encode.go 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "sort"
  11. "strconv"
  12. "time"
  13. )
  14. // defEncByteBufSize is the default size of []byte used
  15. // for bufio buffer or []byte (when nil passed)
  16. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  17. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  18. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  19. type encDriver interface {
  20. EncodeNil()
  21. EncodeInt(i int64)
  22. EncodeUint(i uint64)
  23. EncodeBool(b bool)
  24. EncodeFloat32(f float32)
  25. EncodeFloat64(f float64)
  26. // encodeExtPreamble(xtag byte, length int)
  27. EncodeRawExt(re *RawExt)
  28. EncodeExt(v interface{}, xtag uint64, ext Ext)
  29. EncodeStringEnc(c charEncoding, v string) // c cannot be cRAW
  30. // EncodeSymbol(v string)
  31. EncodeStringBytesRaw(v []byte)
  32. EncodeTime(time.Time)
  33. //encBignum(f *big.Int)
  34. //encStringRunes(c charEncoding, v []rune)
  35. WriteArrayStart(length int)
  36. WriteArrayEnd()
  37. WriteMapStart(length int)
  38. WriteMapEnd()
  39. reset()
  40. atEndOfEncode()
  41. }
  42. type encDriverContainerTracker interface {
  43. WriteArrayElem()
  44. WriteMapElemKey()
  45. WriteMapElemValue()
  46. }
  47. type encDriverAsis interface {
  48. EncodeAsis(v []byte)
  49. }
  50. type encodeError struct {
  51. codecError
  52. }
  53. func (e encodeError) Error() string {
  54. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  55. }
  56. type encDriverNoopContainerWriter struct{}
  57. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  58. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  59. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  60. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  61. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  62. // func (encDriverNoopContainerWriter) WriteArrayElem() {}
  63. // func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  64. // func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  65. // type encDriverTrackContainerWriter struct {
  66. // c containerState
  67. // }
  68. // func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  69. // func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  70. // func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  71. // func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  72. // func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  73. // func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  74. // func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  75. // func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  76. // EncodeOptions captures configuration options during encode.
  77. type EncodeOptions struct {
  78. // WriterBufferSize is the size of the buffer used when writing.
  79. //
  80. // if > 0, we use a smart buffer internally for performance purposes.
  81. WriterBufferSize int
  82. // ChanRecvTimeout is the timeout used when selecting from a chan.
  83. //
  84. // Configuring this controls how we receive from a chan during the encoding process.
  85. // - If ==0, we only consume the elements currently available in the chan.
  86. // - if <0, we consume until the chan is closed.
  87. // - If >0, we consume until this timeout.
  88. ChanRecvTimeout time.Duration
  89. // StructToArray specifies to encode a struct as an array, and not as a map
  90. StructToArray bool
  91. // Canonical representation means that encoding a value will always result in the same
  92. // sequence of bytes.
  93. //
  94. // This only affects maps, as the iteration order for maps is random.
  95. //
  96. // The implementation MAY use the natural sort order for the map keys if possible:
  97. //
  98. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  99. // then the map keys are first sorted in natural order and then written
  100. // with corresponding map values to the strema.
  101. // - If there is no natural sort order, then the map keys will first be
  102. // encoded into []byte, and then sorted,
  103. // before writing the sorted keys and the corresponding map values to the stream.
  104. //
  105. Canonical bool
  106. // CheckCircularRef controls whether we check for circular references
  107. // and error fast during an encode.
  108. //
  109. // If enabled, an error is received if a pointer to a struct
  110. // references itself either directly or through one of its fields (iteratively).
  111. //
  112. // This is opt-in, as there may be a performance hit to checking circular references.
  113. CheckCircularRef bool
  114. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  115. // when checking if a value is empty.
  116. //
  117. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  118. RecursiveEmptyCheck bool
  119. // Raw controls whether we encode Raw values.
  120. // This is a "dangerous" option and must be explicitly set.
  121. // If set, we blindly encode Raw values as-is, without checking
  122. // if they are a correct representation of a value in that format.
  123. // If unset, we error out.
  124. Raw bool
  125. // StringToRaw controls how strings are encoded.
  126. //
  127. // As a go string is just an (immutable) sequence of bytes,
  128. // it can be encoded either as raw bytes or as a UTF string.
  129. //
  130. // By default, strings are encoded as UTF-8.
  131. // but can be treated as []byte during an encode.
  132. //
  133. // Note that things which we know (by definition) to be UTF-8
  134. // are ALWAYS encoded as UTF-8 strings.
  135. // These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
  136. StringToRaw bool
  137. // // AsSymbols defines what should be encoded as symbols.
  138. // //
  139. // // Encoding as symbols can reduce the encoded size significantly.
  140. // //
  141. // // However, during decoding, each string to be encoded as a symbol must
  142. // // be checked to see if it has been seen before. Consequently, encoding time
  143. // // will increase if using symbols, because string comparisons has a clear cost.
  144. // //
  145. // // Sample values:
  146. // // AsSymbolNone
  147. // // AsSymbolAll
  148. // // AsSymbolMapStringKeys
  149. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  150. // AsSymbols AsSymbolFlag
  151. }
  152. // ---------------------------------------------
  153. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  154. e.e.EncodeRawExt(rv2i(rv).(*RawExt))
  155. }
  156. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  157. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn)
  158. }
  159. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  160. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  161. }
  162. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  163. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  164. e.marshalRaw(bs, fnerr)
  165. }
  166. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  167. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  168. e.marshalUtf8(bs, fnerr)
  169. }
  170. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  171. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  172. e.marshalAsis(bs, fnerr)
  173. }
  174. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  175. e.rawBytes(rv2i(rv).(Raw))
  176. }
  177. func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
  178. e.e.EncodeBool(rvGetBool(rv))
  179. }
  180. func (e *Encoder) kTime(f *codecFnInfo, rv reflect.Value) {
  181. e.e.EncodeTime(rvGetTime(rv))
  182. }
  183. func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
  184. if e.h.StringToRaw {
  185. e.e.EncodeStringBytesRaw(bytesView(rvGetString(rv)))
  186. } else {
  187. e.e.EncodeStringEnc(cUTF8, rvGetString(rv))
  188. }
  189. }
  190. // func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
  191. // if e.h.StringToRaw {
  192. // e.kStringToRaw(f, rv)
  193. // } else {
  194. // e.kStringEnc(f, rv)
  195. // }
  196. // }
  197. // func (e *Encoder) kStringToRaw(f *codecFnInfo, rv reflect.Value) {
  198. // e.e.EncodeStringBytesRaw(bytesView(rvGetString(rv)))
  199. // }
  200. // func (e *Encoder) kStringEnc(f *codecFnInfo, rv reflect.Value) {
  201. // e.e.EncodeStringEnc(cUTF8, rvGetString(rv))
  202. // }
  203. func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
  204. e.e.EncodeFloat64(rvGetFloat64(rv))
  205. }
  206. func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
  207. e.e.EncodeFloat32(rvGetFloat32(rv))
  208. }
  209. func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
  210. e.e.EncodeInt(int64(rvGetInt(rv)))
  211. }
  212. func (e *Encoder) kInt8(f *codecFnInfo, rv reflect.Value) {
  213. e.e.EncodeInt(int64(rvGetInt8(rv)))
  214. }
  215. func (e *Encoder) kInt16(f *codecFnInfo, rv reflect.Value) {
  216. e.e.EncodeInt(int64(rvGetInt16(rv)))
  217. }
  218. func (e *Encoder) kInt32(f *codecFnInfo, rv reflect.Value) {
  219. e.e.EncodeInt(int64(rvGetInt32(rv)))
  220. }
  221. func (e *Encoder) kInt64(f *codecFnInfo, rv reflect.Value) {
  222. e.e.EncodeInt(int64(rvGetInt64(rv)))
  223. }
  224. func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
  225. e.e.EncodeUint(uint64(rvGetUint(rv)))
  226. }
  227. func (e *Encoder) kUint8(f *codecFnInfo, rv reflect.Value) {
  228. e.e.EncodeUint(uint64(rvGetUint8(rv)))
  229. }
  230. func (e *Encoder) kUint16(f *codecFnInfo, rv reflect.Value) {
  231. e.e.EncodeUint(uint64(rvGetUint16(rv)))
  232. }
  233. func (e *Encoder) kUint32(f *codecFnInfo, rv reflect.Value) {
  234. e.e.EncodeUint(uint64(rvGetUint32(rv)))
  235. }
  236. func (e *Encoder) kUint64(f *codecFnInfo, rv reflect.Value) {
  237. e.e.EncodeUint(uint64(rvGetUint64(rv)))
  238. }
  239. func (e *Encoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
  240. e.e.EncodeUint(uint64(rvGetUintptr(rv)))
  241. }
  242. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  243. e.e.EncodeNil()
  244. }
  245. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  246. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  247. }
  248. func chanToSlice(rv reflect.Value, rtelem reflect.Type, timeout time.Duration) (rvcs reflect.Value) {
  249. // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  250. rvcs = reflect.Zero(reflect.SliceOf(rtelem))
  251. if timeout < 0 { // consume until close
  252. for {
  253. recv, recvOk := rv.Recv()
  254. if !recvOk {
  255. break
  256. }
  257. rvcs = reflect.Append(rvcs, recv)
  258. }
  259. } else {
  260. cases := make([]reflect.SelectCase, 2)
  261. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  262. if timeout == 0 {
  263. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  264. } else {
  265. tt := time.NewTimer(timeout)
  266. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv4i(tt.C)}
  267. }
  268. for {
  269. chosen, recv, recvOk := reflect.Select(cases)
  270. if chosen == 1 || !recvOk {
  271. break
  272. }
  273. rvcs = reflect.Append(rvcs, recv)
  274. }
  275. }
  276. return
  277. }
  278. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  279. // array may be non-addressable, so we have to manage with care
  280. // (don't call rv.Bytes, rv.Slice, etc).
  281. // E.g. type struct S{B [2]byte};
  282. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  283. mbs := f.ti.mbs
  284. if f.seq != seqTypeArray {
  285. if rvIsNil(rv) {
  286. e.e.EncodeNil()
  287. return
  288. }
  289. // If in this method, then there was no extension function defined.
  290. // So it's okay to treat as []byte.
  291. if !mbs && f.ti.rtid == uint8SliceTypId {
  292. e.e.EncodeStringBytesRaw(rvGetBytes(rv))
  293. return
  294. }
  295. }
  296. if f.seq == seqTypeChan && f.ti.chandir&uint8(reflect.RecvDir) == 0 {
  297. e.errorf("send-only channel cannot be encoded")
  298. }
  299. rtelem := f.ti.elem
  300. var l int
  301. // if a slice, array or chan of bytes, treat specially
  302. if !mbs && uint8TypId == rt2id(rtelem) { // NOT rtelem.Kind() == reflect.Uint8
  303. switch f.seq {
  304. case seqTypeSlice:
  305. e.e.EncodeStringBytesRaw(rvGetBytes(rv))
  306. case seqTypeArray:
  307. e.e.EncodeStringBytesRaw(rvGetArrayBytesRO(rv, e.b[:]))
  308. case seqTypeChan:
  309. e.kSliceBytesChan(rv)
  310. }
  311. return
  312. }
  313. // if chan, consume chan into a slice, and work off that slice.
  314. if f.seq == seqTypeChan {
  315. rv = chanToSlice(rv, rtelem, e.h.ChanRecvTimeout)
  316. }
  317. l = rv.Len() // rv may be slice or array
  318. if mbs {
  319. if l%2 == 1 {
  320. e.errorf("mapBySlice requires even slice length, but got %v", l)
  321. return
  322. }
  323. e.mapStart(l / 2)
  324. } else {
  325. e.arrayStart(l)
  326. }
  327. if l > 0 {
  328. var fn *codecFn
  329. for rtelem.Kind() == reflect.Ptr {
  330. rtelem = rtelem.Elem()
  331. }
  332. // if kind is reflect.Interface, do not pre-determine the
  333. // encoding type, because preEncodeValue may break it down to
  334. // a concrete type and kInterface will bomb.
  335. if rtelem.Kind() != reflect.Interface {
  336. fn = e.h.fn(rtelem)
  337. }
  338. for j := 0; j < l; j++ {
  339. if mbs {
  340. if j%2 == 0 {
  341. e.mapElemKey()
  342. } else {
  343. e.mapElemValue()
  344. }
  345. } else {
  346. e.arrayElem()
  347. }
  348. e.encodeValue(rv.Index(j), fn)
  349. }
  350. }
  351. if mbs {
  352. e.mapEnd()
  353. } else {
  354. e.arrayEnd()
  355. }
  356. }
  357. func (e *Encoder) kSliceBytesChan(rv reflect.Value) {
  358. // do not use range, so that the number of elements encoded
  359. // does not change, and encoding does not hang waiting on someone to close chan.
  360. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  361. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  362. // if rvIsNil(rv) {
  363. // e.e.EncodeNil()
  364. // return
  365. // }
  366. bs := e.b[:0]
  367. irv := rv2i(rv)
  368. ch, ok := irv.(<-chan byte)
  369. if !ok {
  370. ch = irv.(chan byte)
  371. }
  372. L1:
  373. switch timeout := e.h.ChanRecvTimeout; {
  374. case timeout == 0: // only consume available
  375. for {
  376. select {
  377. case b := <-ch:
  378. bs = append(bs, b)
  379. default:
  380. break L1
  381. }
  382. }
  383. case timeout > 0: // consume until timeout
  384. tt := time.NewTimer(timeout)
  385. for {
  386. select {
  387. case b := <-ch:
  388. bs = append(bs, b)
  389. case <-tt.C:
  390. // close(tt.C)
  391. break L1
  392. }
  393. }
  394. default: // consume until close
  395. for b := range ch {
  396. bs = append(bs, b)
  397. }
  398. }
  399. e.e.EncodeStringBytesRaw(bs)
  400. }
  401. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  402. sfn := structFieldNode{v: rv, update: false}
  403. if f.ti.toArray || e.h.StructToArray { // toArray
  404. e.arrayStart(len(f.ti.sfiSrc))
  405. for _, si := range f.ti.sfiSrc {
  406. e.arrayElem()
  407. e.encodeValue(sfn.field(si), nil)
  408. }
  409. e.arrayEnd()
  410. } else {
  411. e.mapStart(len(f.ti.sfiSort))
  412. for _, si := range f.ti.sfiSort {
  413. e.mapElemKey()
  414. e.kStructFieldKey(f.ti.keyType, si.encNameAsciiAlphaNum, si.encName)
  415. e.mapElemValue()
  416. e.encodeValue(sfn.field(si), nil)
  417. }
  418. e.mapEnd()
  419. }
  420. }
  421. func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
  422. encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
  423. }
  424. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  425. var newlen int
  426. toMap := !(f.ti.toArray || e.h.StructToArray)
  427. var mf map[string]interface{}
  428. if f.ti.isFlag(tiflagMissingFielder) {
  429. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  430. toMap = true
  431. newlen += len(mf)
  432. } else if f.ti.isFlag(tiflagMissingFielderPtr) {
  433. if rv.CanAddr() {
  434. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  435. } else {
  436. // make a new addressable value of same one, and use it
  437. rv2 := reflect.New(rv.Type())
  438. rvSetDirect(rv2.Elem(), rv)
  439. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  440. }
  441. toMap = true
  442. newlen += len(mf)
  443. }
  444. newlen += len(f.ti.sfiSrc)
  445. // Use sync.Pool to reduce allocating slices unnecessarily.
  446. // The cost of sync.Pool is less than the cost of new allocation.
  447. //
  448. // Each element of the array pools one of encStructPool(8|16|32|64).
  449. // It allows the re-use of slices up to 64 in length.
  450. // A performance cost of encoding structs was collecting
  451. // which values were empty and should be omitted.
  452. // We needed slices of reflect.Value and string to collect them.
  453. // This shared pool reduces the amount of unnecessary creation we do.
  454. // The cost is that of locking sometimes, but sync.Pool is efficient
  455. // enough to reduce thread contention.
  456. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  457. // var spool sfiRvPooler
  458. var fkvs = e.slist.get(newlen)
  459. recur := e.h.RecursiveEmptyCheck
  460. sfn := structFieldNode{v: rv, update: false}
  461. var kv sfiRv
  462. var j int
  463. if toMap {
  464. newlen = 0
  465. for _, si := range f.ti.sfiSort { // use sorted array
  466. // kv.r = si.field(rv, false)
  467. kv.r = sfn.field(si)
  468. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  469. continue
  470. }
  471. kv.v = si // si.encName
  472. fkvs[newlen] = kv
  473. newlen++
  474. }
  475. var mflen int
  476. for k, v := range mf {
  477. if k == "" {
  478. delete(mf, k)
  479. continue
  480. }
  481. if f.ti.infoFieldOmitempty && isEmptyValue(rv4i(v), e.h.TypeInfos, recur, recur) {
  482. delete(mf, k)
  483. continue
  484. }
  485. mflen++
  486. }
  487. // encode it all
  488. e.mapStart(newlen + mflen)
  489. for j = 0; j < newlen; j++ {
  490. kv = fkvs[j]
  491. e.mapElemKey()
  492. e.kStructFieldKey(f.ti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  493. e.mapElemValue()
  494. e.encodeValue(kv.r, nil)
  495. }
  496. // now, add the others
  497. for k, v := range mf {
  498. e.mapElemKey()
  499. e.kStructFieldKey(f.ti.keyType, false, k)
  500. e.mapElemValue()
  501. e.encode(v)
  502. }
  503. e.mapEnd()
  504. } else {
  505. newlen = len(f.ti.sfiSrc)
  506. // kv.v = nil
  507. for i, si := range f.ti.sfiSrc { // use unsorted array (to match sequence in struct)
  508. // kv.r = si.field(rv, false)
  509. kv.r = sfn.field(si)
  510. // use the zero value.
  511. // if a reference or struct, set to nil (so you do not output too much)
  512. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  513. switch kv.r.Kind() {
  514. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  515. kv.r = reflect.Value{} //encode as nil
  516. }
  517. }
  518. fkvs[i] = kv
  519. }
  520. // encode it all
  521. e.arrayStart(newlen)
  522. for j = 0; j < newlen; j++ {
  523. e.arrayElem()
  524. e.encodeValue(fkvs[j].r, nil)
  525. }
  526. e.arrayEnd()
  527. }
  528. // do not use defer. Instead, use explicit pool return at end of function.
  529. // defer has a cost we are trying to avoid.
  530. // If there is a panic and these slices are not returned, it is ok.
  531. // spool.end()
  532. e.slist.put(fkvs)
  533. }
  534. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  535. if rvIsNil(rv) {
  536. e.e.EncodeNil()
  537. return
  538. }
  539. l := rv.Len()
  540. e.mapStart(l)
  541. if l == 0 {
  542. e.mapEnd()
  543. return
  544. }
  545. // var asSymbols bool
  546. // determine the underlying key and val encFn's for the map.
  547. // This eliminates some work which is done for each loop iteration i.e.
  548. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  549. //
  550. // However, if kind is reflect.Interface, do not pre-determine the
  551. // encoding type, because preEncodeValue may break it down to
  552. // a concrete type and kInterface will bomb.
  553. var keyFn, valFn *codecFn
  554. // rtkeyid := rt2id(f.ti.key)
  555. ktypeKind := f.ti.key.Kind()
  556. vtypeKind := f.ti.elem.Kind()
  557. rtval := f.ti.elem
  558. rtvalkind := vtypeKind
  559. for rtvalkind == reflect.Ptr {
  560. rtval = rtval.Elem()
  561. rtvalkind = rtval.Kind()
  562. }
  563. if rtvalkind != reflect.Interface {
  564. valFn = e.h.fn(rtval)
  565. }
  566. var rvv = mapAddressableRV(f.ti.elem, vtypeKind)
  567. if e.h.Canonical {
  568. e.kMapCanonical(f.ti.key, f.ti.elem, rv, rvv, valFn)
  569. e.mapEnd()
  570. return
  571. }
  572. rtkey := f.ti.key
  573. var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
  574. if !keyTypeIsString {
  575. for rtkey.Kind() == reflect.Ptr {
  576. rtkey = rtkey.Elem()
  577. }
  578. if rtkey.Kind() != reflect.Interface {
  579. // rtkeyid = rt2id(rtkey)
  580. keyFn = e.h.fn(rtkey)
  581. }
  582. }
  583. var rvk = mapAddressableRV(f.ti.key, ktypeKind)
  584. it := mapRange(rv, rvk, rvv, true)
  585. var vx reflect.Value
  586. for it.Next() {
  587. e.mapElemKey()
  588. if vx = it.Key(); !vx.IsValid() {
  589. vx = rvk
  590. }
  591. if keyTypeIsString {
  592. if e.h.StringToRaw {
  593. e.e.EncodeStringBytesRaw(bytesView(vx.String()))
  594. } else {
  595. e.e.EncodeStringEnc(cUTF8, vx.String())
  596. }
  597. } else {
  598. e.encodeValue(vx, keyFn)
  599. }
  600. e.mapElemValue()
  601. if vx = it.Value(); !vx.IsValid() {
  602. vx = rvv
  603. }
  604. e.encodeValue(vx, valFn)
  605. }
  606. it.Done()
  607. e.mapEnd()
  608. }
  609. func (e *Encoder) kMapCanonical(rtkey, rtval reflect.Type, rv, rvv reflect.Value, valFn *codecFn) {
  610. // we previously did out-of-band if an extension was registered.
  611. // This is not necessary, as the natural kind is sufficient for ordering.
  612. mks := rv.MapKeys()
  613. switch rtkey.Kind() {
  614. case reflect.Bool:
  615. mksv := make([]boolRv, len(mks))
  616. for i, k := range mks {
  617. v := &mksv[i]
  618. v.r = k
  619. v.v = k.Bool()
  620. }
  621. sort.Sort(boolRvSlice(mksv))
  622. for i := range mksv {
  623. e.mapElemKey()
  624. e.e.EncodeBool(mksv[i].v)
  625. e.mapElemValue()
  626. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  627. }
  628. case reflect.String:
  629. mksv := make([]stringRv, len(mks))
  630. for i, k := range mks {
  631. v := &mksv[i]
  632. v.r = k
  633. v.v = k.String()
  634. }
  635. sort.Sort(stringRvSlice(mksv))
  636. for i := range mksv {
  637. e.mapElemKey()
  638. if e.h.StringToRaw {
  639. e.e.EncodeStringBytesRaw(bytesView(mksv[i].v))
  640. } else {
  641. e.e.EncodeStringEnc(cUTF8, mksv[i].v)
  642. }
  643. e.mapElemValue()
  644. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  645. }
  646. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  647. mksv := make([]uint64Rv, len(mks))
  648. for i, k := range mks {
  649. v := &mksv[i]
  650. v.r = k
  651. v.v = k.Uint()
  652. }
  653. sort.Sort(uint64RvSlice(mksv))
  654. for i := range mksv {
  655. e.mapElemKey()
  656. e.e.EncodeUint(mksv[i].v)
  657. e.mapElemValue()
  658. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  659. }
  660. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  661. mksv := make([]int64Rv, len(mks))
  662. for i, k := range mks {
  663. v := &mksv[i]
  664. v.r = k
  665. v.v = k.Int()
  666. }
  667. sort.Sort(int64RvSlice(mksv))
  668. for i := range mksv {
  669. e.mapElemKey()
  670. e.e.EncodeInt(mksv[i].v)
  671. e.mapElemValue()
  672. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  673. }
  674. case reflect.Float32:
  675. mksv := make([]float64Rv, len(mks))
  676. for i, k := range mks {
  677. v := &mksv[i]
  678. v.r = k
  679. v.v = k.Float()
  680. }
  681. sort.Sort(float64RvSlice(mksv))
  682. for i := range mksv {
  683. e.mapElemKey()
  684. e.e.EncodeFloat32(float32(mksv[i].v))
  685. e.mapElemValue()
  686. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  687. }
  688. case reflect.Float64:
  689. mksv := make([]float64Rv, len(mks))
  690. for i, k := range mks {
  691. v := &mksv[i]
  692. v.r = k
  693. v.v = k.Float()
  694. }
  695. sort.Sort(float64RvSlice(mksv))
  696. for i := range mksv {
  697. e.mapElemKey()
  698. e.e.EncodeFloat64(mksv[i].v)
  699. e.mapElemValue()
  700. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn) // e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  701. }
  702. case reflect.Struct:
  703. if rtkey == timeTyp {
  704. mksv := make([]timeRv, len(mks))
  705. for i, k := range mks {
  706. v := &mksv[i]
  707. v.r = k
  708. v.v = rv2i(k).(time.Time)
  709. }
  710. sort.Sort(timeRvSlice(mksv))
  711. for i := range mksv {
  712. e.mapElemKey()
  713. e.e.EncodeTime(mksv[i].v)
  714. e.mapElemValue()
  715. e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
  716. }
  717. break
  718. }
  719. fallthrough
  720. default:
  721. // out-of-band
  722. // first encode each key to a []byte first, then sort them, then record
  723. // var bufp bytesBufPooler
  724. // var mksv []byte = bufp.get(len(mks) * 16)[:0]
  725. // var mksv []byte = make([]byte, 0, len(mks)*16)
  726. var mksv []byte = e.blist.get(len(mks) * 16)[:0]
  727. e2 := NewEncoderBytes(&mksv, e.hh)
  728. mksbv := make([]bytesRv, len(mks))
  729. for i, k := range mks {
  730. v := &mksbv[i]
  731. l := len(mksv)
  732. e2.MustEncode(k)
  733. v.r = k
  734. v.v = mksv[l:]
  735. }
  736. sort.Sort(bytesRvSlice(mksbv))
  737. for j := range mksbv {
  738. e.mapElemKey()
  739. e.asis(mksbv[j].v)
  740. e.mapElemValue()
  741. e.encodeValue(mapGet(rv, mksbv[j].r, rvv), valFn)
  742. }
  743. // bufp.end()
  744. e.blist.put(mksv)
  745. }
  746. }
  747. // Encoder writes an object to an output stream in a supported format.
  748. //
  749. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  750. // concurrently in multiple goroutines.
  751. //
  752. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  753. // so its state can be reused to decode new input streams repeatedly.
  754. // This is the idiomatic way to use.
  755. type Encoder struct {
  756. panicHdl
  757. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  758. e encDriver
  759. // NOTE: Encoder shouldn't call it's write methods,
  760. // as the handler MAY need to do some coordination.
  761. // w *encWr
  762. // bw *bufio.Writer
  763. as encDriverAsis
  764. jenc *jsonEncDriver
  765. h *BasicHandle
  766. hh Handle
  767. // ---- cpu cache line boundary
  768. encWr
  769. err error
  770. // ---- cpu cache line boundary
  771. // ---- writable fields during execution --- *try* to keep in sep cache line
  772. ci set // holds set of addresses found during an encoding (if CheckCircularRef=true)
  773. // cidef [1]interface{} // default ci
  774. b [(7 * 8)]byte // for encoding chan byte, (non-addressable) [N]byte, etc
  775. slist sfiRvFreelist
  776. blist bytesFreelist
  777. // ---- cpu cache line boundary?
  778. // b [scratchByteArrayLen]byte
  779. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  780. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  781. }
  782. // NewEncoder returns an Encoder for encoding into an io.Writer.
  783. //
  784. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  785. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  786. func NewEncoder(w io.Writer, h Handle) *Encoder {
  787. e := newEncoder(h)
  788. e.Reset(w)
  789. return e
  790. }
  791. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  792. // into a byte slice, using zero-copying to temporary slices.
  793. //
  794. // It will potentially replace the output byte slice pointed to.
  795. // After encoding, the out parameter contains the encoded contents.
  796. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  797. e := newEncoder(h)
  798. e.ResetBytes(out)
  799. return e
  800. }
  801. func newEncoder(h Handle) *Encoder {
  802. e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
  803. e.bytes = true
  804. if useFinalizers {
  805. // runtime.SetFinalizer(e, (*Encoder).finalize)
  806. }
  807. // e.w = &e.encWr
  808. e.hh = h
  809. e.esep = h.hasElemSeparators()
  810. return e
  811. }
  812. func (e *Encoder) w() *encWr {
  813. return &e.encWr
  814. }
  815. func (e *Encoder) resetCommon() {
  816. // e.w = &e.encWr
  817. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  818. e.e = e.hh.newEncDriver(e)
  819. e.as, e.isas = e.e.(encDriverAsis)
  820. // e.cr, _ = e.e.(containerStateRecv)
  821. }
  822. if e.ci == nil {
  823. // e.ci = (set)(e.cidef[:0])
  824. } else {
  825. e.ci = e.ci[:0]
  826. }
  827. e.be = e.hh.isBinary()
  828. e.jenc = nil
  829. _, e.js = e.hh.(*JsonHandle)
  830. if e.js {
  831. e.jenc = e.e.(interface{ getJsonEncDriver() *jsonEncDriver }).getJsonEncDriver()
  832. }
  833. e.e.reset()
  834. e.c = 0
  835. e.err = nil
  836. }
  837. // Reset resets the Encoder with a new output stream.
  838. //
  839. // This accommodates using the state of the Encoder,
  840. // where it has "cached" information about sub-engines.
  841. func (e *Encoder) Reset(w io.Writer) {
  842. if w == nil {
  843. return
  844. }
  845. // var ok bool
  846. e.bytes = false
  847. if e.wf == nil {
  848. e.wf = new(bufioEncWriter)
  849. }
  850. // e.typ = entryTypeUnset
  851. // if e.h.WriterBufferSize > 0 {
  852. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  853. // // e.wi.bw = bw
  854. // // e.wi.sw = bw
  855. // // e.wi.fw = bw
  856. // // e.wi.ww = bw
  857. // if e.wf == nil {
  858. // e.wf = new(bufioEncWriter)
  859. // }
  860. // e.wf.reset(w, e.h.WriterBufferSize)
  861. // e.typ = entryTypeBufio
  862. // } else {
  863. // if e.wi == nil {
  864. // e.wi = new(ioEncWriter)
  865. // }
  866. // e.wi.reset(w)
  867. // e.typ = entryTypeIo
  868. // }
  869. e.wf.reset(w, e.h.WriterBufferSize, &e.blist)
  870. // e.typ = entryTypeBufio
  871. // e.w = e.wi
  872. e.resetCommon()
  873. }
  874. // ResetBytes resets the Encoder with a new destination output []byte.
  875. func (e *Encoder) ResetBytes(out *[]byte) {
  876. if out == nil {
  877. return
  878. }
  879. var in []byte = *out
  880. if in == nil {
  881. in = make([]byte, defEncByteBufSize)
  882. }
  883. e.bytes = true
  884. // e.typ = entryTypeBytes
  885. e.wb.reset(in, out)
  886. // e.w = &e.wb
  887. e.resetCommon()
  888. }
  889. // Encode writes an object into a stream.
  890. //
  891. // Encoding can be configured via the struct tag for the fields.
  892. // The key (in the struct tags) that we look at is configurable.
  893. //
  894. // By default, we look up the "codec" key in the struct field's tags,
  895. // and fall bak to the "json" key if "codec" is absent.
  896. // That key in struct field's tag value is the key name,
  897. // followed by an optional comma and options.
  898. //
  899. // To set an option on all fields (e.g. omitempty on all fields), you
  900. // can create a field called _struct, and set flags on it. The options
  901. // which can be set on _struct are:
  902. // - omitempty: so all fields are omitted if empty
  903. // - toarray: so struct is encoded as an array
  904. // - int: so struct key names are encoded as signed integers (instead of strings)
  905. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  906. // - float: so struct key names are encoded as floats (instead of strings)
  907. // More details on these below.
  908. //
  909. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  910. // - the field's tag is "-", OR
  911. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  912. //
  913. // When encoding as a map, the first string in the tag (before the comma)
  914. // is the map key string to use when encoding.
  915. // ...
  916. // This key is typically encoded as a string.
  917. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  918. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  919. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  920. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  921. // This is done with the int,uint or float option on the _struct field (see above).
  922. //
  923. // However, struct values may encode as arrays. This happens when:
  924. // - StructToArray Encode option is set, OR
  925. // - the tag on the _struct field sets the "toarray" option
  926. // Note that omitempty is ignored when encoding struct values as arrays,
  927. // as an entry must be encoded for each field, to maintain its position.
  928. //
  929. // Values with types that implement MapBySlice are encoded as stream maps.
  930. //
  931. // The empty values (for omitempty option) are false, 0, any nil pointer
  932. // or interface value, and any array, slice, map, or string of length zero.
  933. //
  934. // Anonymous fields are encoded inline except:
  935. // - the struct tag specifies a replacement name (first value)
  936. // - the field is of an interface type
  937. //
  938. // Examples:
  939. //
  940. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  941. // type MyStruct struct {
  942. // _struct bool `codec:",omitempty"` //set omitempty for every field
  943. // Field1 string `codec:"-"` //skip this field
  944. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  945. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  946. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  947. // io.Reader //use key "Reader".
  948. // MyStruct `codec:"my1" //use key "my1".
  949. // MyStruct //inline it
  950. // ...
  951. // }
  952. //
  953. // type MyStruct struct {
  954. // _struct bool `codec:",toarray"` //encode struct as an array
  955. // }
  956. //
  957. // type MyStruct struct {
  958. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  959. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  960. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  961. // }
  962. //
  963. // The mode of encoding is based on the type of the value. When a value is seen:
  964. // - If a Selfer, call its CodecEncodeSelf method
  965. // - If an extension is registered for it, call that extension function
  966. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  967. // - Else encode it based on its reflect.Kind
  968. //
  969. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  970. // Some formats support symbols (e.g. binc) and will properly encode the string
  971. // only once in the stream, and use a tag to refer to it thereafter.
  972. func (e *Encoder) Encode(v interface{}) (err error) {
  973. // tried to use closure, as runtime optimizes defer with no params.
  974. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  975. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  976. // defer func() { e.deferred(&err) }() }
  977. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  978. if e.err != nil {
  979. return e.err
  980. }
  981. if recoverPanicToErr {
  982. defer func() {
  983. // if error occurred during encoding, return that error;
  984. // else if error occurred on end'ing (i.e. during flush), return that error.
  985. err = e.w().endErr()
  986. x := recover()
  987. if x == nil {
  988. if e.err != err {
  989. e.err = err
  990. }
  991. } else {
  992. panicValToErr(e, x, &e.err)
  993. if e.err != err {
  994. err = e.err
  995. }
  996. }
  997. }()
  998. }
  999. // defer e.deferred(&err)
  1000. e.mustEncode(v)
  1001. return
  1002. }
  1003. // MustEncode is like Encode, but panics if unable to Encode.
  1004. // This provides insight to the code location that triggered the error.
  1005. func (e *Encoder) MustEncode(v interface{}) {
  1006. if e.err != nil {
  1007. panic(e.err)
  1008. }
  1009. e.mustEncode(v)
  1010. }
  1011. func (e *Encoder) mustEncode(v interface{}) {
  1012. // if e.wf == nil {
  1013. // e.encode(v)
  1014. // e.e.atEndOfEncode()
  1015. // e.w().end()
  1016. // return
  1017. // }
  1018. // if e.wf.buf == nil {
  1019. // e.wf.buf = e.wf.bytesBufPooler.get(e.wf.sz)
  1020. // e.wf.buf = e.wf.buf[:cap(e.wf.buf)]
  1021. // }
  1022. e.calls++
  1023. e.encode(v)
  1024. e.calls--
  1025. if e.calls == 0 {
  1026. e.e.atEndOfEncode()
  1027. e.w().end()
  1028. // if !e.h.ExplicitRelease {
  1029. // e.Release()
  1030. // }
  1031. }
  1032. }
  1033. // func (e *Encoder) deferred(err1 *error) {
  1034. // e.w().end()
  1035. // if recoverPanicToErr {
  1036. // if x := recover(); x != nil {
  1037. // panicValToErr(e, x, err1)
  1038. // panicValToErr(e, x, &e.err)
  1039. // }
  1040. // }
  1041. // }
  1042. // //go:noinline -- as it is run by finalizer
  1043. // func (e *Encoder) finalize() {
  1044. // e.Release()
  1045. // }
  1046. // Release releases shared (pooled) resources.
  1047. //
  1048. // It is important to call Release() when done with an Encoder, so those resources
  1049. // are released instantly for use by subsequently created Encoders.
  1050. //
  1051. // Deprecated: Release is a no-op as pooled resources are not used with an Encoder.
  1052. // This method is kept for compatibility reasons only.
  1053. func (e *Encoder) Release() {
  1054. // if e.wf != nil {
  1055. // e.wf.release()
  1056. // }
  1057. }
  1058. func (e *Encoder) encode(iv interface{}) {
  1059. // a switch with only concrete types can be optimized.
  1060. // consequently, we deal with nil and interfaces outside the switch.
  1061. if iv == nil {
  1062. e.e.EncodeNil()
  1063. return
  1064. }
  1065. rv, ok := isNil(iv)
  1066. if ok {
  1067. e.e.EncodeNil()
  1068. return
  1069. }
  1070. var vself Selfer
  1071. switch v := iv.(type) {
  1072. // case nil:
  1073. // case Selfer:
  1074. case Raw:
  1075. e.rawBytes(v)
  1076. case reflect.Value:
  1077. e.encodeValue(v, nil)
  1078. case string:
  1079. if e.h.StringToRaw {
  1080. e.e.EncodeStringBytesRaw(bytesView(v))
  1081. } else {
  1082. e.e.EncodeStringEnc(cUTF8, v)
  1083. }
  1084. case bool:
  1085. e.e.EncodeBool(v)
  1086. case int:
  1087. e.e.EncodeInt(int64(v))
  1088. case int8:
  1089. e.e.EncodeInt(int64(v))
  1090. case int16:
  1091. e.e.EncodeInt(int64(v))
  1092. case int32:
  1093. e.e.EncodeInt(int64(v))
  1094. case int64:
  1095. e.e.EncodeInt(v)
  1096. case uint:
  1097. e.e.EncodeUint(uint64(v))
  1098. case uint8:
  1099. e.e.EncodeUint(uint64(v))
  1100. case uint16:
  1101. e.e.EncodeUint(uint64(v))
  1102. case uint32:
  1103. e.e.EncodeUint(uint64(v))
  1104. case uint64:
  1105. e.e.EncodeUint(v)
  1106. case uintptr:
  1107. e.e.EncodeUint(uint64(v))
  1108. case float32:
  1109. e.e.EncodeFloat32(v)
  1110. case float64:
  1111. e.e.EncodeFloat64(v)
  1112. case time.Time:
  1113. e.e.EncodeTime(v)
  1114. case []uint8:
  1115. e.e.EncodeStringBytesRaw(v)
  1116. case *Raw:
  1117. e.rawBytes(*v)
  1118. case *string:
  1119. if e.h.StringToRaw {
  1120. e.e.EncodeStringBytesRaw(bytesView(*v))
  1121. } else {
  1122. e.e.EncodeStringEnc(cUTF8, *v)
  1123. }
  1124. case *bool:
  1125. e.e.EncodeBool(*v)
  1126. case *int:
  1127. e.e.EncodeInt(int64(*v))
  1128. case *int8:
  1129. e.e.EncodeInt(int64(*v))
  1130. case *int16:
  1131. e.e.EncodeInt(int64(*v))
  1132. case *int32:
  1133. e.e.EncodeInt(int64(*v))
  1134. case *int64:
  1135. e.e.EncodeInt(*v)
  1136. case *uint:
  1137. e.e.EncodeUint(uint64(*v))
  1138. case *uint8:
  1139. e.e.EncodeUint(uint64(*v))
  1140. case *uint16:
  1141. e.e.EncodeUint(uint64(*v))
  1142. case *uint32:
  1143. e.e.EncodeUint(uint64(*v))
  1144. case *uint64:
  1145. e.e.EncodeUint(*v)
  1146. case *uintptr:
  1147. e.e.EncodeUint(uint64(*v))
  1148. case *float32:
  1149. e.e.EncodeFloat32(*v)
  1150. case *float64:
  1151. e.e.EncodeFloat64(*v)
  1152. case *time.Time:
  1153. e.e.EncodeTime(*v)
  1154. case *[]uint8:
  1155. if *v == nil {
  1156. e.e.EncodeNil()
  1157. } else {
  1158. e.e.EncodeStringBytesRaw(*v)
  1159. }
  1160. default:
  1161. if vself, ok = iv.(Selfer); ok {
  1162. vself.CodecEncodeSelf(e)
  1163. } else if !fastpathEncodeTypeSwitch(iv, e) {
  1164. if !rv.IsValid() {
  1165. rv = rv4i(iv)
  1166. }
  1167. e.encodeValue(rv, nil)
  1168. }
  1169. }
  1170. }
  1171. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
  1172. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1173. // We considered using a uintptr (a pointer) retrievable via rv.UnsafeAddr.
  1174. // However, it is possible for the same pointer to point to 2 different types e.g.
  1175. // type T struct { tHelper }
  1176. // Here, for var v T; &v and &v.tHelper are the same pointer.
  1177. // Consequently, we need a tuple of type and pointer, which interface{} natively provides.
  1178. var sptr interface{} // uintptr
  1179. var rvp reflect.Value
  1180. var rvpValid bool
  1181. TOP:
  1182. switch rv.Kind() {
  1183. case reflect.Ptr:
  1184. if rvIsNil(rv) {
  1185. e.e.EncodeNil()
  1186. return
  1187. }
  1188. rvpValid = true
  1189. rvp = rv
  1190. rv = rv.Elem()
  1191. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1192. sptr = rv2i(rvp) // rv.UnsafeAddr()
  1193. break TOP
  1194. }
  1195. goto TOP
  1196. case reflect.Interface:
  1197. if rvIsNil(rv) {
  1198. e.e.EncodeNil()
  1199. return
  1200. }
  1201. rv = rv.Elem()
  1202. goto TOP
  1203. case reflect.Slice, reflect.Map:
  1204. if rvIsNil(rv) {
  1205. e.e.EncodeNil()
  1206. return
  1207. }
  1208. case reflect.Invalid, reflect.Func:
  1209. e.e.EncodeNil()
  1210. return
  1211. }
  1212. if sptr != nil && (&e.ci).add(sptr) {
  1213. // e.errorf("circular reference found: # %d", sptr)
  1214. e.errorf("circular reference found: # %p, %T", sptr, sptr)
  1215. }
  1216. var rt reflect.Type
  1217. if fn == nil {
  1218. rt = rv.Type()
  1219. fn = e.h.fn(rt)
  1220. }
  1221. if fn.i.addrE {
  1222. if rvpValid {
  1223. fn.fe(e, &fn.i, rvp)
  1224. } else if rv.CanAddr() {
  1225. fn.fe(e, &fn.i, rv.Addr())
  1226. } else {
  1227. if rt == nil {
  1228. rt = rv.Type()
  1229. }
  1230. rv2 := reflect.New(rt)
  1231. rvSetDirect(rv2.Elem(), rv)
  1232. fn.fe(e, &fn.i, rv2)
  1233. }
  1234. } else {
  1235. fn.fe(e, &fn.i, rv)
  1236. }
  1237. if sptr != 0 {
  1238. (&e.ci).remove(sptr)
  1239. }
  1240. }
  1241. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1242. // if fnerr != nil {
  1243. // panic(fnerr)
  1244. // }
  1245. // if bs == nil {
  1246. // e.e.EncodeNil()
  1247. // } else if asis {
  1248. // e.asis(bs)
  1249. // } else {
  1250. // e.e.EncodeStringBytesRaw(bs)
  1251. // }
  1252. // }
  1253. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1254. if fnerr != nil {
  1255. panic(fnerr)
  1256. }
  1257. if bs == nil {
  1258. e.e.EncodeNil()
  1259. } else {
  1260. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1261. }
  1262. }
  1263. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1264. if fnerr != nil {
  1265. panic(fnerr)
  1266. }
  1267. if bs == nil {
  1268. e.e.EncodeNil()
  1269. } else {
  1270. e.asis(bs)
  1271. }
  1272. }
  1273. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1274. if fnerr != nil {
  1275. panic(fnerr)
  1276. }
  1277. if bs == nil {
  1278. e.e.EncodeNil()
  1279. } else {
  1280. e.e.EncodeStringBytesRaw(bs)
  1281. }
  1282. }
  1283. func (e *Encoder) asis(v []byte) {
  1284. if e.isas {
  1285. e.as.EncodeAsis(v)
  1286. } else {
  1287. e.w().writeb(v)
  1288. }
  1289. }
  1290. func (e *Encoder) rawBytes(vv Raw) {
  1291. v := []byte(vv)
  1292. if !e.h.Raw {
  1293. e.errorf("Raw values cannot be encoded: %v", v)
  1294. }
  1295. e.asis(v)
  1296. }
  1297. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1298. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1299. }
  1300. // ---- container tracker methods
  1301. // Note: We update the .c after calling the callback.
  1302. // This way, the callback can know what the last status was.
  1303. func (e *Encoder) mapStart(length int) {
  1304. e.e.WriteMapStart(length)
  1305. e.c = containerMapStart
  1306. }
  1307. func (e *Encoder) mapElemKey() {
  1308. if e.js {
  1309. e.jenc.WriteMapElemKey()
  1310. }
  1311. e.c = containerMapKey
  1312. }
  1313. func (e *Encoder) mapElemValue() {
  1314. if e.js {
  1315. e.jenc.WriteMapElemValue()
  1316. }
  1317. e.c = containerMapValue
  1318. }
  1319. // // Note: This is harder to inline, as there are 2 function calls inside.
  1320. // func (e *Encoder) mapElemKeyOrValue(j uint8) {
  1321. // if j == 0 {
  1322. // if e.js {
  1323. // e.jenc.WriteMapElemKey()
  1324. // }
  1325. // e.c = containerMapKey
  1326. // } else {
  1327. // if e.js {
  1328. // e.jenc.WriteMapElemValue()
  1329. // }
  1330. // e.c = containerMapValue
  1331. // }
  1332. // }
  1333. func (e *Encoder) mapEnd() {
  1334. e.e.WriteMapEnd()
  1335. e.c = containerMapEnd
  1336. e.c = 0
  1337. }
  1338. func (e *Encoder) arrayStart(length int) {
  1339. e.e.WriteArrayStart(length)
  1340. e.c = containerArrayStart
  1341. }
  1342. func (e *Encoder) arrayElem() {
  1343. if e.js {
  1344. e.jenc.WriteArrayElem()
  1345. }
  1346. e.c = containerArrayElem
  1347. }
  1348. func (e *Encoder) arrayEnd() {
  1349. e.e.WriteArrayEnd()
  1350. e.c = 0
  1351. e.c = containerArrayEnd
  1352. }
  1353. // ----------
  1354. func (e *Encoder) sideEncode(v interface{}, bs *[]byte) {
  1355. rv := baseRV(v)
  1356. e2 := NewEncoderBytes(bs, e.hh)
  1357. e2.encodeValue(rv, e.h.fnNoExt(rv.Type()))
  1358. e2.e.atEndOfEncode()
  1359. e2.w().end()
  1360. }
  1361. func encStructFieldKey(encName string, ee encDriver, w *encWr,
  1362. keyType valueType, encNameAsciiAlphaNum bool, js bool) {
  1363. var m must
  1364. // use if-else-if, not switch (which compiles to binary-search)
  1365. // since keyType is typically valueTypeString, branch prediction is pretty good.
  1366. if keyType == valueTypeString {
  1367. if js && encNameAsciiAlphaNum { // keyType == valueTypeString
  1368. w.writeqstr(encName)
  1369. // ----
  1370. // w.writen1('"')
  1371. // w.writestr(encName)
  1372. // w.writen1('"')
  1373. // ----
  1374. // w.writestr(`"` + encName + `"`)
  1375. // ----
  1376. // // do concat myself, so it is faster than the generic string concat
  1377. // b := make([]byte, len(encName)+2)
  1378. // copy(b[1:], encName)
  1379. // b[0] = '"'
  1380. // b[len(b)-1] = '"'
  1381. // w.writeb(b)
  1382. } else { // keyType == valueTypeString
  1383. ee.EncodeStringEnc(cUTF8, encName)
  1384. }
  1385. } else if keyType == valueTypeInt {
  1386. ee.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  1387. } else if keyType == valueTypeUint {
  1388. ee.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  1389. } else if keyType == valueTypeFloat {
  1390. ee.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  1391. }
  1392. }
  1393. // type encExtPreambler interface {
  1394. // encodeExtPreamble(tag uint8, length int)
  1395. // }
  1396. // func encBytesExt(rv interface{}, xtag uint64, ext Ext, h Handle, e encDriver) {
  1397. // var bs []byte
  1398. // var bufp bytesBufPooler
  1399. // if ext == SelfExt {
  1400. // bs = bufp.get(1024)[:0]
  1401. // rv2 := rv4i(v)
  1402. // NewEncoderBytes(&bs, h).encodeValue(rv2, h.fnNoExt(rv2.Type()))
  1403. // } else {
  1404. // bs = ext.WriteExt(v)
  1405. // }
  1406. // if bs == nil {
  1407. // e.EncodeNil()
  1408. // return
  1409. // }
  1410. // if e.h.WriteExt {
  1411. // e.encodeExtPreamble(uint8(xtag), len(bs))
  1412. // e.w.writeb(bs)
  1413. // } else {
  1414. // e.EncodeStringBytesRaw(bs)
  1415. // }
  1416. // if ext == SelfExt {
  1417. // bufp.end()
  1418. // }
  1419. // }
  1420. // func encStringAsRawBytesMaybe(ee encDriver, s string, stringToRaw bool) {
  1421. // if stringToRaw {
  1422. // ee.EncodeStringBytesRaw(bytesView(s))
  1423. // } else {
  1424. // ee.EncodeStringEnc(cUTF8, s)
  1425. // }
  1426. // }