encode.go 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "fmt"
  7. "io"
  8. "reflect"
  9. "sort"
  10. "sync"
  11. )
  12. const (
  13. defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  14. )
  15. // AsSymbolFlag defines what should be encoded as symbols.
  16. type AsSymbolFlag uint8
  17. const (
  18. // AsSymbolDefault is default.
  19. // Currently, this means only encode struct field names as symbols.
  20. // The default is subject to change.
  21. AsSymbolDefault AsSymbolFlag = iota
  22. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  23. AsSymbolAll = 0xfe
  24. // AsSymbolNone means do not encode anything as a symbol.
  25. AsSymbolNone = 1 << iota
  26. // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
  27. AsSymbolMapStringKeysFlag
  28. // AsSymbolStructFieldName means encode struct field names as symbols.
  29. AsSymbolStructFieldNameFlag
  30. )
  31. // encWriter abstracts writing to a byte array or to an io.Writer.
  32. type encWriter interface {
  33. writeb([]byte)
  34. writestr(string)
  35. writen1(byte)
  36. writen2(byte, byte)
  37. atEndOfEncode()
  38. }
  39. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  40. type encDriver interface {
  41. IsBuiltinType(rt uintptr) bool
  42. EncodeBuiltin(rt uintptr, v interface{})
  43. EncodeNil()
  44. EncodeInt(i int64)
  45. EncodeUint(i uint64)
  46. EncodeBool(b bool)
  47. EncodeFloat32(f float32)
  48. EncodeFloat64(f float64)
  49. // encodeExtPreamble(xtag byte, length int)
  50. EncodeRawExt(re *RawExt, e *Encoder)
  51. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  52. EncodeArrayStart(length int)
  53. EncodeMapStart(length int)
  54. EncodeString(c charEncoding, v string)
  55. EncodeSymbol(v string)
  56. EncodeStringBytes(c charEncoding, v []byte)
  57. //TODO
  58. //encBignum(f *big.Int)
  59. //encStringRunes(c charEncoding, v []rune)
  60. reset()
  61. }
  62. type encDriverAsis interface {
  63. EncodeAsis(v []byte)
  64. }
  65. type encNoSeparator struct{}
  66. func (_ encNoSeparator) EncodeEnd() {}
  67. type ioEncWriterWriter interface {
  68. WriteByte(c byte) error
  69. WriteString(s string) (n int, err error)
  70. Write(p []byte) (n int, err error)
  71. }
  72. type ioEncStringWriter interface {
  73. WriteString(s string) (n int, err error)
  74. }
  75. type EncodeOptions struct {
  76. // Encode a struct as an array, and not as a map
  77. StructToArray bool
  78. // Canonical representation means that encoding a value will always result in the same
  79. // sequence of bytes.
  80. //
  81. // This only affects maps, as the iteration order for maps is random.
  82. //
  83. // The implementation MAY use the natural sort order for the map keys if possible:
  84. //
  85. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  86. // then the map keys are first sorted in natural order and then written
  87. // with corresponding map values to the strema.
  88. // - If there is no natural sort order, then the map keys will first be
  89. // encoded into []byte, and then sorted,
  90. // before writing the sorted keys and the corresponding map values to the stream.
  91. //
  92. Canonical bool
  93. // CheckCircularRef controls whether we check for circular references
  94. // and error fast during an encode.
  95. //
  96. // If enabled, an error is received if a pointer to a struct
  97. // references itself either directly or through one of its fields (iteratively).
  98. //
  99. // This is opt-in, as there may be a performance hit to checking circular references.
  100. CheckCircularRef bool
  101. // AsSymbols defines what should be encoded as symbols.
  102. //
  103. // Encoding as symbols can reduce the encoded size significantly.
  104. //
  105. // However, during decoding, each string to be encoded as a symbol must
  106. // be checked to see if it has been seen before. Consequently, encoding time
  107. // will increase if using symbols, because string comparisons has a clear cost.
  108. //
  109. // Sample values:
  110. // AsSymbolNone
  111. // AsSymbolAll
  112. // AsSymbolMapStringKeys
  113. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  114. AsSymbols AsSymbolFlag
  115. }
  116. // ---------------------------------------------
  117. type simpleIoEncWriterWriter struct {
  118. w io.Writer
  119. bw io.ByteWriter
  120. sw ioEncStringWriter
  121. bs [1]byte
  122. }
  123. func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
  124. if o.bw != nil {
  125. return o.bw.WriteByte(c)
  126. }
  127. // _, err = o.w.Write([]byte{c})
  128. o.bs[0] = c
  129. _, err = o.w.Write(o.bs[:])
  130. return
  131. }
  132. func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
  133. if o.sw != nil {
  134. return o.sw.WriteString(s)
  135. }
  136. // return o.w.Write([]byte(s))
  137. return o.w.Write(bytesView(s))
  138. }
  139. func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
  140. return o.w.Write(p)
  141. }
  142. // ----------------------------------------
  143. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  144. type ioEncWriter struct {
  145. w ioEncWriterWriter
  146. s simpleIoEncWriterWriter
  147. // x [8]byte // temp byte array re-used internally for efficiency
  148. }
  149. func (z *ioEncWriter) writeb(bs []byte) {
  150. if len(bs) == 0 {
  151. return
  152. }
  153. n, err := z.w.Write(bs)
  154. if err != nil {
  155. panic(err)
  156. }
  157. if n != len(bs) {
  158. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n))
  159. }
  160. }
  161. func (z *ioEncWriter) writestr(s string) {
  162. n, err := z.w.WriteString(s)
  163. if err != nil {
  164. panic(err)
  165. }
  166. if n != len(s) {
  167. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n))
  168. }
  169. }
  170. func (z *ioEncWriter) writen1(b byte) {
  171. if err := z.w.WriteByte(b); err != nil {
  172. panic(err)
  173. }
  174. }
  175. func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
  176. z.writen1(b1)
  177. z.writen1(b2)
  178. }
  179. func (z *ioEncWriter) atEndOfEncode() {}
  180. // ----------------------------------------
  181. // bytesEncWriter implements encWriter and can write to an byte slice.
  182. // It is used by Marshal function.
  183. type bytesEncWriter struct {
  184. b []byte
  185. c int // cursor
  186. out *[]byte // write out on atEndOfEncode
  187. }
  188. func (z *bytesEncWriter) writeb(s []byte) {
  189. if len(s) > 0 {
  190. c := z.grow(len(s))
  191. copy(z.b[c:], s)
  192. }
  193. }
  194. func (z *bytesEncWriter) writestr(s string) {
  195. if len(s) > 0 {
  196. c := z.grow(len(s))
  197. copy(z.b[c:], s)
  198. }
  199. }
  200. func (z *bytesEncWriter) writen1(b1 byte) {
  201. c := z.grow(1)
  202. z.b[c] = b1
  203. }
  204. func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
  205. c := z.grow(2)
  206. z.b[c] = b1
  207. z.b[c+1] = b2
  208. }
  209. func (z *bytesEncWriter) atEndOfEncode() {
  210. *(z.out) = z.b[:z.c]
  211. }
  212. func (z *bytesEncWriter) grow(n int) (oldcursor int) {
  213. oldcursor = z.c
  214. z.c = oldcursor + n
  215. if z.c > len(z.b) {
  216. if z.c > cap(z.b) {
  217. // appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
  218. // bytes.Buffer model (2*cap + n): much better
  219. // bs := make([]byte, 2*cap(z.b)+n)
  220. bs := make([]byte, growCap(cap(z.b), 1, n))
  221. copy(bs, z.b[:oldcursor])
  222. z.b = bs
  223. } else {
  224. z.b = z.b[:cap(z.b)]
  225. }
  226. }
  227. return
  228. }
  229. // ---------------------------------------------
  230. type encFnInfo struct {
  231. e *Encoder
  232. ti *typeInfo
  233. xfFn Ext
  234. xfTag uint64
  235. seq seqType
  236. }
  237. func (f *encFnInfo) builtin(rv reflect.Value) {
  238. f.e.e.EncodeBuiltin(f.ti.rtid, rv.Interface())
  239. }
  240. func (f *encFnInfo) rawExt(rv reflect.Value) {
  241. // rev := rv.Interface().(RawExt)
  242. // f.e.e.EncodeRawExt(&rev, f.e)
  243. var re *RawExt
  244. if rv.CanAddr() {
  245. re = rv.Addr().Interface().(*RawExt)
  246. } else {
  247. rev := rv.Interface().(RawExt)
  248. re = &rev
  249. }
  250. f.e.e.EncodeRawExt(re, f.e)
  251. }
  252. func (f *encFnInfo) ext(rv reflect.Value) {
  253. // if this is a struct|array and it was addressable, then pass the address directly (not the value)
  254. if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
  255. rv = rv.Addr()
  256. }
  257. f.e.e.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
  258. }
  259. func (f *encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
  260. if indir == 0 {
  261. v = rv.Interface()
  262. } else if indir == -1 {
  263. // If a non-pointer was passed to Encode(), then that value is not addressable.
  264. // Take addr if addresable, else copy value to an addressable value.
  265. if rv.CanAddr() {
  266. v = rv.Addr().Interface()
  267. } else {
  268. rv2 := reflect.New(rv.Type())
  269. rv2.Elem().Set(rv)
  270. v = rv2.Interface()
  271. // fmt.Printf("rv.Type: %v, rv2.Type: %v, v: %v\n", rv.Type(), rv2.Type(), v)
  272. }
  273. } else {
  274. for j := int8(0); j < indir; j++ {
  275. if rv.IsNil() {
  276. f.e.e.EncodeNil()
  277. return
  278. }
  279. rv = rv.Elem()
  280. }
  281. v = rv.Interface()
  282. }
  283. return v, true
  284. }
  285. func (f *encFnInfo) selferMarshal(rv reflect.Value) {
  286. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
  287. v.(Selfer).CodecEncodeSelf(f.e)
  288. }
  289. }
  290. func (f *encFnInfo) binaryMarshal(rv reflect.Value) {
  291. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
  292. bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
  293. f.e.marshal(bs, fnerr, false, c_RAW)
  294. }
  295. }
  296. func (f *encFnInfo) textMarshal(rv reflect.Value) {
  297. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
  298. // debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
  299. bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
  300. f.e.marshal(bs, fnerr, false, c_UTF8)
  301. }
  302. }
  303. func (f *encFnInfo) jsonMarshal(rv reflect.Value) {
  304. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
  305. bs, fnerr := v.(jsonMarshaler).MarshalJSON()
  306. f.e.marshal(bs, fnerr, true, c_UTF8)
  307. }
  308. }
  309. func (f *encFnInfo) kBool(rv reflect.Value) {
  310. f.e.e.EncodeBool(rv.Bool())
  311. }
  312. func (f *encFnInfo) kString(rv reflect.Value) {
  313. f.e.e.EncodeString(c_UTF8, rv.String())
  314. }
  315. func (f *encFnInfo) kFloat64(rv reflect.Value) {
  316. f.e.e.EncodeFloat64(rv.Float())
  317. }
  318. func (f *encFnInfo) kFloat32(rv reflect.Value) {
  319. f.e.e.EncodeFloat32(float32(rv.Float()))
  320. }
  321. func (f *encFnInfo) kInt(rv reflect.Value) {
  322. f.e.e.EncodeInt(rv.Int())
  323. }
  324. func (f *encFnInfo) kUint(rv reflect.Value) {
  325. f.e.e.EncodeUint(rv.Uint())
  326. }
  327. func (f *encFnInfo) kInvalid(rv reflect.Value) {
  328. f.e.e.EncodeNil()
  329. }
  330. func (f *encFnInfo) kErr(rv reflect.Value) {
  331. f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  332. }
  333. func (f *encFnInfo) kSlice(rv reflect.Value) {
  334. ti := f.ti
  335. // array may be non-addressable, so we have to manage with care
  336. // (don't call rv.Bytes, rv.Slice, etc).
  337. // E.g. type struct S{B [2]byte};
  338. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  339. e := f.e
  340. if f.seq != seqTypeArray {
  341. if rv.IsNil() {
  342. e.e.EncodeNil()
  343. return
  344. }
  345. // If in this method, then there was no extension function defined.
  346. // So it's okay to treat as []byte.
  347. if ti.rtid == uint8SliceTypId {
  348. e.e.EncodeStringBytes(c_RAW, rv.Bytes())
  349. return
  350. }
  351. }
  352. cr := e.cr
  353. rtelem := ti.rt.Elem()
  354. l := rv.Len()
  355. if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
  356. switch f.seq {
  357. case seqTypeArray:
  358. // if l == 0 { e.e.encodeStringBytes(c_RAW, nil) } else
  359. if rv.CanAddr() {
  360. e.e.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
  361. } else {
  362. var bs []byte
  363. if l <= cap(e.b) {
  364. bs = e.b[:l]
  365. } else {
  366. bs = make([]byte, l)
  367. }
  368. reflect.Copy(reflect.ValueOf(bs), rv)
  369. // TODO: Test that reflect.Copy works instead of manual one-by-one
  370. // for i := 0; i < l; i++ {
  371. // bs[i] = byte(rv.Index(i).Uint())
  372. // }
  373. e.e.EncodeStringBytes(c_RAW, bs)
  374. }
  375. case seqTypeSlice:
  376. e.e.EncodeStringBytes(c_RAW, rv.Bytes())
  377. case seqTypeChan:
  378. bs := e.b[:0]
  379. // do not use range, so that the number of elements encoded
  380. // does not change, and encoding does not hang waiting on someone to close chan.
  381. // for b := range rv.Interface().(<-chan byte) {
  382. // bs = append(bs, b)
  383. // }
  384. ch := rv.Interface().(<-chan byte)
  385. for i := 0; i < l; i++ {
  386. bs = append(bs, <-ch)
  387. }
  388. e.e.EncodeStringBytes(c_RAW, bs)
  389. }
  390. return
  391. }
  392. if ti.mbs {
  393. if l%2 == 1 {
  394. e.errorf("mapBySlice requires even slice length, but got %v", l)
  395. return
  396. }
  397. e.e.EncodeMapStart(l / 2)
  398. } else {
  399. e.e.EncodeArrayStart(l)
  400. }
  401. if l > 0 {
  402. for rtelem.Kind() == reflect.Ptr {
  403. rtelem = rtelem.Elem()
  404. }
  405. // if kind is reflect.Interface, do not pre-determine the
  406. // encoding type, because preEncodeValue may break it down to
  407. // a concrete type and kInterface will bomb.
  408. var fn *encFn
  409. if rtelem.Kind() != reflect.Interface {
  410. rtelemid := reflect.ValueOf(rtelem).Pointer()
  411. fn = e.getEncFn(rtelemid, rtelem, true, true)
  412. }
  413. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  414. for j := 0; j < l; j++ {
  415. if cr != nil {
  416. if ti.mbs {
  417. if j%2 == 0 {
  418. cr.sendContainerState(containerMapKey)
  419. } else {
  420. cr.sendContainerState(containerMapValue)
  421. }
  422. } else {
  423. cr.sendContainerState(containerArrayElem)
  424. }
  425. }
  426. if f.seq == seqTypeChan {
  427. if rv2, ok2 := rv.Recv(); ok2 {
  428. e.encodeValue(rv2, fn)
  429. } else {
  430. e.encode(nil) // WE HAVE TO DO SOMETHING, so nil if nothing received.
  431. }
  432. } else {
  433. e.encodeValue(rv.Index(j), fn)
  434. }
  435. }
  436. }
  437. if cr != nil {
  438. if ti.mbs {
  439. cr.sendContainerState(containerMapEnd)
  440. } else {
  441. cr.sendContainerState(containerArrayEnd)
  442. }
  443. }
  444. }
  445. func (f *encFnInfo) kStruct(rv reflect.Value) {
  446. fti := f.ti
  447. e := f.e
  448. cr := e.cr
  449. tisfi := fti.sfip
  450. toMap := !(fti.toArray || e.h.StructToArray)
  451. newlen := len(fti.sfi)
  452. // Use sync.Pool to reduce allocating slices unnecessarily.
  453. // The cost of sync.Pool is less than the cost of new allocation.
  454. pool, poolv, fkvs := encStructPoolGet(newlen)
  455. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  456. if toMap {
  457. tisfi = fti.sfi
  458. }
  459. newlen = 0
  460. var kv stringRv
  461. for _, si := range tisfi {
  462. kv.r = si.field(rv, false)
  463. if toMap {
  464. if si.omitEmpty && isEmptyValue(kv.r) {
  465. continue
  466. }
  467. kv.v = si.encName
  468. } else {
  469. // use the zero value.
  470. // if a reference or struct, set to nil (so you do not output too much)
  471. if si.omitEmpty && isEmptyValue(kv.r) {
  472. switch kv.r.Kind() {
  473. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array,
  474. reflect.Map, reflect.Slice:
  475. kv.r = reflect.Value{} //encode as nil
  476. }
  477. }
  478. }
  479. fkvs[newlen] = kv
  480. newlen++
  481. }
  482. // debugf(">>>> kStruct: newlen: %v", newlen)
  483. // sep := !e.be
  484. ee := e.e //don't dereference everytime
  485. if toMap {
  486. ee.EncodeMapStart(newlen)
  487. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  488. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  489. for j := 0; j < newlen; j++ {
  490. kv = fkvs[j]
  491. if cr != nil {
  492. cr.sendContainerState(containerMapKey)
  493. }
  494. if asSymbols {
  495. ee.EncodeSymbol(kv.v)
  496. } else {
  497. ee.EncodeString(c_UTF8, kv.v)
  498. }
  499. if cr != nil {
  500. cr.sendContainerState(containerMapValue)
  501. }
  502. e.encodeValue(kv.r, nil)
  503. }
  504. if cr != nil {
  505. cr.sendContainerState(containerMapEnd)
  506. }
  507. } else {
  508. ee.EncodeArrayStart(newlen)
  509. for j := 0; j < newlen; j++ {
  510. kv = fkvs[j]
  511. if cr != nil {
  512. cr.sendContainerState(containerArrayElem)
  513. }
  514. e.encodeValue(kv.r, nil)
  515. }
  516. if cr != nil {
  517. cr.sendContainerState(containerArrayEnd)
  518. }
  519. }
  520. // do not use defer. Instead, use explicit pool return at end of function.
  521. // defer has a cost we are trying to avoid.
  522. // If there is a panic and these slices are not returned, it is ok.
  523. if pool != nil {
  524. pool.Put(poolv)
  525. }
  526. }
  527. // func (f *encFnInfo) kPtr(rv reflect.Value) {
  528. // debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
  529. // if rv.IsNil() {
  530. // f.e.e.encodeNil()
  531. // return
  532. // }
  533. // f.e.encodeValue(rv.Elem())
  534. // }
  535. // func (f *encFnInfo) kInterface(rv reflect.Value) {
  536. // println("kInterface called")
  537. // debug.PrintStack()
  538. // if rv.IsNil() {
  539. // f.e.e.EncodeNil()
  540. // return
  541. // }
  542. // f.e.encodeValue(rv.Elem(), nil)
  543. // }
  544. func (f *encFnInfo) kMap(rv reflect.Value) {
  545. ee := f.e.e
  546. if rv.IsNil() {
  547. ee.EncodeNil()
  548. return
  549. }
  550. l := rv.Len()
  551. ee.EncodeMapStart(l)
  552. e := f.e
  553. cr := e.cr
  554. if l == 0 {
  555. if cr != nil {
  556. cr.sendContainerState(containerMapEnd)
  557. }
  558. return
  559. }
  560. var asSymbols bool
  561. // determine the underlying key and val encFn's for the map.
  562. // This eliminates some work which is done for each loop iteration i.e.
  563. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  564. //
  565. // However, if kind is reflect.Interface, do not pre-determine the
  566. // encoding type, because preEncodeValue may break it down to
  567. // a concrete type and kInterface will bomb.
  568. var keyFn, valFn *encFn
  569. ti := f.ti
  570. rtkey := ti.rt.Key()
  571. rtval := ti.rt.Elem()
  572. rtkeyid := reflect.ValueOf(rtkey).Pointer()
  573. // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
  574. var keyTypeIsString = rtkeyid == stringTypId
  575. if keyTypeIsString {
  576. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  577. } else {
  578. for rtkey.Kind() == reflect.Ptr {
  579. rtkey = rtkey.Elem()
  580. }
  581. if rtkey.Kind() != reflect.Interface {
  582. rtkeyid = reflect.ValueOf(rtkey).Pointer()
  583. keyFn = e.getEncFn(rtkeyid, rtkey, true, true)
  584. }
  585. }
  586. for rtval.Kind() == reflect.Ptr {
  587. rtval = rtval.Elem()
  588. }
  589. if rtval.Kind() != reflect.Interface {
  590. rtvalid := reflect.ValueOf(rtval).Pointer()
  591. valFn = e.getEncFn(rtvalid, rtval, true, true)
  592. }
  593. mks := rv.MapKeys()
  594. // for j, lmks := 0, len(mks); j < lmks; j++ {
  595. if e.h.Canonical {
  596. e.kMapCanonical(rtkeyid, rtkey, rv, mks, valFn, asSymbols)
  597. } else {
  598. for j := range mks {
  599. if cr != nil {
  600. cr.sendContainerState(containerMapKey)
  601. }
  602. if keyTypeIsString {
  603. if asSymbols {
  604. ee.EncodeSymbol(mks[j].String())
  605. } else {
  606. ee.EncodeString(c_UTF8, mks[j].String())
  607. }
  608. } else {
  609. e.encodeValue(mks[j], keyFn)
  610. }
  611. if cr != nil {
  612. cr.sendContainerState(containerMapValue)
  613. }
  614. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  615. }
  616. }
  617. if cr != nil {
  618. cr.sendContainerState(containerMapEnd)
  619. }
  620. }
  621. func (e *Encoder) kMapCanonical(rtkeyid uintptr, rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *encFn, asSymbols bool) {
  622. ee := e.e
  623. cr := e.cr
  624. // we previously did out-of-band if an extension was registered.
  625. // This is not necessary, as the natural kind is sufficient for ordering.
  626. if rtkeyid == uint8SliceTypId {
  627. mksv := make([]bytesRv, len(mks))
  628. for i, k := range mks {
  629. v := &mksv[i]
  630. v.r = k
  631. v.v = k.Bytes()
  632. }
  633. sort.Sort(bytesRvSlice(mksv))
  634. for i := range mksv {
  635. if cr != nil {
  636. cr.sendContainerState(containerMapKey)
  637. }
  638. ee.EncodeStringBytes(c_RAW, mksv[i].v)
  639. if cr != nil {
  640. cr.sendContainerState(containerMapValue)
  641. }
  642. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  643. }
  644. } else {
  645. switch rtkey.Kind() {
  646. case reflect.Bool:
  647. mksv := make([]boolRv, len(mks))
  648. for i, k := range mks {
  649. v := &mksv[i]
  650. v.r = k
  651. v.v = k.Bool()
  652. }
  653. sort.Sort(boolRvSlice(mksv))
  654. for i := range mksv {
  655. if cr != nil {
  656. cr.sendContainerState(containerMapKey)
  657. }
  658. ee.EncodeBool(mksv[i].v)
  659. if cr != nil {
  660. cr.sendContainerState(containerMapValue)
  661. }
  662. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  663. }
  664. case reflect.String:
  665. mksv := make([]stringRv, len(mks))
  666. for i, k := range mks {
  667. v := &mksv[i]
  668. v.r = k
  669. v.v = k.String()
  670. }
  671. sort.Sort(stringRvSlice(mksv))
  672. for i := range mksv {
  673. if cr != nil {
  674. cr.sendContainerState(containerMapKey)
  675. }
  676. if asSymbols {
  677. ee.EncodeSymbol(mksv[i].v)
  678. } else {
  679. ee.EncodeString(c_UTF8, mksv[i].v)
  680. }
  681. if cr != nil {
  682. cr.sendContainerState(containerMapValue)
  683. }
  684. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  685. }
  686. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  687. mksv := make([]uintRv, len(mks))
  688. for i, k := range mks {
  689. v := &mksv[i]
  690. v.r = k
  691. v.v = k.Uint()
  692. }
  693. sort.Sort(uintRvSlice(mksv))
  694. for i := range mksv {
  695. if cr != nil {
  696. cr.sendContainerState(containerMapKey)
  697. }
  698. ee.EncodeUint(mksv[i].v)
  699. if cr != nil {
  700. cr.sendContainerState(containerMapValue)
  701. }
  702. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  703. }
  704. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  705. mksv := make([]intRv, len(mks))
  706. for i, k := range mks {
  707. v := &mksv[i]
  708. v.r = k
  709. v.v = k.Int()
  710. }
  711. sort.Sort(intRvSlice(mksv))
  712. for i := range mksv {
  713. if cr != nil {
  714. cr.sendContainerState(containerMapKey)
  715. }
  716. ee.EncodeInt(mksv[i].v)
  717. if cr != nil {
  718. cr.sendContainerState(containerMapValue)
  719. }
  720. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  721. }
  722. case reflect.Float32:
  723. mksv := make([]floatRv, len(mks))
  724. for i, k := range mks {
  725. v := &mksv[i]
  726. v.r = k
  727. v.v = k.Float()
  728. }
  729. sort.Sort(floatRvSlice(mksv))
  730. for i := range mksv {
  731. if cr != nil {
  732. cr.sendContainerState(containerMapKey)
  733. }
  734. ee.EncodeFloat32(float32(mksv[i].v))
  735. if cr != nil {
  736. cr.sendContainerState(containerMapValue)
  737. }
  738. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  739. }
  740. case reflect.Float64:
  741. mksv := make([]floatRv, len(mks))
  742. for i, k := range mks {
  743. v := &mksv[i]
  744. v.r = k
  745. v.v = k.Float()
  746. }
  747. sort.Sort(floatRvSlice(mksv))
  748. for i := range mksv {
  749. if cr != nil {
  750. cr.sendContainerState(containerMapKey)
  751. }
  752. ee.EncodeFloat64(mksv[i].v)
  753. if cr != nil {
  754. cr.sendContainerState(containerMapValue)
  755. }
  756. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  757. }
  758. default:
  759. // out-of-band
  760. // first encode each key to a []byte first, then sort them, then record
  761. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  762. e2 := NewEncoderBytes(&mksv, e.hh)
  763. mksbv := make([]bytesRv, len(mks))
  764. for i, k := range mks {
  765. v := &mksbv[i]
  766. l := len(mksv)
  767. e2.MustEncode(k)
  768. v.r = k
  769. v.v = mksv[l:]
  770. // fmt.Printf(">>>>> %s\n", mksv[l:])
  771. }
  772. sort.Sort(bytesRvSlice(mksbv))
  773. for j := range mksbv {
  774. if cr != nil {
  775. cr.sendContainerState(containerMapKey)
  776. }
  777. e.asis(mksbv[j].v)
  778. if cr != nil {
  779. cr.sendContainerState(containerMapValue)
  780. }
  781. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn)
  782. }
  783. }
  784. }
  785. }
  786. // --------------------------------------------------
  787. // encFn encapsulates the captured variables and the encode function.
  788. // This way, we only do some calculations one times, and pass to the
  789. // code block that should be called (encapsulated in a function)
  790. // instead of executing the checks every time.
  791. type encFn struct {
  792. i encFnInfo
  793. f func(*encFnInfo, reflect.Value)
  794. }
  795. // --------------------------------------------------
  796. type encRtidFn struct {
  797. rtid uintptr
  798. fn encFn
  799. }
  800. // An Encoder writes an object to an output stream in the codec format.
  801. type Encoder struct {
  802. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  803. e encDriver
  804. // NOTE: Encoder shouldn't call it's write methods,
  805. // as the handler MAY need to do some coordination.
  806. w encWriter
  807. s []encRtidFn
  808. ci set
  809. be bool // is binary encoding
  810. js bool // is json handle
  811. wi ioEncWriter
  812. wb bytesEncWriter
  813. h *BasicHandle
  814. hh Handle
  815. cr containerStateRecv
  816. as encDriverAsis
  817. f map[uintptr]*encFn
  818. b [scratchByteArrayLen]byte
  819. }
  820. // NewEncoder returns an Encoder for encoding into an io.Writer.
  821. //
  822. // For efficiency, Users are encouraged to pass in a memory buffered writer
  823. // (eg bufio.Writer, bytes.Buffer).
  824. func NewEncoder(w io.Writer, h Handle) *Encoder {
  825. e := newEncoder(h)
  826. e.Reset(w)
  827. return e
  828. }
  829. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  830. // into a byte slice, using zero-copying to temporary slices.
  831. //
  832. // It will potentially replace the output byte slice pointed to.
  833. // After encoding, the out parameter contains the encoded contents.
  834. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  835. e := newEncoder(h)
  836. e.ResetBytes(out)
  837. return e
  838. }
  839. func newEncoder(h Handle) *Encoder {
  840. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
  841. _, e.js = h.(*JsonHandle)
  842. e.e = h.newEncDriver(e)
  843. e.as, _ = e.e.(encDriverAsis)
  844. e.cr, _ = e.e.(containerStateRecv)
  845. return e
  846. }
  847. // Reset the Encoder with a new output stream.
  848. //
  849. // This accomodates using the state of the Encoder,
  850. // where it has "cached" information about sub-engines.
  851. func (e *Encoder) Reset(w io.Writer) {
  852. ww, ok := w.(ioEncWriterWriter)
  853. if ok {
  854. e.wi.w = ww
  855. } else {
  856. sww := &e.wi.s
  857. sww.w = w
  858. sww.bw, _ = w.(io.ByteWriter)
  859. sww.sw, _ = w.(ioEncStringWriter)
  860. e.wi.w = sww
  861. //ww = bufio.NewWriterSize(w, defEncByteBufSize)
  862. }
  863. e.w = &e.wi
  864. e.e.reset()
  865. }
  866. func (e *Encoder) ResetBytes(out *[]byte) {
  867. in := *out
  868. if in == nil {
  869. in = make([]byte, defEncByteBufSize)
  870. }
  871. e.wb.b, e.wb.out, e.wb.c = in, out, 0
  872. e.w = &e.wb
  873. e.e.reset()
  874. }
  875. // func (e *Encoder) sendContainerState(c containerState) {
  876. // if e.cr != nil {
  877. // e.cr.sendContainerState(c)
  878. // }
  879. // }
  880. // Encode writes an object into a stream.
  881. //
  882. // Encoding can be configured via the struct tag for the fields.
  883. // The "codec" key in struct field's tag value is the key name,
  884. // followed by an optional comma and options.
  885. // Note that the "json" key is used in the absence of the "codec" key.
  886. //
  887. // To set an option on all fields (e.g. omitempty on all fields), you
  888. // can create a field called _struct, and set flags on it.
  889. //
  890. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  891. // - the field's tag is "-", OR
  892. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  893. //
  894. // When encoding as a map, the first string in the tag (before the comma)
  895. // is the map key string to use when encoding.
  896. //
  897. // However, struct values may encode as arrays. This happens when:
  898. // - StructToArray Encode option is set, OR
  899. // - the tag on the _struct field sets the "toarray" option
  900. //
  901. // Values with types that implement MapBySlice are encoded as stream maps.
  902. //
  903. // The empty values (for omitempty option) are false, 0, any nil pointer
  904. // or interface value, and any array, slice, map, or string of length zero.
  905. //
  906. // Anonymous fields are encoded inline except:
  907. // - the struct tag specifies a replacement name (first value)
  908. // - the field is of an interface type
  909. //
  910. // Examples:
  911. //
  912. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  913. // type MyStruct struct {
  914. // _struct bool `codec:",omitempty"` //set omitempty for every field
  915. // Field1 string `codec:"-"` //skip this field
  916. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  917. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  918. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  919. // io.Reader //use key "Reader".
  920. // MyStruct `codec:"my1" //use key "my1".
  921. // MyStruct //inline it
  922. // ...
  923. // }
  924. //
  925. // type MyStruct struct {
  926. // _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
  927. // //and encode struct as an array
  928. // }
  929. //
  930. // The mode of encoding is based on the type of the value. When a value is seen:
  931. // - If a Selfer, call its CodecEncodeSelf method
  932. // - If an extension is registered for it, call that extension function
  933. // - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
  934. // - Else encode it based on its reflect.Kind
  935. //
  936. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  937. // Some formats support symbols (e.g. binc) and will properly encode the string
  938. // only once in the stream, and use a tag to refer to it thereafter.
  939. func (e *Encoder) Encode(v interface{}) (err error) {
  940. defer panicToErr(&err)
  941. e.encode(v)
  942. e.w.atEndOfEncode()
  943. return
  944. }
  945. // MustEncode is like Encode, but panics if unable to Encode.
  946. // This provides insight to the code location that triggered the error.
  947. func (e *Encoder) MustEncode(v interface{}) {
  948. e.encode(v)
  949. e.w.atEndOfEncode()
  950. }
  951. // comment out these (Must)Write methods. They were only put there to support cbor.
  952. // However, users already have access to the streams, and can write directly.
  953. //
  954. // // Write allows users write to the Encoder stream directly.
  955. // func (e *Encoder) Write(bs []byte) (err error) {
  956. // defer panicToErr(&err)
  957. // e.w.writeb(bs)
  958. // return
  959. // }
  960. // // MustWrite is like write, but panics if unable to Write.
  961. // func (e *Encoder) MustWrite(bs []byte) {
  962. // e.w.writeb(bs)
  963. // }
  964. func (e *Encoder) encode(iv interface{}) {
  965. // if ics, ok := iv.(Selfer); ok {
  966. // ics.CodecEncodeSelf(e)
  967. // return
  968. // }
  969. switch v := iv.(type) {
  970. case nil:
  971. e.e.EncodeNil()
  972. case Selfer:
  973. v.CodecEncodeSelf(e)
  974. case reflect.Value:
  975. e.encodeValue(v, nil)
  976. case string:
  977. e.e.EncodeString(c_UTF8, v)
  978. case bool:
  979. e.e.EncodeBool(v)
  980. case int:
  981. e.e.EncodeInt(int64(v))
  982. case int8:
  983. e.e.EncodeInt(int64(v))
  984. case int16:
  985. e.e.EncodeInt(int64(v))
  986. case int32:
  987. e.e.EncodeInt(int64(v))
  988. case int64:
  989. e.e.EncodeInt(v)
  990. case uint:
  991. e.e.EncodeUint(uint64(v))
  992. case uint8:
  993. e.e.EncodeUint(uint64(v))
  994. case uint16:
  995. e.e.EncodeUint(uint64(v))
  996. case uint32:
  997. e.e.EncodeUint(uint64(v))
  998. case uint64:
  999. e.e.EncodeUint(v)
  1000. case float32:
  1001. e.e.EncodeFloat32(v)
  1002. case float64:
  1003. e.e.EncodeFloat64(v)
  1004. case []uint8:
  1005. e.e.EncodeStringBytes(c_RAW, v)
  1006. case *string:
  1007. e.e.EncodeString(c_UTF8, *v)
  1008. case *bool:
  1009. e.e.EncodeBool(*v)
  1010. case *int:
  1011. e.e.EncodeInt(int64(*v))
  1012. case *int8:
  1013. e.e.EncodeInt(int64(*v))
  1014. case *int16:
  1015. e.e.EncodeInt(int64(*v))
  1016. case *int32:
  1017. e.e.EncodeInt(int64(*v))
  1018. case *int64:
  1019. e.e.EncodeInt(*v)
  1020. case *uint:
  1021. e.e.EncodeUint(uint64(*v))
  1022. case *uint8:
  1023. e.e.EncodeUint(uint64(*v))
  1024. case *uint16:
  1025. e.e.EncodeUint(uint64(*v))
  1026. case *uint32:
  1027. e.e.EncodeUint(uint64(*v))
  1028. case *uint64:
  1029. e.e.EncodeUint(*v)
  1030. case *float32:
  1031. e.e.EncodeFloat32(*v)
  1032. case *float64:
  1033. e.e.EncodeFloat64(*v)
  1034. case *[]uint8:
  1035. e.e.EncodeStringBytes(c_RAW, *v)
  1036. default:
  1037. const checkCodecSelfer1 = true // in case T is passed, where *T is a Selfer, still checkCodecSelfer
  1038. if !fastpathEncodeTypeSwitch(iv, e) {
  1039. e.encodeI(iv, false, checkCodecSelfer1)
  1040. }
  1041. }
  1042. }
  1043. func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, sptr uintptr, proceed bool) {
  1044. // use a goto statement instead of a recursive function for ptr/interface.
  1045. TOP:
  1046. switch rv.Kind() {
  1047. case reflect.Ptr:
  1048. if rv.IsNil() {
  1049. e.e.EncodeNil()
  1050. return
  1051. }
  1052. rv = rv.Elem()
  1053. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1054. // TODO: Movable pointers will be an issue here. Future problem.
  1055. sptr = rv.UnsafeAddr()
  1056. break TOP
  1057. }
  1058. goto TOP
  1059. case reflect.Interface:
  1060. if rv.IsNil() {
  1061. e.e.EncodeNil()
  1062. return
  1063. }
  1064. rv = rv.Elem()
  1065. goto TOP
  1066. case reflect.Slice, reflect.Map:
  1067. if rv.IsNil() {
  1068. e.e.EncodeNil()
  1069. return
  1070. }
  1071. case reflect.Invalid, reflect.Func:
  1072. e.e.EncodeNil()
  1073. return
  1074. }
  1075. proceed = true
  1076. rv2 = rv
  1077. return
  1078. }
  1079. func (e *Encoder) doEncodeValue(rv reflect.Value, fn *encFn, sptr uintptr,
  1080. checkFastpath, checkCodecSelfer bool) {
  1081. if sptr != 0 {
  1082. if (&e.ci).add(sptr) {
  1083. e.errorf("circular reference found: # %d", sptr)
  1084. }
  1085. }
  1086. if fn == nil {
  1087. rt := rv.Type()
  1088. rtid := reflect.ValueOf(rt).Pointer()
  1089. // fn = e.getEncFn(rtid, rt, true, true)
  1090. fn = e.getEncFn(rtid, rt, checkFastpath, checkCodecSelfer)
  1091. }
  1092. fn.f(&fn.i, rv)
  1093. if sptr != 0 {
  1094. (&e.ci).remove(sptr)
  1095. }
  1096. }
  1097. func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer bool) {
  1098. if rv, sptr, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
  1099. e.doEncodeValue(rv, nil, sptr, checkFastpath, checkCodecSelfer)
  1100. }
  1101. }
  1102. func (e *Encoder) encodeValue(rv reflect.Value, fn *encFn) {
  1103. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1104. if rv, sptr, proceed := e.preEncodeValue(rv); proceed {
  1105. e.doEncodeValue(rv, fn, sptr, true, true)
  1106. }
  1107. }
  1108. func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *encFn) {
  1109. // rtid := reflect.ValueOf(rt).Pointer()
  1110. var ok bool
  1111. if useMapForCodecCache {
  1112. fn, ok = e.f[rtid]
  1113. } else {
  1114. for i := range e.s {
  1115. v := &(e.s[i])
  1116. if v.rtid == rtid {
  1117. fn, ok = &(v.fn), true
  1118. break
  1119. }
  1120. }
  1121. }
  1122. if ok {
  1123. return
  1124. }
  1125. if useMapForCodecCache {
  1126. if e.f == nil {
  1127. e.f = make(map[uintptr]*encFn, initCollectionCap)
  1128. }
  1129. fn = new(encFn)
  1130. e.f[rtid] = fn
  1131. } else {
  1132. if e.s == nil {
  1133. e.s = make([]encRtidFn, 0, initCollectionCap)
  1134. }
  1135. e.s = append(e.s, encRtidFn{rtid: rtid})
  1136. fn = &(e.s[len(e.s)-1]).fn
  1137. }
  1138. ti := e.h.getTypeInfo(rtid, rt)
  1139. fi := &(fn.i)
  1140. fi.e = e
  1141. fi.ti = ti
  1142. if checkCodecSelfer && ti.cs {
  1143. fn.f = (*encFnInfo).selferMarshal
  1144. } else if rtid == rawExtTypId {
  1145. fn.f = (*encFnInfo).rawExt
  1146. } else if e.e.IsBuiltinType(rtid) {
  1147. fn.f = (*encFnInfo).builtin
  1148. } else if xfFn := e.h.getExt(rtid); xfFn != nil {
  1149. fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
  1150. fn.f = (*encFnInfo).ext
  1151. } else if supportMarshalInterfaces && e.be && ti.bm {
  1152. fn.f = (*encFnInfo).binaryMarshal
  1153. } else if supportMarshalInterfaces && !e.be && e.js && ti.jm {
  1154. //If JSON, we should check JSONMarshal before textMarshal
  1155. fn.f = (*encFnInfo).jsonMarshal
  1156. } else if supportMarshalInterfaces && !e.be && ti.tm {
  1157. fn.f = (*encFnInfo).textMarshal
  1158. } else {
  1159. rk := rt.Kind()
  1160. if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
  1161. if rt.PkgPath() == "" { // un-named slice or map
  1162. if idx := fastpathAV.index(rtid); idx != -1 {
  1163. fn.f = fastpathAV[idx].encfn
  1164. }
  1165. } else {
  1166. ok = false
  1167. // use mapping for underlying type if there
  1168. var rtu reflect.Type
  1169. if rk == reflect.Map {
  1170. rtu = reflect.MapOf(rt.Key(), rt.Elem())
  1171. } else {
  1172. rtu = reflect.SliceOf(rt.Elem())
  1173. }
  1174. rtuid := reflect.ValueOf(rtu).Pointer()
  1175. if idx := fastpathAV.index(rtuid); idx != -1 {
  1176. xfnf := fastpathAV[idx].encfn
  1177. xrt := fastpathAV[idx].rt
  1178. fn.f = func(xf *encFnInfo, xrv reflect.Value) {
  1179. xfnf(xf, xrv.Convert(xrt))
  1180. }
  1181. }
  1182. }
  1183. }
  1184. if fn.f == nil {
  1185. switch rk {
  1186. case reflect.Bool:
  1187. fn.f = (*encFnInfo).kBool
  1188. case reflect.String:
  1189. fn.f = (*encFnInfo).kString
  1190. case reflect.Float64:
  1191. fn.f = (*encFnInfo).kFloat64
  1192. case reflect.Float32:
  1193. fn.f = (*encFnInfo).kFloat32
  1194. case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
  1195. fn.f = (*encFnInfo).kInt
  1196. case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16, reflect.Uintptr:
  1197. fn.f = (*encFnInfo).kUint
  1198. case reflect.Invalid:
  1199. fn.f = (*encFnInfo).kInvalid
  1200. case reflect.Chan:
  1201. fi.seq = seqTypeChan
  1202. fn.f = (*encFnInfo).kSlice
  1203. case reflect.Slice:
  1204. fi.seq = seqTypeSlice
  1205. fn.f = (*encFnInfo).kSlice
  1206. case reflect.Array:
  1207. fi.seq = seqTypeArray
  1208. fn.f = (*encFnInfo).kSlice
  1209. case reflect.Struct:
  1210. fn.f = (*encFnInfo).kStruct
  1211. // reflect.Ptr and reflect.Interface are handled already by preEncodeValue
  1212. // case reflect.Ptr:
  1213. // fn.f = (*encFnInfo).kPtr
  1214. // case reflect.Interface:
  1215. // fn.f = (*encFnInfo).kInterface
  1216. case reflect.Map:
  1217. fn.f = (*encFnInfo).kMap
  1218. default:
  1219. fn.f = (*encFnInfo).kErr
  1220. }
  1221. }
  1222. }
  1223. return
  1224. }
  1225. func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1226. if fnerr != nil {
  1227. panic(fnerr)
  1228. }
  1229. if bs == nil {
  1230. e.e.EncodeNil()
  1231. } else if asis {
  1232. e.asis(bs)
  1233. } else {
  1234. e.e.EncodeStringBytes(c, bs)
  1235. }
  1236. }
  1237. func (e *Encoder) asis(v []byte) {
  1238. if e.as == nil {
  1239. e.w.writeb(v)
  1240. } else {
  1241. e.as.EncodeAsis(v)
  1242. }
  1243. }
  1244. func (e *Encoder) errorf(format string, params ...interface{}) {
  1245. err := fmt.Errorf(format, params...)
  1246. panic(err)
  1247. }
  1248. // ----------------------------------------
  1249. const encStructPoolLen = 5
  1250. // encStructPool is an array of sync.Pool.
  1251. // Each element of the array pools one of encStructPool(8|16|32|64).
  1252. // It allows the re-use of slices up to 64 in length.
  1253. // A performance cost of encoding structs was collecting
  1254. // which values were empty and should be omitted.
  1255. // We needed slices of reflect.Value and string to collect them.
  1256. // This shared pool reduces the amount of unnecessary creation we do.
  1257. // The cost is that of locking sometimes, but sync.Pool is efficient
  1258. // enough to reduce thread contention.
  1259. var encStructPool [encStructPoolLen]sync.Pool
  1260. func init() {
  1261. encStructPool[0].New = func() interface{} { return new([8]stringRv) }
  1262. encStructPool[1].New = func() interface{} { return new([16]stringRv) }
  1263. encStructPool[2].New = func() interface{} { return new([32]stringRv) }
  1264. encStructPool[3].New = func() interface{} { return new([64]stringRv) }
  1265. encStructPool[4].New = func() interface{} { return new([128]stringRv) }
  1266. }
  1267. func encStructPoolGet(newlen int) (p *sync.Pool, v interface{}, s []stringRv) {
  1268. // if encStructPoolLen != 5 { // constant chec, so removed at build time.
  1269. // panic(errors.New("encStructPoolLen must be equal to 4")) // defensive, in case it is changed
  1270. // }
  1271. // idxpool := newlen / 8
  1272. if newlen <= 8 {
  1273. p = &encStructPool[0]
  1274. v = p.Get()
  1275. s = v.(*[8]stringRv)[:newlen]
  1276. } else if newlen <= 16 {
  1277. p = &encStructPool[1]
  1278. v = p.Get()
  1279. s = v.(*[16]stringRv)[:newlen]
  1280. } else if newlen <= 32 {
  1281. p = &encStructPool[2]
  1282. v = p.Get()
  1283. s = v.(*[32]stringRv)[:newlen]
  1284. } else if newlen <= 64 {
  1285. p = &encStructPool[3]
  1286. v = p.Get()
  1287. s = v.(*[64]stringRv)[:newlen]
  1288. } else if newlen <= 128 {
  1289. p = &encStructPool[4]
  1290. v = p.Get()
  1291. s = v.(*[128]stringRv)[:newlen]
  1292. } else {
  1293. s = make([]stringRv, newlen)
  1294. }
  1295. return
  1296. }
  1297. // ----------------------------------------
  1298. // func encErr(format string, params ...interface{}) {
  1299. // doPanic(msgTagEnc, format, params...)
  1300. // }