encode.go 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "bytes"
  6. "encoding"
  7. "errors"
  8. "fmt"
  9. "io"
  10. "reflect"
  11. "sort"
  12. "sync"
  13. )
  14. const (
  15. defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  16. )
  17. // AsSymbolFlag defines what should be encoded as symbols.
  18. type AsSymbolFlag uint8
  19. const (
  20. // AsSymbolDefault is default.
  21. // Currently, this means only encode struct field names as symbols.
  22. // The default is subject to change.
  23. AsSymbolDefault AsSymbolFlag = iota
  24. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  25. AsSymbolAll = 0xfe
  26. // AsSymbolNone means do not encode anything as a symbol.
  27. AsSymbolNone = 1 << iota
  28. // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
  29. AsSymbolMapStringKeysFlag
  30. // AsSymbolStructFieldName means encode struct field names as symbols.
  31. AsSymbolStructFieldNameFlag
  32. )
  33. // encWriter abstracts writing to a byte array or to an io.Writer.
  34. type encWriter interface {
  35. writeb([]byte)
  36. writestr(string)
  37. writen1(byte)
  38. writen2(byte, byte)
  39. atEndOfEncode()
  40. }
  41. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  42. type encDriver interface {
  43. IsBuiltinType(rt uintptr) bool
  44. EncodeBuiltin(rt uintptr, v interface{})
  45. EncodeNil()
  46. EncodeInt(i int64)
  47. EncodeUint(i uint64)
  48. EncodeBool(b bool)
  49. EncodeFloat32(f float32)
  50. EncodeFloat64(f float64)
  51. // encodeExtPreamble(xtag byte, length int)
  52. EncodeRawExt(re *RawExt, e *Encoder)
  53. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  54. EncodeArrayStart(length int)
  55. EncodeArrayEnd()
  56. EncodeArrayEntrySeparator()
  57. EncodeMapStart(length int)
  58. EncodeMapEnd()
  59. EncodeMapEntrySeparator()
  60. EncodeMapKVSeparator()
  61. EncodeString(c charEncoding, v string)
  62. EncodeSymbol(v string)
  63. EncodeStringBytes(c charEncoding, v []byte)
  64. //TODO
  65. //encBignum(f *big.Int)
  66. //encStringRunes(c charEncoding, v []rune)
  67. }
  68. type encNoSeparator struct{}
  69. func (_ encNoSeparator) EncodeMapEnd() {}
  70. func (_ encNoSeparator) EncodeArrayEnd() {}
  71. func (_ encNoSeparator) EncodeArrayEntrySeparator() {}
  72. func (_ encNoSeparator) EncodeMapEntrySeparator() {}
  73. func (_ encNoSeparator) EncodeMapKVSeparator() {}
  74. type encStructFieldBytesV struct {
  75. b []byte
  76. v reflect.Value
  77. }
  78. type encStructFieldBytesVslice []encStructFieldBytesV
  79. func (p encStructFieldBytesVslice) Len() int { return len(p) }
  80. func (p encStructFieldBytesVslice) Less(i, j int) bool { return bytes.Compare(p[i].b, p[j].b) == -1 }
  81. func (p encStructFieldBytesVslice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
  82. type ioEncWriterWriter interface {
  83. WriteByte(c byte) error
  84. WriteString(s string) (n int, err error)
  85. Write(p []byte) (n int, err error)
  86. }
  87. type ioEncStringWriter interface {
  88. WriteString(s string) (n int, err error)
  89. }
  90. type EncodeOptions struct {
  91. // Encode a struct as an array, and not as a map
  92. StructToArray bool
  93. // Canonical representation means that encoding a value will always result in the same
  94. // sequence of bytes.
  95. //
  96. // This only affects maps, as the iteration order for maps is random.
  97. // In this case, the map keys will first be encoded into []byte, and then sorted,
  98. // before writing the sorted keys and the corresponding map values to the stream.
  99. Canonical bool
  100. // AsSymbols defines what should be encoded as symbols.
  101. //
  102. // Encoding as symbols can reduce the encoded size significantly.
  103. //
  104. // However, during decoding, each string to be encoded as a symbol must
  105. // be checked to see if it has been seen before. Consequently, encoding time
  106. // will increase if using symbols, because string comparisons has a clear cost.
  107. //
  108. // Sample values:
  109. // AsSymbolNone
  110. // AsSymbolAll
  111. // AsSymbolMapStringKeys
  112. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  113. AsSymbols AsSymbolFlag
  114. }
  115. // ---------------------------------------------
  116. type simpleIoEncWriterWriter struct {
  117. w io.Writer
  118. bw io.ByteWriter
  119. sw ioEncStringWriter
  120. }
  121. func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
  122. if o.bw != nil {
  123. return o.bw.WriteByte(c)
  124. }
  125. _, err = o.w.Write([]byte{c})
  126. return
  127. }
  128. func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
  129. if o.sw != nil {
  130. return o.sw.WriteString(s)
  131. }
  132. // return o.w.Write([]byte(s))
  133. return o.w.Write(bytesView(s))
  134. }
  135. func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
  136. return o.w.Write(p)
  137. }
  138. // ----------------------------------------
  139. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  140. type ioEncWriter struct {
  141. w ioEncWriterWriter
  142. // x [8]byte // temp byte array re-used internally for efficiency
  143. }
  144. func (z *ioEncWriter) writeb(bs []byte) {
  145. if len(bs) == 0 {
  146. return
  147. }
  148. n, err := z.w.Write(bs)
  149. if err != nil {
  150. panic(err)
  151. }
  152. if n != len(bs) {
  153. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n))
  154. }
  155. }
  156. func (z *ioEncWriter) writestr(s string) {
  157. n, err := z.w.WriteString(s)
  158. if err != nil {
  159. panic(err)
  160. }
  161. if n != len(s) {
  162. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n))
  163. }
  164. }
  165. func (z *ioEncWriter) writen1(b byte) {
  166. if err := z.w.WriteByte(b); err != nil {
  167. panic(err)
  168. }
  169. }
  170. func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
  171. z.writen1(b1)
  172. z.writen1(b2)
  173. }
  174. func (z *ioEncWriter) atEndOfEncode() {}
  175. // ----------------------------------------
  176. // bytesEncWriter implements encWriter and can write to an byte slice.
  177. // It is used by Marshal function.
  178. type bytesEncWriter struct {
  179. b []byte
  180. c int // cursor
  181. out *[]byte // write out on atEndOfEncode
  182. }
  183. func (z *bytesEncWriter) writeb(s []byte) {
  184. if len(s) > 0 {
  185. c := z.grow(len(s))
  186. copy(z.b[c:], s)
  187. }
  188. }
  189. func (z *bytesEncWriter) writestr(s string) {
  190. if len(s) > 0 {
  191. c := z.grow(len(s))
  192. copy(z.b[c:], s)
  193. }
  194. }
  195. func (z *bytesEncWriter) writen1(b1 byte) {
  196. c := z.grow(1)
  197. z.b[c] = b1
  198. }
  199. func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
  200. c := z.grow(2)
  201. z.b[c] = b1
  202. z.b[c+1] = b2
  203. }
  204. func (z *bytesEncWriter) atEndOfEncode() {
  205. *(z.out) = z.b[:z.c]
  206. }
  207. func (z *bytesEncWriter) grow(n int) (oldcursor int) {
  208. oldcursor = z.c
  209. z.c = oldcursor + n
  210. if z.c > len(z.b) {
  211. if z.c > cap(z.b) {
  212. // Tried using appendslice logic: (if cap < 1024, *2, else *1.25).
  213. // However, it was too expensive, causing too many iterations of copy.
  214. // Using bytes.Buffer model was much better (2*cap + n)
  215. bs := make([]byte, 2*cap(z.b)+n)
  216. copy(bs, z.b[:oldcursor])
  217. z.b = bs
  218. } else {
  219. z.b = z.b[:cap(z.b)]
  220. }
  221. }
  222. return
  223. }
  224. // ---------------------------------------------
  225. type encFnInfoX struct {
  226. e *Encoder
  227. ti *typeInfo
  228. xfFn Ext
  229. xfTag uint64
  230. seq seqType
  231. }
  232. type encFnInfo struct {
  233. // use encFnInfo as a value receiver.
  234. // keep most of it less-used variables accessible via a pointer (*encFnInfoX).
  235. // As sweet spot for value-receiver is 3 words, keep everything except
  236. // encDriver (which everyone needs) directly accessible.
  237. // ensure encFnInfoX is set for everyone who needs it i.e.
  238. // rawExt, ext, builtin, (selfer|binary|text)Marshal, kSlice, kStruct, kMap, kInterface, fastpath
  239. ee encDriver
  240. *encFnInfoX
  241. }
  242. func (f encFnInfo) builtin(rv reflect.Value) {
  243. f.ee.EncodeBuiltin(f.ti.rtid, rv.Interface())
  244. }
  245. func (f encFnInfo) rawExt(rv reflect.Value) {
  246. // rev := rv.Interface().(RawExt)
  247. // f.ee.EncodeRawExt(&rev, f.e)
  248. var re *RawExt
  249. if rv.CanAddr() {
  250. re = rv.Addr().Interface().(*RawExt)
  251. } else {
  252. rev := rv.Interface().(RawExt)
  253. re = &rev
  254. }
  255. f.ee.EncodeRawExt(re, f.e)
  256. }
  257. func (f encFnInfo) ext(rv reflect.Value) {
  258. // if this is a struct and it was addressable, then pass the address directly (not the value)
  259. if rv.CanAddr() && rv.Kind() == reflect.Struct {
  260. rv = rv.Addr()
  261. }
  262. f.ee.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
  263. }
  264. func (f encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
  265. if indir == 0 {
  266. v = rv.Interface()
  267. } else if indir == -1 {
  268. v = rv.Addr().Interface()
  269. } else {
  270. for j := int8(0); j < indir; j++ {
  271. if rv.IsNil() {
  272. f.ee.EncodeNil()
  273. return
  274. }
  275. rv = rv.Elem()
  276. }
  277. v = rv.Interface()
  278. }
  279. return v, true
  280. }
  281. func (f encFnInfo) selferMarshal(rv reflect.Value) {
  282. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
  283. v.(Selfer).CodecEncodeSelf(f.e)
  284. }
  285. }
  286. func (f encFnInfo) binaryMarshal(rv reflect.Value) {
  287. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
  288. bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
  289. if fnerr != nil {
  290. panic(fnerr)
  291. }
  292. if bs == nil {
  293. f.ee.EncodeNil()
  294. } else {
  295. f.ee.EncodeStringBytes(c_RAW, bs)
  296. }
  297. }
  298. }
  299. func (f encFnInfo) textMarshal(rv reflect.Value) {
  300. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
  301. // debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
  302. bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
  303. if fnerr != nil {
  304. panic(fnerr)
  305. }
  306. if bs == nil {
  307. f.ee.EncodeNil()
  308. } else {
  309. f.ee.EncodeStringBytes(c_UTF8, bs)
  310. }
  311. }
  312. }
  313. func (f encFnInfo) jsonMarshal(rv reflect.Value) {
  314. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
  315. bs, fnerr := v.(jsonMarshaler).MarshalJSON()
  316. if fnerr != nil {
  317. panic(fnerr)
  318. }
  319. if bs == nil {
  320. f.ee.EncodeNil()
  321. } else {
  322. f.ee.EncodeStringBytes(c_UTF8, bs)
  323. }
  324. }
  325. }
  326. func (f encFnInfo) kBool(rv reflect.Value) {
  327. f.ee.EncodeBool(rv.Bool())
  328. }
  329. func (f encFnInfo) kString(rv reflect.Value) {
  330. f.ee.EncodeString(c_UTF8, rv.String())
  331. }
  332. func (f encFnInfo) kFloat64(rv reflect.Value) {
  333. f.ee.EncodeFloat64(rv.Float())
  334. }
  335. func (f encFnInfo) kFloat32(rv reflect.Value) {
  336. f.ee.EncodeFloat32(float32(rv.Float()))
  337. }
  338. func (f encFnInfo) kInt(rv reflect.Value) {
  339. f.ee.EncodeInt(rv.Int())
  340. }
  341. func (f encFnInfo) kUint(rv reflect.Value) {
  342. f.ee.EncodeUint(rv.Uint())
  343. }
  344. func (f encFnInfo) kInvalid(rv reflect.Value) {
  345. f.ee.EncodeNil()
  346. }
  347. func (f encFnInfo) kErr(rv reflect.Value) {
  348. f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  349. }
  350. func (f encFnInfo) kSlice(rv reflect.Value) {
  351. ti := f.ti
  352. // array may be non-addressable, so we have to manage with care
  353. // (don't call rv.Bytes, rv.Slice, etc).
  354. // E.g. type struct S{B [2]byte};
  355. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  356. if f.seq != seqTypeArray {
  357. if rv.IsNil() {
  358. f.ee.EncodeNil()
  359. return
  360. }
  361. // If in this method, then there was no extension function defined.
  362. // So it's okay to treat as []byte.
  363. if ti.rtid == uint8SliceTypId {
  364. f.ee.EncodeStringBytes(c_RAW, rv.Bytes())
  365. return
  366. }
  367. }
  368. rtelem := ti.rt.Elem()
  369. l := rv.Len()
  370. if rtelem.Kind() == reflect.Uint8 {
  371. switch f.seq {
  372. case seqTypeArray:
  373. // if l == 0 { f.ee.encodeStringBytes(c_RAW, nil) } else
  374. if rv.CanAddr() {
  375. f.ee.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
  376. } else {
  377. var bs []byte
  378. if l <= cap(f.e.b) {
  379. bs = f.e.b[:l]
  380. } else {
  381. bs = make([]byte, l)
  382. }
  383. reflect.Copy(reflect.ValueOf(bs), rv)
  384. // TODO: Test that reflect.Copy works instead of manual one-by-one
  385. // for i := 0; i < l; i++ {
  386. // bs[i] = byte(rv.Index(i).Uint())
  387. // }
  388. f.ee.EncodeStringBytes(c_RAW, bs)
  389. }
  390. case seqTypeSlice:
  391. f.ee.EncodeStringBytes(c_RAW, rv.Bytes())
  392. case seqTypeChan:
  393. bs := f.e.b[:0]
  394. // do not use range, so that the number of elements encoded
  395. // does not change, and encoding does not hang waiting on someone to close chan.
  396. // for b := range rv.Interface().(<-chan byte) {
  397. // bs = append(bs, b)
  398. // }
  399. ch := rv.Interface().(<-chan byte)
  400. for i := 0; i < l; i++ {
  401. bs = append(bs, <-ch)
  402. }
  403. f.ee.EncodeStringBytes(c_RAW, bs)
  404. }
  405. return
  406. }
  407. if ti.mbs {
  408. if l%2 == 1 {
  409. f.e.errorf("mapBySlice requires even slice length, but got %v", l)
  410. return
  411. }
  412. f.ee.EncodeMapStart(l / 2)
  413. } else {
  414. f.ee.EncodeArrayStart(l)
  415. }
  416. e := f.e
  417. sep := !e.be
  418. if l > 0 {
  419. for rtelem.Kind() == reflect.Ptr {
  420. rtelem = rtelem.Elem()
  421. }
  422. // if kind is reflect.Interface, do not pre-determine the
  423. // encoding type, because preEncodeValue may break it down to
  424. // a concrete type and kInterface will bomb.
  425. var fn encFn
  426. if rtelem.Kind() != reflect.Interface {
  427. rtelemid := reflect.ValueOf(rtelem).Pointer()
  428. fn = e.getEncFn(rtelemid, rtelem, true, true)
  429. }
  430. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  431. if sep {
  432. for j := 0; j < l; j++ {
  433. if j > 0 {
  434. if ti.mbs {
  435. if j%2 == 0 {
  436. f.ee.EncodeMapEntrySeparator()
  437. } else {
  438. f.ee.EncodeMapKVSeparator()
  439. }
  440. } else {
  441. f.ee.EncodeArrayEntrySeparator()
  442. }
  443. }
  444. if f.seq == seqTypeChan {
  445. if rv2, ok2 := rv.Recv(); ok2 {
  446. e.encodeValue(rv2, fn)
  447. }
  448. } else {
  449. e.encodeValue(rv.Index(j), fn)
  450. }
  451. }
  452. } else {
  453. for j := 0; j < l; j++ {
  454. if f.seq == seqTypeChan {
  455. if rv2, ok2 := rv.Recv(); ok2 {
  456. e.encodeValue(rv2, fn)
  457. }
  458. } else {
  459. e.encodeValue(rv.Index(j), fn)
  460. }
  461. }
  462. }
  463. }
  464. if sep {
  465. if ti.mbs {
  466. f.ee.EncodeMapEnd()
  467. } else {
  468. f.ee.EncodeArrayEnd()
  469. }
  470. }
  471. }
  472. func (f encFnInfo) kStruct(rv reflect.Value) {
  473. fti := f.ti
  474. e := f.e
  475. tisfi := fti.sfip
  476. toMap := !(fti.toArray || e.h.StructToArray)
  477. newlen := len(fti.sfi)
  478. // Use sync.Pool to reduce allocating slices unnecessarily.
  479. // The cost of the occasional locking is less than the cost of locking.
  480. var fkvs []encStructFieldKV
  481. var pool *sync.Pool
  482. var poolv interface{}
  483. idxpool := newlen / 8
  484. if encStructPoolLen != 4 {
  485. panic(errors.New("encStructPoolLen must be equal to 4")) // defensive, in case it is changed
  486. }
  487. if idxpool < encStructPoolLen {
  488. pool = &encStructPool[idxpool]
  489. poolv = pool.Get()
  490. switch vv := poolv.(type) {
  491. case *[8]encStructFieldKV:
  492. fkvs = vv[:newlen]
  493. case *[16]encStructFieldKV:
  494. fkvs = vv[:newlen]
  495. case *[32]encStructFieldKV:
  496. fkvs = vv[:newlen]
  497. case *[64]encStructFieldKV:
  498. fkvs = vv[:newlen]
  499. }
  500. }
  501. if fkvs == nil {
  502. fkvs = make([]encStructFieldKV, newlen)
  503. }
  504. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  505. if toMap {
  506. tisfi = fti.sfi
  507. }
  508. newlen = 0
  509. var kv encStructFieldKV
  510. for _, si := range tisfi {
  511. kv.v = si.field(rv, false)
  512. // if si.i != -1 {
  513. // rvals[newlen] = rv.Field(int(si.i))
  514. // } else {
  515. // rvals[newlen] = rv.FieldByIndex(si.is)
  516. // }
  517. if toMap {
  518. if si.omitEmpty && isEmptyValue(kv.v) {
  519. continue
  520. }
  521. kv.k = si.encName
  522. } else {
  523. // use the zero value.
  524. // if a reference or struct, set to nil (so you do not output too much)
  525. if si.omitEmpty && isEmptyValue(kv.v) {
  526. switch kv.v.Kind() {
  527. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array,
  528. reflect.Map, reflect.Slice:
  529. kv.v = reflect.Value{} //encode as nil
  530. }
  531. }
  532. }
  533. fkvs[newlen] = kv
  534. newlen++
  535. }
  536. // debugf(">>>> kStruct: newlen: %v", newlen)
  537. sep := !e.be
  538. ee := f.ee //don't dereference everytime
  539. if sep {
  540. if toMap {
  541. ee.EncodeMapStart(newlen)
  542. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  543. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  544. for j := 0; j < newlen; j++ {
  545. kv = fkvs[j]
  546. if j > 0 {
  547. ee.EncodeMapEntrySeparator()
  548. }
  549. if asSymbols {
  550. ee.EncodeSymbol(kv.k)
  551. } else {
  552. ee.EncodeString(c_UTF8, kv.k)
  553. }
  554. ee.EncodeMapKVSeparator()
  555. e.encodeValue(kv.v, encFn{})
  556. }
  557. ee.EncodeMapEnd()
  558. } else {
  559. ee.EncodeArrayStart(newlen)
  560. for j := 0; j < newlen; j++ {
  561. kv = fkvs[j]
  562. if j > 0 {
  563. ee.EncodeArrayEntrySeparator()
  564. }
  565. e.encodeValue(kv.v, encFn{})
  566. }
  567. ee.EncodeArrayEnd()
  568. }
  569. } else {
  570. if toMap {
  571. ee.EncodeMapStart(newlen)
  572. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  573. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  574. for j := 0; j < newlen; j++ {
  575. kv = fkvs[j]
  576. if asSymbols {
  577. ee.EncodeSymbol(kv.k)
  578. } else {
  579. ee.EncodeString(c_UTF8, kv.k)
  580. }
  581. e.encodeValue(kv.v, encFn{})
  582. }
  583. } else {
  584. ee.EncodeArrayStart(newlen)
  585. for j := 0; j < newlen; j++ {
  586. kv = fkvs[j]
  587. e.encodeValue(kv.v, encFn{})
  588. }
  589. }
  590. }
  591. // do not use defer. Instead, use explicit pool return at end of function.
  592. // defer has a cost we are trying to avoid.
  593. // If there is a panic and these slices are not returned, it is ok.
  594. if pool != nil {
  595. pool.Put(poolv)
  596. }
  597. }
  598. // func (f encFnInfo) kPtr(rv reflect.Value) {
  599. // debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
  600. // if rv.IsNil() {
  601. // f.ee.encodeNil()
  602. // return
  603. // }
  604. // f.e.encodeValue(rv.Elem())
  605. // }
  606. func (f encFnInfo) kInterface(rv reflect.Value) {
  607. if rv.IsNil() {
  608. f.ee.EncodeNil()
  609. return
  610. }
  611. f.e.encodeValue(rv.Elem(), encFn{})
  612. }
  613. func (f encFnInfo) kMap(rv reflect.Value) {
  614. if rv.IsNil() {
  615. f.ee.EncodeNil()
  616. return
  617. }
  618. l := rv.Len()
  619. f.ee.EncodeMapStart(l)
  620. e := f.e
  621. sep := !e.be
  622. if l == 0 {
  623. if sep {
  624. f.ee.EncodeMapEnd()
  625. }
  626. return
  627. }
  628. var asSymbols bool
  629. // determine the underlying key and val encFn's for the map.
  630. // This eliminates some work which is done for each loop iteration i.e.
  631. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  632. //
  633. // However, if kind is reflect.Interface, do not pre-determine the
  634. // encoding type, because preEncodeValue may break it down to
  635. // a concrete type and kInterface will bomb.
  636. var keyFn, valFn encFn
  637. ti := f.ti
  638. rtkey := ti.rt.Key()
  639. rtval := ti.rt.Elem()
  640. rtkeyid := reflect.ValueOf(rtkey).Pointer()
  641. // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
  642. var keyTypeIsString = rtkeyid == stringTypId
  643. if keyTypeIsString {
  644. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  645. } else {
  646. for rtkey.Kind() == reflect.Ptr {
  647. rtkey = rtkey.Elem()
  648. }
  649. if rtkey.Kind() != reflect.Interface {
  650. rtkeyid = reflect.ValueOf(rtkey).Pointer()
  651. keyFn = e.getEncFn(rtkeyid, rtkey, true, true)
  652. }
  653. }
  654. for rtval.Kind() == reflect.Ptr {
  655. rtval = rtval.Elem()
  656. }
  657. if rtval.Kind() != reflect.Interface {
  658. rtvalid := reflect.ValueOf(rtval).Pointer()
  659. valFn = e.getEncFn(rtvalid, rtval, true, true)
  660. }
  661. mks := rv.MapKeys()
  662. // for j, lmks := 0, len(mks); j < lmks; j++ {
  663. ee := f.ee //don't dereference everytime
  664. if e.h.Canonical {
  665. // first encode each key to a []byte first, then sort them, then record
  666. // println(">>>>>>>> CANONICAL <<<<<<<<")
  667. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  668. e2 := NewEncoderBytes(&mksv, e.hh)
  669. mksbv := make([]encStructFieldBytesV, len(mks))
  670. for i, k := range mks {
  671. l := len(mksv)
  672. e2.MustEncode(k)
  673. mksbv[i].v = k
  674. mksbv[i].b = mksv[l:]
  675. }
  676. sort.Sort(encStructFieldBytesVslice(mksbv))
  677. for j := range mksbv {
  678. if j > 0 {
  679. ee.EncodeMapEntrySeparator()
  680. }
  681. e.w.writeb(mksbv[j].b)
  682. ee.EncodeMapKVSeparator()
  683. e.encodeValue(rv.MapIndex(mksbv[j].v), valFn)
  684. }
  685. ee.EncodeMapEnd()
  686. } else if sep {
  687. for j := range mks {
  688. if j > 0 {
  689. ee.EncodeMapEntrySeparator()
  690. }
  691. if keyTypeIsString {
  692. if asSymbols {
  693. ee.EncodeSymbol(mks[j].String())
  694. } else {
  695. ee.EncodeString(c_UTF8, mks[j].String())
  696. }
  697. } else {
  698. e.encodeValue(mks[j], keyFn)
  699. }
  700. ee.EncodeMapKVSeparator()
  701. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  702. }
  703. ee.EncodeMapEnd()
  704. } else {
  705. for j := range mks {
  706. if keyTypeIsString {
  707. if asSymbols {
  708. ee.EncodeSymbol(mks[j].String())
  709. } else {
  710. ee.EncodeString(c_UTF8, mks[j].String())
  711. }
  712. } else {
  713. e.encodeValue(mks[j], keyFn)
  714. }
  715. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  716. }
  717. }
  718. }
  719. // --------------------------------------------------
  720. // encFn encapsulates the captured variables and the encode function.
  721. // This way, we only do some calculations one times, and pass to the
  722. // code block that should be called (encapsulated in a function)
  723. // instead of executing the checks every time.
  724. type encFn struct {
  725. i encFnInfo
  726. f func(encFnInfo, reflect.Value)
  727. }
  728. // --------------------------------------------------
  729. type rtidEncFn struct {
  730. rtid uintptr
  731. fn encFn
  732. }
  733. // An Encoder writes an object to an output stream in the codec format.
  734. type Encoder struct {
  735. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  736. e encDriver
  737. w encWriter
  738. s []rtidEncFn
  739. be bool // is binary encoding
  740. wi ioEncWriter
  741. wb bytesEncWriter
  742. h *BasicHandle
  743. hh Handle
  744. f map[uintptr]encFn
  745. b [scratchByteArrayLen]byte
  746. }
  747. // NewEncoder returns an Encoder for encoding into an io.Writer.
  748. //
  749. // For efficiency, Users are encouraged to pass in a memory buffered writer
  750. // (eg bufio.Writer, bytes.Buffer).
  751. func NewEncoder(w io.Writer, h Handle) *Encoder {
  752. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
  753. ww, ok := w.(ioEncWriterWriter)
  754. if !ok {
  755. sww := simpleIoEncWriterWriter{w: w}
  756. sww.bw, _ = w.(io.ByteWriter)
  757. sww.sw, _ = w.(ioEncStringWriter)
  758. ww = &sww
  759. //ww = bufio.NewWriterSize(w, defEncByteBufSize)
  760. }
  761. e.wi.w = ww
  762. e.w = &e.wi
  763. e.e = h.newEncDriver(e)
  764. return e
  765. }
  766. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  767. // into a byte slice, using zero-copying to temporary slices.
  768. //
  769. // It will potentially replace the output byte slice pointed to.
  770. // After encoding, the out parameter contains the encoded contents.
  771. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  772. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
  773. in := *out
  774. if in == nil {
  775. in = make([]byte, defEncByteBufSize)
  776. }
  777. e.wb.b, e.wb.out = in, out
  778. e.w = &e.wb
  779. e.e = h.newEncDriver(e)
  780. return e
  781. }
  782. // Encode writes an object into a stream.
  783. //
  784. // Encoding can be configured via the struct tag for the fields.
  785. // The "codec" key in struct field's tag value is the key name,
  786. // followed by an optional comma and options.
  787. // Note that the "json" key is used in the absence of the "codec" key.
  788. //
  789. // To set an option on all fields (e.g. omitempty on all fields), you
  790. // can create a field called _struct, and set flags on it.
  791. //
  792. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  793. // - the field's tag is "-", OR
  794. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  795. //
  796. // When encoding as a map, the first string in the tag (before the comma)
  797. // is the map key string to use when encoding.
  798. //
  799. // However, struct values may encode as arrays. This happens when:
  800. // - StructToArray Encode option is set, OR
  801. // - the tag on the _struct field sets the "toarray" option
  802. //
  803. // Values with types that implement MapBySlice are encoded as stream maps.
  804. //
  805. // The empty values (for omitempty option) are false, 0, any nil pointer
  806. // or interface value, and any array, slice, map, or string of length zero.
  807. //
  808. // Anonymous fields are encoded inline if the struct tag is "effectively" blank
  809. // i.e. it is not present or does not have any parameters specified.
  810. // Else they are encoded as regular fields.
  811. //
  812. // Examples:
  813. //
  814. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  815. // type MyStruct struct {
  816. // _struct bool `codec:",omitempty"` //set omitempty for every field
  817. // Field1 string `codec:"-"` //skip this field
  818. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  819. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  820. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  821. // ...
  822. // }
  823. //
  824. // type MyStruct struct {
  825. // _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
  826. // //and encode struct as an array
  827. // }
  828. //
  829. // The mode of encoding is based on the type of the value. When a value is seen:
  830. // - If an extension is registered for it, call that extension function
  831. // - If it implements BinaryMarshaler, call its MarshalBinary() (data []byte, err error)
  832. // - Else encode it based on its reflect.Kind
  833. //
  834. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  835. // Some formats support symbols (e.g. binc) and will properly encode the string
  836. // only once in the stream, and use a tag to refer to it thereafter.
  837. func (e *Encoder) Encode(v interface{}) (err error) {
  838. defer panicToErr(&err)
  839. e.encode(v)
  840. e.w.atEndOfEncode()
  841. return
  842. }
  843. // MustEncode is like Encode, but panics if unable to Encode.
  844. // This provides insight to the code location that triggered the error.
  845. func (e *Encoder) MustEncode(v interface{}) {
  846. e.encode(v)
  847. e.w.atEndOfEncode()
  848. }
  849. // comment out these (Must)Write methods. They were only put there to support cbor.
  850. // However, users already have access to the streams, and can write directly.
  851. //
  852. // // Write allows users write to the Encoder stream directly.
  853. // func (e *Encoder) Write(bs []byte) (err error) {
  854. // defer panicToErr(&err)
  855. // e.w.writeb(bs)
  856. // return
  857. // }
  858. // // MustWrite is like write, but panics if unable to Write.
  859. // func (e *Encoder) MustWrite(bs []byte) {
  860. // e.w.writeb(bs)
  861. // }
  862. func (e *Encoder) encode(iv interface{}) {
  863. // if ics, ok := iv.(Selfer); ok {
  864. // ics.CodecEncodeSelf(e)
  865. // return
  866. // }
  867. switch v := iv.(type) {
  868. case nil:
  869. e.e.EncodeNil()
  870. case Selfer:
  871. v.CodecEncodeSelf(e)
  872. case reflect.Value:
  873. e.encodeValue(v, encFn{})
  874. case string:
  875. e.e.EncodeString(c_UTF8, v)
  876. case bool:
  877. e.e.EncodeBool(v)
  878. case int:
  879. e.e.EncodeInt(int64(v))
  880. case int8:
  881. e.e.EncodeInt(int64(v))
  882. case int16:
  883. e.e.EncodeInt(int64(v))
  884. case int32:
  885. e.e.EncodeInt(int64(v))
  886. case int64:
  887. e.e.EncodeInt(v)
  888. case uint:
  889. e.e.EncodeUint(uint64(v))
  890. case uint8:
  891. e.e.EncodeUint(uint64(v))
  892. case uint16:
  893. e.e.EncodeUint(uint64(v))
  894. case uint32:
  895. e.e.EncodeUint(uint64(v))
  896. case uint64:
  897. e.e.EncodeUint(v)
  898. case float32:
  899. e.e.EncodeFloat32(v)
  900. case float64:
  901. e.e.EncodeFloat64(v)
  902. case []uint8:
  903. e.e.EncodeStringBytes(c_RAW, v)
  904. case *string:
  905. e.e.EncodeString(c_UTF8, *v)
  906. case *bool:
  907. e.e.EncodeBool(*v)
  908. case *int:
  909. e.e.EncodeInt(int64(*v))
  910. case *int8:
  911. e.e.EncodeInt(int64(*v))
  912. case *int16:
  913. e.e.EncodeInt(int64(*v))
  914. case *int32:
  915. e.e.EncodeInt(int64(*v))
  916. case *int64:
  917. e.e.EncodeInt(*v)
  918. case *uint:
  919. e.e.EncodeUint(uint64(*v))
  920. case *uint8:
  921. e.e.EncodeUint(uint64(*v))
  922. case *uint16:
  923. e.e.EncodeUint(uint64(*v))
  924. case *uint32:
  925. e.e.EncodeUint(uint64(*v))
  926. case *uint64:
  927. e.e.EncodeUint(*v)
  928. case *float32:
  929. e.e.EncodeFloat32(*v)
  930. case *float64:
  931. e.e.EncodeFloat64(*v)
  932. case *[]uint8:
  933. e.e.EncodeStringBytes(c_RAW, *v)
  934. default:
  935. // canonical mode is not supported for fastpath of maps (but is fine for slices)
  936. if e.h.Canonical {
  937. if !fastpathEncodeTypeSwitchSlice(iv, e) {
  938. e.encodeI(iv, false, false)
  939. }
  940. } else if !fastpathEncodeTypeSwitch(iv, e) {
  941. e.encodeI(iv, false, false)
  942. }
  943. }
  944. }
  945. func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer bool) {
  946. if rv, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
  947. rt := rv.Type()
  948. rtid := reflect.ValueOf(rt).Pointer()
  949. fn := e.getEncFn(rtid, rt, checkFastpath, checkCodecSelfer)
  950. fn.f(fn.i, rv)
  951. }
  952. }
  953. func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, proceed bool) {
  954. LOOP:
  955. for {
  956. switch rv.Kind() {
  957. case reflect.Ptr, reflect.Interface:
  958. if rv.IsNil() {
  959. e.e.EncodeNil()
  960. return
  961. }
  962. rv = rv.Elem()
  963. continue LOOP
  964. case reflect.Slice, reflect.Map:
  965. if rv.IsNil() {
  966. e.e.EncodeNil()
  967. return
  968. }
  969. case reflect.Invalid, reflect.Func:
  970. e.e.EncodeNil()
  971. return
  972. }
  973. break
  974. }
  975. return rv, true
  976. }
  977. func (e *Encoder) encodeValue(rv reflect.Value, fn encFn) {
  978. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  979. if rv, proceed := e.preEncodeValue(rv); proceed {
  980. if fn.f == nil {
  981. rt := rv.Type()
  982. rtid := reflect.ValueOf(rt).Pointer()
  983. fn = e.getEncFn(rtid, rt, true, true)
  984. }
  985. fn.f(fn.i, rv)
  986. }
  987. }
  988. func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn encFn) {
  989. // rtid := reflect.ValueOf(rt).Pointer()
  990. var ok bool
  991. if useMapForCodecCache {
  992. fn, ok = e.f[rtid]
  993. } else {
  994. for _, v := range e.s {
  995. if v.rtid == rtid {
  996. fn, ok = v.fn, true
  997. break
  998. }
  999. }
  1000. }
  1001. if ok {
  1002. return
  1003. }
  1004. // fi.encFnInfoX = new(encFnInfoX)
  1005. ti := getTypeInfo(rtid, rt)
  1006. var fi encFnInfo
  1007. fi.ee = e.e
  1008. if checkCodecSelfer && ti.cs {
  1009. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1010. fn.f = (encFnInfo).selferMarshal
  1011. } else if rtid == rawExtTypId {
  1012. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1013. fn.f = (encFnInfo).rawExt
  1014. } else if e.e.IsBuiltinType(rtid) {
  1015. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1016. fn.f = (encFnInfo).builtin
  1017. } else if xfFn := e.h.getExt(rtid); xfFn != nil {
  1018. // fi.encFnInfoX = new(encFnInfoX)
  1019. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1020. fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
  1021. fn.f = (encFnInfo).ext
  1022. } else if supportMarshalInterfaces && e.be && ti.bm {
  1023. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1024. fn.f = (encFnInfo).binaryMarshal
  1025. } else if supportMarshalInterfaces && !e.be && ti.tm {
  1026. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1027. fn.f = (encFnInfo).textMarshal
  1028. } else if supportMarshalInterfaces && !e.be && ti.jm {
  1029. //TODO: This only works NOW, as JSON is the ONLY text format.
  1030. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1031. fn.f = (encFnInfo).jsonMarshal
  1032. } else {
  1033. rk := rt.Kind()
  1034. // if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
  1035. if fastpathEnabled && checkFastpath && (rk == reflect.Slice || (rk == reflect.Map && !e.h.Canonical)) {
  1036. if rt.PkgPath() == "" {
  1037. if idx := fastpathAV.index(rtid); idx != -1 {
  1038. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1039. fn.f = fastpathAV[idx].encfn
  1040. }
  1041. } else {
  1042. ok = false
  1043. // use mapping for underlying type if there
  1044. var rtu reflect.Type
  1045. if rk == reflect.Map {
  1046. rtu = reflect.MapOf(rt.Key(), rt.Elem())
  1047. } else {
  1048. rtu = reflect.SliceOf(rt.Elem())
  1049. }
  1050. rtuid := reflect.ValueOf(rtu).Pointer()
  1051. if idx := fastpathAV.index(rtuid); idx != -1 {
  1052. xfnf := fastpathAV[idx].encfn
  1053. xrt := fastpathAV[idx].rt
  1054. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1055. fn.f = func(xf encFnInfo, xrv reflect.Value) {
  1056. xfnf(xf, xrv.Convert(xrt))
  1057. }
  1058. }
  1059. }
  1060. }
  1061. if fn.f == nil {
  1062. switch rk {
  1063. case reflect.Bool:
  1064. fn.f = (encFnInfo).kBool
  1065. case reflect.String:
  1066. fn.f = (encFnInfo).kString
  1067. case reflect.Float64:
  1068. fn.f = (encFnInfo).kFloat64
  1069. case reflect.Float32:
  1070. fn.f = (encFnInfo).kFloat32
  1071. case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
  1072. fn.f = (encFnInfo).kInt
  1073. case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16:
  1074. fn.f = (encFnInfo).kUint
  1075. case reflect.Invalid:
  1076. fn.f = (encFnInfo).kInvalid
  1077. case reflect.Chan:
  1078. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeChan}
  1079. fn.f = (encFnInfo).kSlice
  1080. case reflect.Slice:
  1081. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeSlice}
  1082. fn.f = (encFnInfo).kSlice
  1083. case reflect.Array:
  1084. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeArray}
  1085. fn.f = (encFnInfo).kSlice
  1086. case reflect.Struct:
  1087. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1088. fn.f = (encFnInfo).kStruct
  1089. // case reflect.Ptr:
  1090. // fn.f = (encFnInfo).kPtr
  1091. case reflect.Interface:
  1092. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1093. fn.f = (encFnInfo).kInterface
  1094. case reflect.Map:
  1095. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  1096. fn.f = (encFnInfo).kMap
  1097. default:
  1098. fn.f = (encFnInfo).kErr
  1099. }
  1100. }
  1101. }
  1102. fn.i = fi
  1103. if useMapForCodecCache {
  1104. if e.f == nil {
  1105. e.f = make(map[uintptr]encFn, 32)
  1106. }
  1107. e.f[rtid] = fn
  1108. } else {
  1109. if e.s == nil {
  1110. e.s = make([]rtidEncFn, 0, 32)
  1111. }
  1112. e.s = append(e.s, rtidEncFn{rtid, fn})
  1113. }
  1114. return
  1115. }
  1116. func (e *Encoder) errorf(format string, params ...interface{}) {
  1117. err := fmt.Errorf(format, params...)
  1118. panic(err)
  1119. }
  1120. // ----------------------------------------
  1121. type encStructFieldKV struct {
  1122. k string
  1123. v reflect.Value
  1124. }
  1125. const encStructPoolLen = 4
  1126. // encStructPool is an array of sync.Pool.
  1127. // Each element of the array pools one of encStructPool(8|16|32|64).
  1128. // It allows the re-use of slices up to 64 in length.
  1129. // A performance cost of encoding structs was collecting
  1130. // which values were empty and should be omitted.
  1131. // We needed slices of reflect.Value and string to collect them.
  1132. // This shared pool reduces the amount of unnecessary creation we do.
  1133. // The cost is that of locking sometimes, but sync.Pool is efficient
  1134. // enough to reduce thread contention.
  1135. var encStructPool [encStructPoolLen]sync.Pool
  1136. func init() {
  1137. encStructPool[0].New = func() interface{} { return new([8]encStructFieldKV) }
  1138. encStructPool[1].New = func() interface{} { return new([16]encStructFieldKV) }
  1139. encStructPool[2].New = func() interface{} { return new([32]encStructFieldKV) }
  1140. encStructPool[3].New = func() interface{} { return new([64]encStructFieldKV) }
  1141. }
  1142. // ----------------------------------------
  1143. // func encErr(format string, params ...interface{}) {
  1144. // doPanic(msgTagEnc, format, params...)
  1145. // }