encode.go 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "sort"
  11. "strconv"
  12. "sync"
  13. "time"
  14. )
  15. const defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  16. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  17. /*
  18. // encWriter abstracts writing to a byte array or to an io.Writer.
  19. //
  20. //
  21. // Deprecated: Use encWriterSwitch instead.
  22. type encWriter interface {
  23. writeb([]byte)
  24. writestr(string)
  25. writen1(byte)
  26. writen2(byte, byte)
  27. atEndOfEncode()
  28. }
  29. */
  30. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  31. type encDriver interface {
  32. EncodeNil()
  33. EncodeInt(i int64)
  34. EncodeUint(i uint64)
  35. EncodeBool(b bool)
  36. EncodeFloat32(f float32)
  37. EncodeFloat64(f float64)
  38. // encodeExtPreamble(xtag byte, length int)
  39. EncodeRawExt(re *RawExt, e *Encoder)
  40. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  41. // Deprecated: try to use EncodeStringEnc instead
  42. EncodeString(c charEncoding, v string)
  43. // c cannot be cRAW
  44. EncodeStringEnc(c charEncoding, v string)
  45. // EncodeSymbol(v string)
  46. // Deprecated: try to use EncodeStringBytesRaw instead
  47. EncodeStringBytes(c charEncoding, v []byte)
  48. EncodeStringBytesRaw(v []byte)
  49. EncodeTime(time.Time)
  50. //encBignum(f *big.Int)
  51. //encStringRunes(c charEncoding, v []rune)
  52. WriteArrayStart(length int)
  53. WriteArrayElem()
  54. WriteArrayEnd()
  55. WriteMapStart(length int)
  56. WriteMapElemKey()
  57. WriteMapElemValue()
  58. WriteMapEnd()
  59. reset()
  60. atEndOfEncode()
  61. }
  62. type encDriverAsis interface {
  63. EncodeAsis(v []byte)
  64. }
  65. type encodeError struct {
  66. codecError
  67. }
  68. func (e encodeError) Error() string {
  69. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  70. }
  71. type encDriverNoopContainerWriter struct{}
  72. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  73. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  74. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  75. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  76. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  77. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  78. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  79. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  80. type encDriverTrackContainerWriter struct {
  81. c containerState
  82. }
  83. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  84. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  85. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  86. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  87. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  88. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  89. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  90. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  91. // type ioEncWriterWriter interface {
  92. // WriteByte(c byte) error
  93. // WriteString(s string) (n int, err error)
  94. // Write(p []byte) (n int, err error)
  95. // }
  96. // EncodeOptions captures configuration options during encode.
  97. type EncodeOptions struct {
  98. // WriterBufferSize is the size of the buffer used when writing.
  99. //
  100. // if > 0, we use a smart buffer internally for performance purposes.
  101. WriterBufferSize int
  102. // ChanRecvTimeout is the timeout used when selecting from a chan.
  103. //
  104. // Configuring this controls how we receive from a chan during the encoding process.
  105. // - If ==0, we only consume the elements currently available in the chan.
  106. // - if <0, we consume until the chan is closed.
  107. // - If >0, we consume until this timeout.
  108. ChanRecvTimeout time.Duration
  109. // StructToArray specifies to encode a struct as an array, and not as a map
  110. StructToArray bool
  111. // Canonical representation means that encoding a value will always result in the same
  112. // sequence of bytes.
  113. //
  114. // This only affects maps, as the iteration order for maps is random.
  115. //
  116. // The implementation MAY use the natural sort order for the map keys if possible:
  117. //
  118. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  119. // then the map keys are first sorted in natural order and then written
  120. // with corresponding map values to the strema.
  121. // - If there is no natural sort order, then the map keys will first be
  122. // encoded into []byte, and then sorted,
  123. // before writing the sorted keys and the corresponding map values to the stream.
  124. //
  125. Canonical bool
  126. // CheckCircularRef controls whether we check for circular references
  127. // and error fast during an encode.
  128. //
  129. // If enabled, an error is received if a pointer to a struct
  130. // references itself either directly or through one of its fields (iteratively).
  131. //
  132. // This is opt-in, as there may be a performance hit to checking circular references.
  133. CheckCircularRef bool
  134. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  135. // when checking if a value is empty.
  136. //
  137. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  138. RecursiveEmptyCheck bool
  139. // Raw controls whether we encode Raw values.
  140. // This is a "dangerous" option and must be explicitly set.
  141. // If set, we blindly encode Raw values as-is, without checking
  142. // if they are a correct representation of a value in that format.
  143. // If unset, we error out.
  144. Raw bool
  145. // // AsSymbols defines what should be encoded as symbols.
  146. // //
  147. // // Encoding as symbols can reduce the encoded size significantly.
  148. // //
  149. // // However, during decoding, each string to be encoded as a symbol must
  150. // // be checked to see if it has been seen before. Consequently, encoding time
  151. // // will increase if using symbols, because string comparisons has a clear cost.
  152. // //
  153. // // Sample values:
  154. // // AsSymbolNone
  155. // // AsSymbolAll
  156. // // AsSymbolMapStringKeys
  157. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  158. // AsSymbols AsSymbolFlag
  159. }
  160. // ---------------------------------------------
  161. /*
  162. type ioEncStringWriter interface {
  163. WriteString(s string) (n int, err error)
  164. }
  165. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  166. type ioEncWriter struct {
  167. w io.Writer
  168. ww io.Writer
  169. bw io.ByteWriter
  170. sw ioEncStringWriter
  171. fw ioFlusher
  172. b [8]byte
  173. }
  174. func (z *ioEncWriter) reset(w io.Writer) {
  175. z.w = w
  176. var ok bool
  177. if z.bw, ok = w.(io.ByteWriter); !ok {
  178. z.bw = z
  179. }
  180. if z.sw, ok = w.(ioEncStringWriter); !ok {
  181. z.sw = z
  182. }
  183. z.fw, _ = w.(ioFlusher)
  184. z.ww = w
  185. }
  186. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  187. z.b[0] = b
  188. _, err = z.w.Write(z.b[:1])
  189. return
  190. }
  191. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  192. return z.w.Write(bytesView(s))
  193. }
  194. func (z *ioEncWriter) writeb(bs []byte) {
  195. if _, err := z.ww.Write(bs); err != nil {
  196. panic(err)
  197. }
  198. }
  199. func (z *ioEncWriter) writestr(s string) {
  200. if _, err := z.sw.WriteString(s); err != nil {
  201. panic(err)
  202. }
  203. }
  204. func (z *ioEncWriter) writen1(b byte) {
  205. if err := z.bw.WriteByte(b); err != nil {
  206. panic(err)
  207. }
  208. }
  209. func (z *ioEncWriter) writen2(b1, b2 byte) {
  210. var err error
  211. if err = z.bw.WriteByte(b1); err == nil {
  212. if err = z.bw.WriteByte(b2); err == nil {
  213. return
  214. }
  215. }
  216. panic(err)
  217. }
  218. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  219. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  220. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  221. // panic(err)
  222. // }
  223. // }
  224. //go:noinline (so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined)
  225. func (z *ioEncWriter) atEndOfEncode() {
  226. if z.fw != nil {
  227. if err := z.fw.Flush(); err != nil {
  228. panic(err)
  229. }
  230. }
  231. }
  232. */
  233. // ---------------------------------------------
  234. // bufioEncWriter
  235. type bufioEncWriter struct {
  236. buf []byte
  237. w io.Writer
  238. n int
  239. // _ [2]uint64 // padding
  240. // a int
  241. // b [4]byte
  242. // err
  243. }
  244. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  245. z.w = w
  246. z.n = 0
  247. if bufsize == 0 {
  248. bufsize = 256
  249. }
  250. if cap(z.buf) < bufsize {
  251. z.buf = make([]byte, bufsize)
  252. } else {
  253. z.buf = z.buf[:bufsize]
  254. }
  255. }
  256. //go:noinline
  257. func (z *bufioEncWriter) flush() {
  258. n, err := z.w.Write(z.buf[:z.n])
  259. z.n -= n
  260. if z.n > 0 && err == nil {
  261. err = io.ErrShortWrite
  262. }
  263. if err != nil {
  264. if n > 0 && z.n > 0 {
  265. copy(z.buf, z.buf[n:z.n+n])
  266. }
  267. panic(err)
  268. }
  269. }
  270. func (z *bufioEncWriter) writeb(s []byte) {
  271. LOOP:
  272. a := len(z.buf) - z.n
  273. if len(s) > a {
  274. z.n += copy(z.buf[z.n:], s[:a])
  275. s = s[a:]
  276. z.flush()
  277. goto LOOP
  278. }
  279. z.n += copy(z.buf[z.n:], s)
  280. }
  281. func (z *bufioEncWriter) writestr(s string) {
  282. // z.writeb(bytesView(s)) // inlined below
  283. LOOP:
  284. a := len(z.buf) - z.n
  285. if len(s) > a {
  286. z.n += copy(z.buf[z.n:], s[:a])
  287. s = s[a:]
  288. z.flush()
  289. goto LOOP
  290. }
  291. z.n += copy(z.buf[z.n:], s)
  292. }
  293. //go:noinline // TODO: allow this be inlined once mid-stack inlining done
  294. func (z *bufioEncWriter) writen1(b1 byte) {
  295. if 1 > len(z.buf)-z.n {
  296. z.flush()
  297. }
  298. z.buf[z.n] = b1
  299. z.n++
  300. }
  301. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  302. if 2 > len(z.buf)-z.n {
  303. z.flush()
  304. }
  305. z.buf[z.n+1] = b2
  306. z.buf[z.n] = b1
  307. z.n += 2
  308. }
  309. func (z *bufioEncWriter) atEndOfEncode() {
  310. if z.n > 0 {
  311. z.flush()
  312. }
  313. }
  314. // ---------------------------------------------
  315. // bytesEncAppender implements encWriter and can write to an byte slice.
  316. type bytesEncAppender struct {
  317. b []byte
  318. out *[]byte
  319. }
  320. func (z *bytesEncAppender) writeb(s []byte) {
  321. z.b = append(z.b, s...)
  322. }
  323. func (z *bytesEncAppender) writestr(s string) {
  324. z.b = append(z.b, s...)
  325. }
  326. func (z *bytesEncAppender) writen1(b1 byte) {
  327. z.b = append(z.b, b1)
  328. }
  329. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  330. z.b = append(z.b, b1, b2)
  331. }
  332. func (z *bytesEncAppender) atEndOfEncode() {
  333. *(z.out) = z.b
  334. }
  335. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  336. z.b = in[:0]
  337. z.out = out
  338. }
  339. // ---------------------------------------------
  340. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  341. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  342. }
  343. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  344. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  345. }
  346. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  347. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  348. }
  349. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  350. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  351. e.marshalRaw(bs, fnerr)
  352. }
  353. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  354. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  355. e.marshalUtf8(bs, fnerr)
  356. }
  357. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  358. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  359. e.marshalAsis(bs, fnerr)
  360. }
  361. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  362. e.rawBytes(rv2i(rv).(Raw))
  363. }
  364. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  365. e.e.EncodeNil()
  366. }
  367. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  368. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  369. }
  370. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  371. ti := f.ti
  372. ee := e.e
  373. // array may be non-addressable, so we have to manage with care
  374. // (don't call rv.Bytes, rv.Slice, etc).
  375. // E.g. type struct S{B [2]byte};
  376. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  377. if f.seq != seqTypeArray {
  378. if rv.IsNil() {
  379. ee.EncodeNil()
  380. return
  381. }
  382. // If in this method, then there was no extension function defined.
  383. // So it's okay to treat as []byte.
  384. if ti.rtid == uint8SliceTypId {
  385. ee.EncodeStringBytesRaw(rv.Bytes())
  386. return
  387. }
  388. }
  389. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  390. e.errorf("send-only channel cannot be encoded")
  391. }
  392. elemsep := e.esep
  393. rtelem := ti.elem
  394. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  395. var l int
  396. // if a slice, array or chan of bytes, treat specially
  397. if rtelemIsByte {
  398. switch f.seq {
  399. case seqTypeSlice:
  400. ee.EncodeStringBytesRaw(rv.Bytes())
  401. case seqTypeArray:
  402. l = rv.Len()
  403. if rv.CanAddr() {
  404. ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  405. } else {
  406. var bs []byte
  407. if l <= cap(e.b) {
  408. bs = e.b[:l]
  409. } else {
  410. bs = make([]byte, l)
  411. }
  412. reflect.Copy(reflect.ValueOf(bs), rv)
  413. ee.EncodeStringBytesRaw(bs)
  414. }
  415. case seqTypeChan:
  416. // do not use range, so that the number of elements encoded
  417. // does not change, and encoding does not hang waiting on someone to close chan.
  418. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  419. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  420. if rv.IsNil() {
  421. ee.EncodeNil()
  422. break
  423. }
  424. bs := e.b[:0]
  425. irv := rv2i(rv)
  426. ch, ok := irv.(<-chan byte)
  427. if !ok {
  428. ch = irv.(chan byte)
  429. }
  430. L1:
  431. switch timeout := e.h.ChanRecvTimeout; {
  432. case timeout == 0: // only consume available
  433. for {
  434. select {
  435. case b := <-ch:
  436. bs = append(bs, b)
  437. default:
  438. break L1
  439. }
  440. }
  441. case timeout > 0: // consume until timeout
  442. tt := time.NewTimer(timeout)
  443. for {
  444. select {
  445. case b := <-ch:
  446. bs = append(bs, b)
  447. case <-tt.C:
  448. // close(tt.C)
  449. break L1
  450. }
  451. }
  452. default: // consume until close
  453. for b := range ch {
  454. bs = append(bs, b)
  455. }
  456. }
  457. ee.EncodeStringBytesRaw(bs)
  458. }
  459. return
  460. }
  461. // if chan, consume chan into a slice, and work off that slice.
  462. var rvcs reflect.Value
  463. if f.seq == seqTypeChan {
  464. rvcs = reflect.Zero(reflect.SliceOf(rtelem))
  465. timeout := e.h.ChanRecvTimeout
  466. if timeout < 0 { // consume until close
  467. for {
  468. recv, recvOk := rv.Recv()
  469. if !recvOk {
  470. break
  471. }
  472. rvcs = reflect.Append(rvcs, recv)
  473. }
  474. } else {
  475. cases := make([]reflect.SelectCase, 2)
  476. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  477. if timeout == 0 {
  478. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  479. } else {
  480. tt := time.NewTimer(timeout)
  481. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  482. }
  483. for {
  484. chosen, recv, recvOk := reflect.Select(cases)
  485. if chosen == 1 || !recvOk {
  486. break
  487. }
  488. rvcs = reflect.Append(rvcs, recv)
  489. }
  490. }
  491. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  492. }
  493. l = rv.Len()
  494. if ti.mbs {
  495. if l%2 == 1 {
  496. e.errorf("mapBySlice requires even slice length, but got %v", l)
  497. return
  498. }
  499. ee.WriteMapStart(l / 2)
  500. } else {
  501. ee.WriteArrayStart(l)
  502. }
  503. if l > 0 {
  504. var fn *codecFn
  505. for rtelem.Kind() == reflect.Ptr {
  506. rtelem = rtelem.Elem()
  507. }
  508. // if kind is reflect.Interface, do not pre-determine the
  509. // encoding type, because preEncodeValue may break it down to
  510. // a concrete type and kInterface will bomb.
  511. if rtelem.Kind() != reflect.Interface {
  512. fn = e.cfer().get(rtelem, true, true)
  513. }
  514. for j := 0; j < l; j++ {
  515. if elemsep {
  516. if ti.mbs {
  517. if j%2 == 0 {
  518. ee.WriteMapElemKey()
  519. } else {
  520. ee.WriteMapElemValue()
  521. }
  522. } else {
  523. ee.WriteArrayElem()
  524. }
  525. }
  526. e.encodeValue(rv.Index(j), fn, true)
  527. }
  528. }
  529. if ti.mbs {
  530. ee.WriteMapEnd()
  531. } else {
  532. ee.WriteArrayEnd()
  533. }
  534. }
  535. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  536. fti := f.ti
  537. elemsep := e.esep
  538. tisfi := fti.sfiSrc
  539. toMap := !(fti.toArray || e.h.StructToArray)
  540. if toMap {
  541. tisfi = fti.sfiSort
  542. }
  543. ee := e.e
  544. sfn := structFieldNode{v: rv, update: false}
  545. if toMap {
  546. ee.WriteMapStart(len(tisfi))
  547. if elemsep {
  548. for _, si := range tisfi {
  549. ee.WriteMapElemKey()
  550. // ee.EncodeStringEnc(cUTF8, si.encName)
  551. e.kStructFieldKey(fti.keyType, si)
  552. ee.WriteMapElemValue()
  553. e.encodeValue(sfn.field(si), nil, true)
  554. }
  555. } else {
  556. for _, si := range tisfi {
  557. // ee.EncodeStringEnc(cUTF8, si.encName)
  558. e.kStructFieldKey(fti.keyType, si)
  559. e.encodeValue(sfn.field(si), nil, true)
  560. }
  561. }
  562. ee.WriteMapEnd()
  563. } else {
  564. ee.WriteArrayStart(len(tisfi))
  565. if elemsep {
  566. for _, si := range tisfi {
  567. ee.WriteArrayElem()
  568. e.encodeValue(sfn.field(si), nil, true)
  569. }
  570. } else {
  571. for _, si := range tisfi {
  572. e.encodeValue(sfn.field(si), nil, true)
  573. }
  574. }
  575. ee.WriteArrayEnd()
  576. }
  577. }
  578. func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
  579. var m must
  580. // use if-else-if, not switch (which compiles to binary-search)
  581. // since keyType is typically valueTypeString, branch prediction is pretty good.
  582. if keyType == valueTypeString {
  583. if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
  584. e.w.writen1('"')
  585. e.w.writestr(s.encName)
  586. e.w.writen1('"')
  587. } else { // keyType == valueTypeString
  588. e.e.EncodeStringEnc(cUTF8, s.encName)
  589. }
  590. } else if keyType == valueTypeInt {
  591. e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
  592. } else if keyType == valueTypeUint {
  593. e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
  594. } else if keyType == valueTypeFloat {
  595. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
  596. }
  597. }
  598. func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
  599. var m must
  600. // use if-else-if, not switch (which compiles to binary-search)
  601. // since keyType is typically valueTypeString, branch prediction is pretty good.
  602. if keyType == valueTypeString {
  603. e.e.EncodeStringEnc(cUTF8, encName)
  604. } else if keyType == valueTypeInt {
  605. e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  606. } else if keyType == valueTypeUint {
  607. e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  608. } else if keyType == valueTypeFloat {
  609. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  610. }
  611. }
  612. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  613. fti := f.ti
  614. elemsep := e.esep
  615. tisfi := fti.sfiSrc
  616. var newlen int
  617. toMap := !(fti.toArray || e.h.StructToArray)
  618. var mf map[string]interface{}
  619. if f.ti.mf {
  620. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  621. toMap = true
  622. newlen += len(mf)
  623. } else if f.ti.mfp {
  624. if rv.CanAddr() {
  625. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  626. } else {
  627. // make a new addressable value of same one, and use it
  628. rv2 := reflect.New(rv.Type())
  629. rv2.Elem().Set(rv)
  630. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  631. }
  632. toMap = true
  633. newlen += len(mf)
  634. }
  635. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  636. if toMap {
  637. tisfi = fti.sfiSort
  638. }
  639. newlen += len(tisfi)
  640. ee := e.e
  641. // Use sync.Pool to reduce allocating slices unnecessarily.
  642. // The cost of sync.Pool is less than the cost of new allocation.
  643. //
  644. // Each element of the array pools one of encStructPool(8|16|32|64).
  645. // It allows the re-use of slices up to 64 in length.
  646. // A performance cost of encoding structs was collecting
  647. // which values were empty and should be omitted.
  648. // We needed slices of reflect.Value and string to collect them.
  649. // This shared pool reduces the amount of unnecessary creation we do.
  650. // The cost is that of locking sometimes, but sync.Pool is efficient
  651. // enough to reduce thread contention.
  652. var spool *sync.Pool
  653. var poolv interface{}
  654. var fkvs []sfiRv
  655. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  656. if newlen <= 8 {
  657. spool, poolv = pool.sfiRv8()
  658. fkvs = poolv.(*[8]sfiRv)[:newlen]
  659. } else if newlen <= 16 {
  660. spool, poolv = pool.sfiRv16()
  661. fkvs = poolv.(*[16]sfiRv)[:newlen]
  662. } else if newlen <= 32 {
  663. spool, poolv = pool.sfiRv32()
  664. fkvs = poolv.(*[32]sfiRv)[:newlen]
  665. } else if newlen <= 64 {
  666. spool, poolv = pool.sfiRv64()
  667. fkvs = poolv.(*[64]sfiRv)[:newlen]
  668. } else if newlen <= 128 {
  669. spool, poolv = pool.sfiRv128()
  670. fkvs = poolv.(*[128]sfiRv)[:newlen]
  671. } else {
  672. fkvs = make([]sfiRv, newlen)
  673. }
  674. newlen = 0
  675. var kv sfiRv
  676. recur := e.h.RecursiveEmptyCheck
  677. sfn := structFieldNode{v: rv, update: false}
  678. for _, si := range tisfi {
  679. // kv.r = si.field(rv, false)
  680. kv.r = sfn.field(si)
  681. if toMap {
  682. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  683. continue
  684. }
  685. kv.v = si // si.encName
  686. } else {
  687. // use the zero value.
  688. // if a reference or struct, set to nil (so you do not output too much)
  689. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  690. switch kv.r.Kind() {
  691. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  692. kv.r = reflect.Value{} //encode as nil
  693. }
  694. }
  695. }
  696. fkvs[newlen] = kv
  697. newlen++
  698. }
  699. var mflen int
  700. for k, v := range mf {
  701. if k == "" {
  702. delete(mf, k)
  703. continue
  704. }
  705. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  706. delete(mf, k)
  707. continue
  708. }
  709. mflen++
  710. }
  711. if toMap {
  712. ee.WriteMapStart(newlen + mflen)
  713. if elemsep {
  714. for j := 0; j < newlen; j++ {
  715. kv = fkvs[j]
  716. ee.WriteMapElemKey()
  717. // ee.EncodeStringEnc(cUTF8, kv.v)
  718. e.kStructFieldKey(fti.keyType, kv.v)
  719. ee.WriteMapElemValue()
  720. e.encodeValue(kv.r, nil, true)
  721. }
  722. } else {
  723. for j := 0; j < newlen; j++ {
  724. kv = fkvs[j]
  725. // ee.EncodeStringEnc(cUTF8, kv.v)
  726. e.kStructFieldKey(fti.keyType, kv.v)
  727. e.encodeValue(kv.r, nil, true)
  728. }
  729. }
  730. // now, add the others
  731. for k, v := range mf {
  732. ee.WriteMapElemKey()
  733. e.kStructFieldKeyName(fti.keyType, k)
  734. ee.WriteMapElemValue()
  735. e.encode(v)
  736. }
  737. ee.WriteMapEnd()
  738. } else {
  739. ee.WriteArrayStart(newlen)
  740. if elemsep {
  741. for j := 0; j < newlen; j++ {
  742. ee.WriteArrayElem()
  743. e.encodeValue(fkvs[j].r, nil, true)
  744. }
  745. } else {
  746. for j := 0; j < newlen; j++ {
  747. e.encodeValue(fkvs[j].r, nil, true)
  748. }
  749. }
  750. ee.WriteArrayEnd()
  751. }
  752. // do not use defer. Instead, use explicit pool return at end of function.
  753. // defer has a cost we are trying to avoid.
  754. // If there is a panic and these slices are not returned, it is ok.
  755. if spool != nil {
  756. spool.Put(poolv)
  757. }
  758. }
  759. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  760. ee := e.e
  761. if rv.IsNil() {
  762. ee.EncodeNil()
  763. return
  764. }
  765. l := rv.Len()
  766. ee.WriteMapStart(l)
  767. elemsep := e.esep
  768. if l == 0 {
  769. ee.WriteMapEnd()
  770. return
  771. }
  772. // var asSymbols bool
  773. // determine the underlying key and val encFn's for the map.
  774. // This eliminates some work which is done for each loop iteration i.e.
  775. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  776. //
  777. // However, if kind is reflect.Interface, do not pre-determine the
  778. // encoding type, because preEncodeValue may break it down to
  779. // a concrete type and kInterface will bomb.
  780. var keyFn, valFn *codecFn
  781. ti := f.ti
  782. rtkey0 := ti.key
  783. rtkey := rtkey0
  784. rtval0 := ti.elem
  785. rtval := rtval0
  786. // rtkeyid := rt2id(rtkey0)
  787. for rtval.Kind() == reflect.Ptr {
  788. rtval = rtval.Elem()
  789. }
  790. if rtval.Kind() != reflect.Interface {
  791. valFn = e.cfer().get(rtval, true, true)
  792. }
  793. mks := rv.MapKeys()
  794. if e.h.Canonical {
  795. e.kMapCanonical(rtkey, rv, mks, valFn)
  796. ee.WriteMapEnd()
  797. return
  798. }
  799. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  800. if !keyTypeIsString {
  801. for rtkey.Kind() == reflect.Ptr {
  802. rtkey = rtkey.Elem()
  803. }
  804. if rtkey.Kind() != reflect.Interface {
  805. // rtkeyid = rt2id(rtkey)
  806. keyFn = e.cfer().get(rtkey, true, true)
  807. }
  808. }
  809. // for j, lmks := 0, len(mks); j < lmks; j++ {
  810. for j := range mks {
  811. if elemsep {
  812. ee.WriteMapElemKey()
  813. }
  814. if keyTypeIsString {
  815. ee.EncodeStringEnc(cUTF8, mks[j].String())
  816. } else {
  817. e.encodeValue(mks[j], keyFn, true)
  818. }
  819. if elemsep {
  820. ee.WriteMapElemValue()
  821. }
  822. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  823. }
  824. ee.WriteMapEnd()
  825. }
  826. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  827. ee := e.e
  828. elemsep := e.esep
  829. // we previously did out-of-band if an extension was registered.
  830. // This is not necessary, as the natural kind is sufficient for ordering.
  831. switch rtkey.Kind() {
  832. case reflect.Bool:
  833. mksv := make([]boolRv, len(mks))
  834. for i, k := range mks {
  835. v := &mksv[i]
  836. v.r = k
  837. v.v = k.Bool()
  838. }
  839. sort.Sort(boolRvSlice(mksv))
  840. for i := range mksv {
  841. if elemsep {
  842. ee.WriteMapElemKey()
  843. }
  844. ee.EncodeBool(mksv[i].v)
  845. if elemsep {
  846. ee.WriteMapElemValue()
  847. }
  848. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  849. }
  850. case reflect.String:
  851. mksv := make([]stringRv, len(mks))
  852. for i, k := range mks {
  853. v := &mksv[i]
  854. v.r = k
  855. v.v = k.String()
  856. }
  857. sort.Sort(stringRvSlice(mksv))
  858. for i := range mksv {
  859. if elemsep {
  860. ee.WriteMapElemKey()
  861. }
  862. ee.EncodeStringEnc(cUTF8, mksv[i].v)
  863. if elemsep {
  864. ee.WriteMapElemValue()
  865. }
  866. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  867. }
  868. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  869. mksv := make([]uintRv, len(mks))
  870. for i, k := range mks {
  871. v := &mksv[i]
  872. v.r = k
  873. v.v = k.Uint()
  874. }
  875. sort.Sort(uintRvSlice(mksv))
  876. for i := range mksv {
  877. if elemsep {
  878. ee.WriteMapElemKey()
  879. }
  880. ee.EncodeUint(mksv[i].v)
  881. if elemsep {
  882. ee.WriteMapElemValue()
  883. }
  884. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  885. }
  886. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  887. mksv := make([]intRv, len(mks))
  888. for i, k := range mks {
  889. v := &mksv[i]
  890. v.r = k
  891. v.v = k.Int()
  892. }
  893. sort.Sort(intRvSlice(mksv))
  894. for i := range mksv {
  895. if elemsep {
  896. ee.WriteMapElemKey()
  897. }
  898. ee.EncodeInt(mksv[i].v)
  899. if elemsep {
  900. ee.WriteMapElemValue()
  901. }
  902. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  903. }
  904. case reflect.Float32:
  905. mksv := make([]floatRv, len(mks))
  906. for i, k := range mks {
  907. v := &mksv[i]
  908. v.r = k
  909. v.v = k.Float()
  910. }
  911. sort.Sort(floatRvSlice(mksv))
  912. for i := range mksv {
  913. if elemsep {
  914. ee.WriteMapElemKey()
  915. }
  916. ee.EncodeFloat32(float32(mksv[i].v))
  917. if elemsep {
  918. ee.WriteMapElemValue()
  919. }
  920. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  921. }
  922. case reflect.Float64:
  923. mksv := make([]floatRv, len(mks))
  924. for i, k := range mks {
  925. v := &mksv[i]
  926. v.r = k
  927. v.v = k.Float()
  928. }
  929. sort.Sort(floatRvSlice(mksv))
  930. for i := range mksv {
  931. if elemsep {
  932. ee.WriteMapElemKey()
  933. }
  934. ee.EncodeFloat64(mksv[i].v)
  935. if elemsep {
  936. ee.WriteMapElemValue()
  937. }
  938. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  939. }
  940. case reflect.Struct:
  941. if rv.Type() == timeTyp {
  942. mksv := make([]timeRv, len(mks))
  943. for i, k := range mks {
  944. v := &mksv[i]
  945. v.r = k
  946. v.v = rv2i(k).(time.Time)
  947. }
  948. sort.Sort(timeRvSlice(mksv))
  949. for i := range mksv {
  950. if elemsep {
  951. ee.WriteMapElemKey()
  952. }
  953. ee.EncodeTime(mksv[i].v)
  954. if elemsep {
  955. ee.WriteMapElemValue()
  956. }
  957. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  958. }
  959. break
  960. }
  961. fallthrough
  962. default:
  963. // out-of-band
  964. // first encode each key to a []byte first, then sort them, then record
  965. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  966. e2 := NewEncoderBytes(&mksv, e.hh)
  967. mksbv := make([]bytesRv, len(mks))
  968. for i, k := range mks {
  969. v := &mksbv[i]
  970. l := len(mksv)
  971. e2.MustEncode(k)
  972. v.r = k
  973. v.v = mksv[l:]
  974. }
  975. sort.Sort(bytesRvSlice(mksbv))
  976. for j := range mksbv {
  977. if elemsep {
  978. ee.WriteMapElemKey()
  979. }
  980. e.asis(mksbv[j].v)
  981. if elemsep {
  982. ee.WriteMapElemValue()
  983. }
  984. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  985. }
  986. }
  987. }
  988. // // --------------------------------------------------
  989. type encWriterSwitch struct {
  990. // wi *ioEncWriter
  991. wf bufioEncWriter
  992. wb bytesEncAppender
  993. // typ entryType
  994. wx bool // if bytes, wx=true
  995. esep bool // whether it has elem separators
  996. isas bool // whether e.as != nil
  997. js bool // captured here, so that no need to piggy back on *codecFner for this
  998. be bool // captured here, so that no need to piggy back on *codecFner for this
  999. _ [2]byte // padding
  1000. // _ [2]uint64 // padding
  1001. // _ uint64 // padding
  1002. }
  1003. func (z *encWriterSwitch) writeb(s []byte) {
  1004. if z.wx {
  1005. z.wb.writeb(s)
  1006. } else {
  1007. z.wf.writeb(s)
  1008. }
  1009. }
  1010. func (z *encWriterSwitch) writestr(s string) {
  1011. if z.wx {
  1012. z.wb.writestr(s)
  1013. } else {
  1014. z.wf.writestr(s)
  1015. }
  1016. }
  1017. func (z *encWriterSwitch) writen1(b1 byte) {
  1018. if z.wx {
  1019. z.wb.writen1(b1)
  1020. } else {
  1021. z.wf.writen1(b1)
  1022. }
  1023. }
  1024. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1025. if z.wx {
  1026. z.wb.writen2(b1, b2)
  1027. } else {
  1028. z.wf.writen2(b1, b2)
  1029. }
  1030. }
  1031. func (z *encWriterSwitch) atEndOfEncode() {
  1032. if z.wx {
  1033. z.wb.atEndOfEncode()
  1034. } else {
  1035. z.wf.atEndOfEncode()
  1036. }
  1037. }
  1038. /*
  1039. // ------------------------------------------
  1040. func (z *encWriterSwitch) writeb(s []byte) {
  1041. switch z.typ {
  1042. case entryTypeBytes:
  1043. z.wb.writeb(s)
  1044. case entryTypeIo:
  1045. z.wi.writeb(s)
  1046. default:
  1047. z.wf.writeb(s)
  1048. }
  1049. }
  1050. func (z *encWriterSwitch) writestr(s string) {
  1051. switch z.typ {
  1052. case entryTypeBytes:
  1053. z.wb.writestr(s)
  1054. case entryTypeIo:
  1055. z.wi.writestr(s)
  1056. default:
  1057. z.wf.writestr(s)
  1058. }
  1059. }
  1060. func (z *encWriterSwitch) writen1(b1 byte) {
  1061. switch z.typ {
  1062. case entryTypeBytes:
  1063. z.wb.writen1(b1)
  1064. case entryTypeIo:
  1065. z.wi.writen1(b1)
  1066. default:
  1067. z.wf.writen1(b1)
  1068. }
  1069. }
  1070. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1071. switch z.typ {
  1072. case entryTypeBytes:
  1073. z.wb.writen2(b1, b2)
  1074. case entryTypeIo:
  1075. z.wi.writen2(b1, b2)
  1076. default:
  1077. z.wf.writen2(b1, b2)
  1078. }
  1079. }
  1080. func (z *encWriterSwitch) atEndOfEncode() {
  1081. switch z.typ {
  1082. case entryTypeBytes:
  1083. z.wb.atEndOfEncode()
  1084. case entryTypeIo:
  1085. z.wi.atEndOfEncode()
  1086. default:
  1087. z.wf.atEndOfEncode()
  1088. }
  1089. }
  1090. // ------------------------------------------
  1091. func (z *encWriterSwitch) writeb(s []byte) {
  1092. if z.wx {
  1093. z.wb.writeb(s)
  1094. } else {
  1095. z.wi.writeb(s)
  1096. }
  1097. }
  1098. func (z *encWriterSwitch) writestr(s string) {
  1099. if z.wx {
  1100. z.wb.writestr(s)
  1101. } else {
  1102. z.wi.writestr(s)
  1103. }
  1104. }
  1105. func (z *encWriterSwitch) writen1(b1 byte) {
  1106. if z.wx {
  1107. z.wb.writen1(b1)
  1108. } else {
  1109. z.wi.writen1(b1)
  1110. }
  1111. }
  1112. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1113. if z.wx {
  1114. z.wb.writen2(b1, b2)
  1115. } else {
  1116. z.wi.writen2(b1, b2)
  1117. }
  1118. }
  1119. func (z *encWriterSwitch) atEndOfEncode() {
  1120. if z.wx {
  1121. z.wb.atEndOfEncode()
  1122. } else {
  1123. z.wi.atEndOfEncode()
  1124. }
  1125. }
  1126. */
  1127. // Encoder writes an object to an output stream in a supported format.
  1128. //
  1129. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1130. // concurrently in multiple goroutines.
  1131. //
  1132. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1133. // so its state can be reused to decode new input streams repeatedly.
  1134. // This is the idiomatic way to use.
  1135. type Encoder struct {
  1136. panicHdl
  1137. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1138. e encDriver
  1139. // NOTE: Encoder shouldn't call it's write methods,
  1140. // as the handler MAY need to do some coordination.
  1141. w *encWriterSwitch
  1142. // bw *bufio.Writer
  1143. as encDriverAsis
  1144. err error
  1145. h *BasicHandle
  1146. // ---- cpu cache line boundary? + 3
  1147. encWriterSwitch
  1148. codecFnPooler
  1149. ci set
  1150. // ---- writable fields during execution --- *try* to keep in sep cache line
  1151. // ---- cpu cache line boundary?
  1152. // b [scratchByteArrayLen]byte
  1153. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1154. b [cacheLineSize - (8 * 2)]byte // used for encoding a chan or (non-addressable) array of bytes
  1155. }
  1156. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1157. //
  1158. // For efficiency, Users are encouraged to pass in a memory buffered writer
  1159. // (eg bufio.Writer, bytes.Buffer).
  1160. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1161. e := newEncoder(h)
  1162. e.Reset(w)
  1163. return e
  1164. }
  1165. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1166. // into a byte slice, using zero-copying to temporary slices.
  1167. //
  1168. // It will potentially replace the output byte slice pointed to.
  1169. // After encoding, the out parameter contains the encoded contents.
  1170. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1171. e := newEncoder(h)
  1172. e.ResetBytes(out)
  1173. return e
  1174. }
  1175. func newEncoder(h Handle) *Encoder {
  1176. e := &Encoder{h: h.getBasicHandle(), err: errEncoderNotInitialized}
  1177. e.w = &e.encWriterSwitch
  1178. e.hh = h
  1179. e.esep = h.hasElemSeparators()
  1180. return e
  1181. }
  1182. func (e *Encoder) resetCommon() {
  1183. // e.w = &e.encWriterSwitch
  1184. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1185. e.e = e.hh.newEncDriver(e)
  1186. e.as, e.isas = e.e.(encDriverAsis)
  1187. // e.cr, _ = e.e.(containerStateRecv)
  1188. }
  1189. e.be = e.hh.isBinary()
  1190. _, e.js = e.hh.(*JsonHandle)
  1191. e.e.reset()
  1192. e.err = nil
  1193. }
  1194. // Reset resets the Encoder with a new output stream.
  1195. //
  1196. // This accommodates using the state of the Encoder,
  1197. // where it has "cached" information about sub-engines.
  1198. func (e *Encoder) Reset(w io.Writer) {
  1199. if w == nil {
  1200. return
  1201. }
  1202. // var ok bool
  1203. e.wx = false
  1204. // e.typ = entryTypeUnset
  1205. // if e.h.WriterBufferSize > 0 {
  1206. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1207. // // e.wi.bw = bw
  1208. // // e.wi.sw = bw
  1209. // // e.wi.fw = bw
  1210. // // e.wi.ww = bw
  1211. // if e.wf == nil {
  1212. // e.wf = new(bufioEncWriter)
  1213. // }
  1214. // e.wf.reset(w, e.h.WriterBufferSize)
  1215. // e.typ = entryTypeBufio
  1216. // } else {
  1217. // if e.wi == nil {
  1218. // e.wi = new(ioEncWriter)
  1219. // }
  1220. // e.wi.reset(w)
  1221. // e.typ = entryTypeIo
  1222. // }
  1223. e.wf.reset(w, e.h.WriterBufferSize)
  1224. // e.typ = entryTypeBufio
  1225. // e.w = e.wi
  1226. e.resetCommon()
  1227. }
  1228. // ResetBytes resets the Encoder with a new destination output []byte.
  1229. func (e *Encoder) ResetBytes(out *[]byte) {
  1230. if out == nil {
  1231. return
  1232. }
  1233. var in []byte
  1234. if out != nil {
  1235. in = *out
  1236. }
  1237. if in == nil {
  1238. in = make([]byte, defEncByteBufSize)
  1239. }
  1240. e.wx = true
  1241. // e.typ = entryTypeBytes
  1242. e.wb.reset(in, out)
  1243. // e.w = &e.wb
  1244. e.resetCommon()
  1245. }
  1246. // Encode writes an object into a stream.
  1247. //
  1248. // Encoding can be configured via the struct tag for the fields.
  1249. // The key (in the struct tags) that we look at is configurable.
  1250. //
  1251. // By default, we look up the "codec" key in the struct field's tags,
  1252. // and fall bak to the "json" key if "codec" is absent.
  1253. // That key in struct field's tag value is the key name,
  1254. // followed by an optional comma and options.
  1255. //
  1256. // To set an option on all fields (e.g. omitempty on all fields), you
  1257. // can create a field called _struct, and set flags on it. The options
  1258. // which can be set on _struct are:
  1259. // - omitempty: so all fields are omitted if empty
  1260. // - toarray: so struct is encoded as an array
  1261. // - int: so struct key names are encoded as signed integers (instead of strings)
  1262. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1263. // - float: so struct key names are encoded as floats (instead of strings)
  1264. // More details on these below.
  1265. //
  1266. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1267. // - the field's tag is "-", OR
  1268. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1269. //
  1270. // When encoding as a map, the first string in the tag (before the comma)
  1271. // is the map key string to use when encoding.
  1272. // ...
  1273. // This key is typically encoded as a string.
  1274. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1275. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1276. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1277. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1278. // This is done with the int,uint or float option on the _struct field (see above).
  1279. //
  1280. // However, struct values may encode as arrays. This happens when:
  1281. // - StructToArray Encode option is set, OR
  1282. // - the tag on the _struct field sets the "toarray" option
  1283. // Note that omitempty is ignored when encoding struct values as arrays,
  1284. // as an entry must be encoded for each field, to maintain its position.
  1285. //
  1286. // Values with types that implement MapBySlice are encoded as stream maps.
  1287. //
  1288. // The empty values (for omitempty option) are false, 0, any nil pointer
  1289. // or interface value, and any array, slice, map, or string of length zero.
  1290. //
  1291. // Anonymous fields are encoded inline except:
  1292. // - the struct tag specifies a replacement name (first value)
  1293. // - the field is of an interface type
  1294. //
  1295. // Examples:
  1296. //
  1297. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1298. // type MyStruct struct {
  1299. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1300. // Field1 string `codec:"-"` //skip this field
  1301. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1302. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1303. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1304. // io.Reader //use key "Reader".
  1305. // MyStruct `codec:"my1" //use key "my1".
  1306. // MyStruct //inline it
  1307. // ...
  1308. // }
  1309. //
  1310. // type MyStruct struct {
  1311. // _struct bool `codec:",toarray"` //encode struct as an array
  1312. // }
  1313. //
  1314. // type MyStruct struct {
  1315. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1316. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1317. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1318. // }
  1319. //
  1320. // The mode of encoding is based on the type of the value. When a value is seen:
  1321. // - If a Selfer, call its CodecEncodeSelf method
  1322. // - If an extension is registered for it, call that extension function
  1323. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1324. // - Else encode it based on its reflect.Kind
  1325. //
  1326. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1327. // Some formats support symbols (e.g. binc) and will properly encode the string
  1328. // only once in the stream, and use a tag to refer to it thereafter.
  1329. func (e *Encoder) Encode(v interface{}) (err error) {
  1330. // tried to use closure, as runtime optimizes defer with no params.
  1331. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1332. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1333. // defer func() { e.deferred(&err) }() }
  1334. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1335. defer e.deferred(&err)
  1336. e.MustEncode(v)
  1337. return
  1338. }
  1339. // MustEncode is like Encode, but panics if unable to Encode.
  1340. // This provides insight to the code location that triggered the error.
  1341. func (e *Encoder) MustEncode(v interface{}) {
  1342. if e.err != nil {
  1343. panic(e.err)
  1344. }
  1345. e.encode(v)
  1346. e.e.atEndOfEncode()
  1347. e.w.atEndOfEncode()
  1348. e.alwaysAtEnd()
  1349. }
  1350. func (e *Encoder) deferred(err1 *error) {
  1351. e.alwaysAtEnd()
  1352. if recoverPanicToErr {
  1353. if x := recover(); x != nil {
  1354. panicValToErr(e, x, err1)
  1355. panicValToErr(e, x, &e.err)
  1356. }
  1357. }
  1358. }
  1359. // func (e *Encoder) alwaysAtEnd() {
  1360. // e.codecFnPooler.alwaysAtEnd()
  1361. // }
  1362. func (e *Encoder) encode(iv interface{}) {
  1363. if iv == nil || definitelyNil(iv) {
  1364. e.e.EncodeNil()
  1365. return
  1366. }
  1367. if v, ok := iv.(Selfer); ok {
  1368. v.CodecEncodeSelf(e)
  1369. return
  1370. }
  1371. // a switch with only concrete types can be optimized.
  1372. // consequently, we deal with nil and interfaces outside.
  1373. switch v := iv.(type) {
  1374. case Raw:
  1375. e.rawBytes(v)
  1376. case reflect.Value:
  1377. e.encodeValue(v, nil, true)
  1378. case string:
  1379. e.e.EncodeStringEnc(cUTF8, v)
  1380. case bool:
  1381. e.e.EncodeBool(v)
  1382. case int:
  1383. e.e.EncodeInt(int64(v))
  1384. case int8:
  1385. e.e.EncodeInt(int64(v))
  1386. case int16:
  1387. e.e.EncodeInt(int64(v))
  1388. case int32:
  1389. e.e.EncodeInt(int64(v))
  1390. case int64:
  1391. e.e.EncodeInt(v)
  1392. case uint:
  1393. e.e.EncodeUint(uint64(v))
  1394. case uint8:
  1395. e.e.EncodeUint(uint64(v))
  1396. case uint16:
  1397. e.e.EncodeUint(uint64(v))
  1398. case uint32:
  1399. e.e.EncodeUint(uint64(v))
  1400. case uint64:
  1401. e.e.EncodeUint(v)
  1402. case uintptr:
  1403. e.e.EncodeUint(uint64(v))
  1404. case float32:
  1405. e.e.EncodeFloat32(v)
  1406. case float64:
  1407. e.e.EncodeFloat64(v)
  1408. case time.Time:
  1409. e.e.EncodeTime(v)
  1410. case []uint8:
  1411. e.e.EncodeStringBytesRaw(v)
  1412. case *Raw:
  1413. e.rawBytes(*v)
  1414. case *string:
  1415. e.e.EncodeStringEnc(cUTF8, *v)
  1416. case *bool:
  1417. e.e.EncodeBool(*v)
  1418. case *int:
  1419. e.e.EncodeInt(int64(*v))
  1420. case *int8:
  1421. e.e.EncodeInt(int64(*v))
  1422. case *int16:
  1423. e.e.EncodeInt(int64(*v))
  1424. case *int32:
  1425. e.e.EncodeInt(int64(*v))
  1426. case *int64:
  1427. e.e.EncodeInt(*v)
  1428. case *uint:
  1429. e.e.EncodeUint(uint64(*v))
  1430. case *uint8:
  1431. e.e.EncodeUint(uint64(*v))
  1432. case *uint16:
  1433. e.e.EncodeUint(uint64(*v))
  1434. case *uint32:
  1435. e.e.EncodeUint(uint64(*v))
  1436. case *uint64:
  1437. e.e.EncodeUint(*v)
  1438. case *uintptr:
  1439. e.e.EncodeUint(uint64(*v))
  1440. case *float32:
  1441. e.e.EncodeFloat32(*v)
  1442. case *float64:
  1443. e.e.EncodeFloat64(*v)
  1444. case *time.Time:
  1445. e.e.EncodeTime(*v)
  1446. case *[]uint8:
  1447. e.e.EncodeStringBytesRaw(*v)
  1448. default:
  1449. if !fastpathEncodeTypeSwitch(iv, e) {
  1450. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1451. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1452. }
  1453. }
  1454. }
  1455. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1456. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1457. var sptr uintptr
  1458. var rvp reflect.Value
  1459. var rvpValid bool
  1460. TOP:
  1461. switch rv.Kind() {
  1462. case reflect.Ptr:
  1463. if rv.IsNil() {
  1464. e.e.EncodeNil()
  1465. return
  1466. }
  1467. rvpValid = true
  1468. rvp = rv
  1469. rv = rv.Elem()
  1470. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1471. // TODO: Movable pointers will be an issue here. Future problem.
  1472. sptr = rv.UnsafeAddr()
  1473. break TOP
  1474. }
  1475. goto TOP
  1476. case reflect.Interface:
  1477. if rv.IsNil() {
  1478. e.e.EncodeNil()
  1479. return
  1480. }
  1481. rv = rv.Elem()
  1482. goto TOP
  1483. case reflect.Slice, reflect.Map:
  1484. if rv.IsNil() {
  1485. e.e.EncodeNil()
  1486. return
  1487. }
  1488. case reflect.Invalid, reflect.Func:
  1489. e.e.EncodeNil()
  1490. return
  1491. }
  1492. if sptr != 0 && (&e.ci).add(sptr) {
  1493. e.errorf("circular reference found: # %d", sptr)
  1494. }
  1495. if fn == nil {
  1496. rt := rv.Type()
  1497. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1498. fn = e.cfer().get(rt, checkFastpath, true)
  1499. }
  1500. if fn.i.addrE {
  1501. if rvpValid {
  1502. fn.fe(e, &fn.i, rvp)
  1503. } else if rv.CanAddr() {
  1504. fn.fe(e, &fn.i, rv.Addr())
  1505. } else {
  1506. rv2 := reflect.New(rv.Type())
  1507. rv2.Elem().Set(rv)
  1508. fn.fe(e, &fn.i, rv2)
  1509. }
  1510. } else {
  1511. fn.fe(e, &fn.i, rv)
  1512. }
  1513. if sptr != 0 {
  1514. (&e.ci).remove(sptr)
  1515. }
  1516. }
  1517. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1518. // if fnerr != nil {
  1519. // panic(fnerr)
  1520. // }
  1521. // if bs == nil {
  1522. // e.e.EncodeNil()
  1523. // } else if asis {
  1524. // e.asis(bs)
  1525. // } else {
  1526. // e.e.EncodeStringBytes(c, bs)
  1527. // }
  1528. // }
  1529. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1530. if fnerr != nil {
  1531. panic(fnerr)
  1532. }
  1533. if bs == nil {
  1534. e.e.EncodeNil()
  1535. } else {
  1536. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1537. }
  1538. }
  1539. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1540. if fnerr != nil {
  1541. panic(fnerr)
  1542. }
  1543. if bs == nil {
  1544. e.e.EncodeNil()
  1545. } else {
  1546. e.asis(bs)
  1547. }
  1548. }
  1549. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1550. if fnerr != nil {
  1551. panic(fnerr)
  1552. }
  1553. if bs == nil {
  1554. e.e.EncodeNil()
  1555. } else {
  1556. e.e.EncodeStringBytesRaw(bs)
  1557. }
  1558. }
  1559. func (e *Encoder) asis(v []byte) {
  1560. if e.isas {
  1561. e.as.EncodeAsis(v)
  1562. } else {
  1563. e.w.writeb(v)
  1564. }
  1565. }
  1566. func (e *Encoder) rawBytes(vv Raw) {
  1567. v := []byte(vv)
  1568. if !e.h.Raw {
  1569. e.errorf("Raw values cannot be encoded: %v", v)
  1570. }
  1571. e.asis(v)
  1572. }
  1573. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1574. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1575. }