeFloat64(v)
  1073. case []uint8:
  1074. e.e.EncodeStringBytes(c_RAW, v)
  1075. case *string:
  1076. e.e.EncodeString(c_UTF8, *v)
  1077. case *bool:
  1078. e.e.EncodeBool(*v)
  1079. case *int:
  1080. e.e.EncodeInt(int64(*v))
  1081. case *int8:
  1082. e.e.EncodeInt(int64(*v))
  1083. case *int16:
  1084. e.e.EncodeInt(int64(*v))
  1085. case *int32:
  1086. e.e.EncodeInt(int64(*v))
  1087. case *int64:
  1088. e.e.EncodeInt(*v)
  1089. case *uint:
  1090. e.e.EncodeUint(uint64(*v))
  1091. case *uint8:
  1092. e.e.EncodeUint(uint64(*v))
  1093. case *uint16:
  1094. e.e.EncodeUint(uint64(*v))
  1095. case *uint32:
  1096. e.e.EncodeUint(uint64(*v))
  1097. case *uint64:
  1098. e.e.EncodeUint(*v)
  1099. case *uintptr:
  1100. e.e.EncodeUint(uint64(*v))
  1101. case *float32:
  1102. e.e.EncodeFloat32(*v)
  1103. case *float64:
  1104. e.e.EncodeFloat64(*v)
  1105. case *[]uint8:
  1106. e.e.EncodeStringBytes(c_RAW, *v)
  1107. default:
  1108. if !fastpathEncodeTypeSwitch(iv, e) {
  1109. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1110. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1111. }
  1112. }
  1113. }
  1114. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1115. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1116. var sptr uintptr
  1117. var rvp reflect.Value
  1118. var rvpValid bool
  1119. TOP:
  1120. switch rv.Kind() {
  1121. case reflect.Ptr:
  1122. if rv.IsNil() {
  1123. e.e.EncodeNil()
  1124. return
  1125. }
  1126. rvpValid = true
  1127. rvp = rv
  1128. rv = rv.Elem()
  1129. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1130. // TODO: Movable pointers will be an issue here. Future problem.
  1131. sptr = rv.UnsafeAddr()
  1132. break TOP
  1133. }
  1134. goto TOP
  1135. case reflect.Interface:
  1136. if rv.IsNil() {
  1137. e.e.EncodeNil()
  1138. return
  1139. }
  1140. rv = rv.Elem()
  1141. goto TOP
  1142. case reflect.Slice, reflect.Map:
  1143. if rv.IsNil() {
  1144. e.e.EncodeNil()
  1145. return
  1146. }
  1147. case reflect.Invalid, reflect.Func:
  1148. e.e.EncodeNil()
  1149. return
  1150. }
  1151. if sptr != 0 && (&e.ci).add(sptr) {
  1152. e.errorf("circular reference found: # %d", sptr)
  1153. }
  1154. if fn == nil {
  1155. rt := rv.Type()
  1156. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1157. fn = e.cf.get(rt, checkFastpath, true)
  1158. }
  1159. if fn.i.addrE {
  1160. if rvpValid {
  1161. fn.fe(e, &fn.i, rvp)
  1162. } else if rv.CanAddr() {
  1163. fn.fe(e, &fn.i, rv.Addr())
  1164. } else {
  1165. rv2 := reflect.New(rv.Type())
  1166. rv2.Elem().Set(rv)
  1167. fn.fe(e, &fn.i, rv2)
  1168. }
  1169. } else {
  1170. fn.fe(e, &fn.i, rv)
  1171. }
  1172. if sptr != 0 {
  1173. (&e.ci).remove(sptr)
  1174. }
  1175. }
  1176. func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1177. if fnerr != nil {
  1178. panic(fnerr)
  1179. }
  1180. if bs == nil {
  1181. e.e.EncodeNil()
  1182. } else if asis {
  1183. e.asis(bs)
  1184. } else {
  1185. e.e.EncodeStringBytes(c, bs)
  1186. }
  1187. }
  1188. func (e *Encoder) asis(v []byte) {
  1189. if e.as == nil {
  1190. e.w.writeb(v)
  1191. } else {
  1192. e.as.EncodeAsis(v)
  1193. }
  1194. }
  1195. func (e *Encoder) rawBytes(vv Raw) {
  1196. v := []byte(vv)
  1197. if !e.h.Raw {
  1198. e.errorf("Raw values cannot be encoded: %v", v)
  1199. }
  1200. if e.as == nil {
  1201. e.w.writeb(v)
  1202. } else {
  1203. e.as.EncodeAsis(v)
  1204. }
  1205. }
  1206. func (e *Encoder) errorf(format string, params ...interface{}) {
  1207. err := fmt.Errorf(format, params...)
  1208. panic(err)
  1209. }