encode.go 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a BSD-style license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "io"
  7. "reflect"
  8. "sync"
  9. )
  10. const (
  11. // Some tagging information for error messages.
  12. msgTagEnc = "codec.encoder"
  13. defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  14. // maxTimeSecs32 = math.MaxInt32 / 60 / 24 / 366
  15. )
  16. // AsSymbolFlag defines what should be encoded as symbols.
  17. type AsSymbolFlag uint8
  18. const (
  19. // AsSymbolDefault is default.
  20. // Currently, this means only encode struct field names as symbols.
  21. // The default is subject to change.
  22. AsSymbolDefault AsSymbolFlag = iota
  23. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  24. AsSymbolAll = 0xfe
  25. // AsSymbolNone means do not encode anything as a symbol.
  26. AsSymbolNone = 1 << iota
  27. // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
  28. AsSymbolMapStringKeysFlag
  29. // AsSymbolStructFieldName means encode struct field names as symbols.
  30. AsSymbolStructFieldNameFlag
  31. )
  32. // encWriter abstracts writing to a byte array or to an io.Writer.
  33. type encWriter interface {
  34. writeb([]byte)
  35. writestr(string)
  36. writen1(byte)
  37. writen2(byte, byte)
  38. atEndOfEncode()
  39. }
  40. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  41. type encDriver interface {
  42. IsBuiltinType(rt uintptr) bool
  43. EncodeBuiltin(rt uintptr, v interface{})
  44. EncodeNil()
  45. EncodeInt(i int64)
  46. EncodeUint(i uint64)
  47. EncodeBool(b bool)
  48. EncodeFloat32(f float32)
  49. EncodeFloat64(f float64)
  50. // encodeExtPreamble(xtag byte, length int)
  51. EncodeRawExt(re *RawExt, e *Encoder)
  52. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  53. EncodeArrayStart(length int)
  54. EncodeArrayEnd()
  55. EncodeArrayEntrySeparator()
  56. EncodeMapStart(length int)
  57. EncodeMapEnd()
  58. EncodeMapEntrySeparator()
  59. EncodeMapKVSeparator()
  60. EncodeString(c charEncoding, v string)
  61. EncodeSymbol(v string)
  62. EncodeStringBytes(c charEncoding, v []byte)
  63. //TODO
  64. //encBignum(f *big.Int)
  65. //encStringRunes(c charEncoding, v []rune)
  66. }
  67. type encNoSeparator struct{}
  68. func (_ encNoSeparator) EncodeMapEnd() {}
  69. func (_ encNoSeparator) EncodeArrayEnd() {}
  70. func (_ encNoSeparator) EncodeArrayEntrySeparator() {}
  71. func (_ encNoSeparator) EncodeMapEntrySeparator() {}
  72. func (_ encNoSeparator) EncodeMapKVSeparator() {}
  73. type ioEncWriterWriter interface {
  74. WriteByte(c byte) error
  75. WriteString(s string) (n int, err error)
  76. Write(p []byte) (n int, err error)
  77. }
  78. type ioEncStringWriter interface {
  79. WriteString(s string) (n int, err error)
  80. }
  81. type EncodeOptions struct {
  82. // Encode a struct as an array, and not as a map.
  83. StructToArray bool
  84. // AsSymbols defines what should be encoded as symbols.
  85. //
  86. // Encoding as symbols can reduce the encoded size significantly.
  87. //
  88. // However, during decoding, each string to be encoded as a symbol must
  89. // be checked to see if it has been seen before. Consequently, encoding time
  90. // will increase if using symbols, because string comparisons has a clear cost.
  91. //
  92. // Sample values:
  93. // AsSymbolNone
  94. // AsSymbolAll
  95. // AsSymbolMapStringKeys
  96. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  97. AsSymbols AsSymbolFlag
  98. }
  99. // ---------------------------------------------
  100. type simpleIoEncWriterWriter struct {
  101. w io.Writer
  102. bw io.ByteWriter
  103. sw ioEncStringWriter
  104. }
  105. func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
  106. if o.bw != nil {
  107. return o.bw.WriteByte(c)
  108. }
  109. _, err = o.w.Write([]byte{c})
  110. return
  111. }
  112. func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
  113. if o.sw != nil {
  114. return o.sw.WriteString(s)
  115. }
  116. return o.w.Write([]byte(s))
  117. }
  118. func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
  119. return o.w.Write(p)
  120. }
  121. // ----------------------------------------
  122. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  123. type ioEncWriter struct {
  124. w ioEncWriterWriter
  125. // x [8]byte // temp byte array re-used internally for efficiency
  126. }
  127. func (z *ioEncWriter) writeb(bs []byte) {
  128. if len(bs) == 0 {
  129. return
  130. }
  131. n, err := z.w.Write(bs)
  132. if err != nil {
  133. panic(err)
  134. }
  135. if n != len(bs) {
  136. encErr("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n)
  137. }
  138. }
  139. func (z *ioEncWriter) writestr(s string) {
  140. n, err := z.w.WriteString(s)
  141. if err != nil {
  142. panic(err)
  143. }
  144. if n != len(s) {
  145. encErr("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n)
  146. }
  147. }
  148. func (z *ioEncWriter) writen1(b byte) {
  149. if err := z.w.WriteByte(b); err != nil {
  150. panic(err)
  151. }
  152. }
  153. func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
  154. z.writen1(b1)
  155. z.writen1(b2)
  156. }
  157. func (z *ioEncWriter) atEndOfEncode() {}
  158. // ----------------------------------------
  159. // bytesEncWriter implements encWriter and can write to an byte slice.
  160. // It is used by Marshal function.
  161. type bytesEncWriter struct {
  162. b []byte
  163. c int // cursor
  164. out *[]byte // write out on atEndOfEncode
  165. }
  166. func (z *bytesEncWriter) writeb(s []byte) {
  167. if len(s) > 0 {
  168. c := z.grow(len(s))
  169. copy(z.b[c:], s)
  170. }
  171. }
  172. func (z *bytesEncWriter) writestr(s string) {
  173. if len(s) > 0 {
  174. c := z.grow(len(s))
  175. copy(z.b[c:], s)
  176. }
  177. }
  178. func (z *bytesEncWriter) writen1(b1 byte) {
  179. c := z.grow(1)
  180. z.b[c] = b1
  181. }
  182. func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
  183. c := z.grow(2)
  184. z.b[c] = b1
  185. z.b[c+1] = b2
  186. }
  187. func (z *bytesEncWriter) atEndOfEncode() {
  188. *(z.out) = z.b[:z.c]
  189. }
  190. func (z *bytesEncWriter) grow(n int) (oldcursor int) {
  191. oldcursor = z.c
  192. z.c = oldcursor + n
  193. if z.c > len(z.b) {
  194. if z.c > cap(z.b) {
  195. // Tried using appendslice logic: (if cap < 1024, *2, else *1.25).
  196. // However, it was too expensive, causing too many iterations of copy.
  197. // Using bytes.Buffer model was much better (2*cap + n)
  198. bs := make([]byte, 2*cap(z.b)+n)
  199. copy(bs, z.b[:oldcursor])
  200. z.b = bs
  201. } else {
  202. z.b = z.b[:cap(z.b)]
  203. }
  204. }
  205. return
  206. }
  207. // ---------------------------------------------
  208. type encFnInfoX struct {
  209. e *Encoder
  210. ti *typeInfo
  211. xfFn Ext
  212. xfTag uint64
  213. array bool
  214. }
  215. type encFnInfo struct {
  216. // use encFnInfo as a value receiver.
  217. // keep most of it less-used variables accessible via a pointer (*encFnInfoX).
  218. // As sweet spot for value-receiver is 3 words, keep everything except
  219. // encDriver (which everyone needs) directly accessible.
  220. // ensure encFnInfoX is set for everyone who needs it i.e.
  221. // rawExt, ext, builtin, (selfer|binary|text)Marshal, kSlice, kStruct, kMap, kInterface, fastpath
  222. ee encDriver
  223. *encFnInfoX
  224. }
  225. func (f encFnInfo) builtin(rv reflect.Value) {
  226. f.ee.EncodeBuiltin(f.ti.rtid, rv.Interface())
  227. }
  228. func (f encFnInfo) rawExt(rv reflect.Value) {
  229. f.ee.EncodeRawExt(rv.Interface().(*RawExt), f.e)
  230. }
  231. func (f encFnInfo) ext(rv reflect.Value) {
  232. // if this is a struct and it was addressable, then pass the address directly (not the value)
  233. if rv.CanAddr() && rv.Kind() == reflect.Struct {
  234. rv = rv.Addr()
  235. }
  236. f.ee.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
  237. }
  238. func (f encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
  239. if indir == 0 {
  240. v = rv.Interface()
  241. } else if indir == -1 {
  242. v = rv.Addr().Interface()
  243. } else {
  244. for j := int8(0); j < indir; j++ {
  245. if rv.IsNil() {
  246. f.ee.EncodeNil()
  247. return
  248. }
  249. rv = rv.Elem()
  250. }
  251. v = rv.Interface()
  252. }
  253. return v, true
  254. }
  255. func (f encFnInfo) selferMarshal(rv reflect.Value) {
  256. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
  257. v.(Selfer).CodecEncodeSelf(f.e)
  258. }
  259. }
  260. func (f encFnInfo) binaryMarshal(rv reflect.Value) {
  261. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
  262. bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
  263. if fnerr != nil {
  264. panic(fnerr)
  265. }
  266. if bs == nil {
  267. f.ee.EncodeNil()
  268. } else {
  269. f.ee.EncodeStringBytes(c_RAW, bs)
  270. }
  271. }
  272. }
  273. func (f encFnInfo) textMarshal(rv reflect.Value) {
  274. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
  275. // debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
  276. bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
  277. if fnerr != nil {
  278. panic(fnerr)
  279. }
  280. if bs == nil {
  281. f.ee.EncodeNil()
  282. } else {
  283. f.ee.EncodeStringBytes(c_UTF8, bs)
  284. }
  285. }
  286. }
  287. func (f encFnInfo) kBool(rv reflect.Value) {
  288. f.ee.EncodeBool(rv.Bool())
  289. }
  290. func (f encFnInfo) kString(rv reflect.Value) {
  291. f.ee.EncodeString(c_UTF8, rv.String())
  292. }
  293. func (f encFnInfo) kFloat64(rv reflect.Value) {
  294. f.ee.EncodeFloat64(rv.Float())
  295. }
  296. func (f encFnInfo) kFloat32(rv reflect.Value) {
  297. f.ee.EncodeFloat32(float32(rv.Float()))
  298. }
  299. func (f encFnInfo) kInt(rv reflect.Value) {
  300. f.ee.EncodeInt(rv.Int())
  301. }
  302. func (f encFnInfo) kUint(rv reflect.Value) {
  303. f.ee.EncodeUint(rv.Uint())
  304. }
  305. func (f encFnInfo) kInvalid(rv reflect.Value) {
  306. f.ee.EncodeNil()
  307. }
  308. func (f encFnInfo) kErr(rv reflect.Value) {
  309. encErr("unsupported kind %s, for %#v", rv.Kind(), rv)
  310. }
  311. func (f encFnInfo) kSlice(rv reflect.Value) {
  312. ti := f.ti
  313. // array may be non-addressable, so we have to manage with care
  314. // (don't call rv.Bytes, rv.Slice, etc).
  315. // E.g. type struct S{B [2]byte};
  316. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  317. if !f.array {
  318. if rv.IsNil() {
  319. f.ee.EncodeNil()
  320. return
  321. }
  322. // If in this method, then there was no extension function defined.
  323. // So it's okay to treat as []byte.
  324. if ti.rtid == uint8SliceTypId {
  325. f.ee.EncodeStringBytes(c_RAW, rv.Bytes())
  326. return
  327. }
  328. }
  329. rtelem := ti.rt.Elem()
  330. l := rv.Len()
  331. if rtelem.Kind() == reflect.Uint8 {
  332. if f.array {
  333. // if l == 0 { f.ee.encodeStringBytes(c_RAW, nil) } else
  334. if rv.CanAddr() {
  335. f.ee.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
  336. } else {
  337. bs := make([]byte, l)
  338. reflect.Copy(reflect.ValueOf(bs), rv)
  339. // TODO: Test that reflect.Copy works instead of manual one-by-one
  340. // for i := 0; i < l; i++ {
  341. // bs[i] = byte(rv.Index(i).Uint())
  342. // }
  343. f.ee.EncodeStringBytes(c_RAW, bs)
  344. }
  345. } else {
  346. f.ee.EncodeStringBytes(c_RAW, rv.Bytes())
  347. }
  348. return
  349. }
  350. if ti.mbs {
  351. if l%2 == 1 {
  352. encErr("mapBySlice requires even slice length, but got %v", l)
  353. }
  354. f.ee.EncodeMapStart(l / 2)
  355. } else {
  356. f.ee.EncodeArrayStart(l)
  357. }
  358. e := f.e
  359. sep := !e.be
  360. if l > 0 {
  361. for rtelem.Kind() == reflect.Ptr {
  362. rtelem = rtelem.Elem()
  363. }
  364. // if kind is reflect.Interface, do not pre-determine the
  365. // encoding type, because preEncodeValue may break it down to
  366. // a concrete type and kInterface will bomb.
  367. var fn encFn
  368. if rtelem.Kind() != reflect.Interface {
  369. rtelemid := reflect.ValueOf(rtelem).Pointer()
  370. fn = e.getEncFn(rtelemid, rtelem, true)
  371. }
  372. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  373. if sep {
  374. for j := 0; j < l; j++ {
  375. if j > 0 {
  376. if ti.mbs {
  377. if j%2 == 0 {
  378. f.ee.EncodeMapEntrySeparator()
  379. } else {
  380. f.ee.EncodeMapKVSeparator()
  381. }
  382. } else {
  383. f.ee.EncodeArrayEntrySeparator()
  384. }
  385. }
  386. e.encodeValue(rv.Index(j), fn)
  387. }
  388. } else {
  389. for j := 0; j < l; j++ {
  390. e.encodeValue(rv.Index(j), fn)
  391. }
  392. }
  393. }
  394. if sep {
  395. if ti.mbs {
  396. f.ee.EncodeMapEnd()
  397. } else {
  398. f.ee.EncodeArrayEnd()
  399. }
  400. }
  401. }
  402. func (f encFnInfo) kStruct(rv reflect.Value) {
  403. fti := f.ti
  404. e := f.e
  405. tisfi := fti.sfip
  406. toMap := !(fti.toArray || e.h.StructToArray)
  407. newlen := len(fti.sfi)
  408. // Use sync.Pool to reduce allocating slices unnecessarily.
  409. // The cost of the occasional locking is less than the cost of locking.
  410. var rvals []reflect.Value
  411. var encnames []string
  412. var pool *sync.Pool
  413. var poolv interface{}
  414. idxpool := newlen / 8
  415. if encStructPoolLen != 4 {
  416. panic("encStructPoolLen must be equal to 4") // defensive, in case it is changed
  417. }
  418. if idxpool < encStructPoolLen {
  419. pool = &encStructPool[idxpool]
  420. poolv = pool.Get()
  421. switch vv := poolv.(type) {
  422. case *encStructPool8:
  423. rvals = vv.r[:newlen]
  424. if toMap {
  425. encnames = vv.s[:newlen]
  426. }
  427. case *encStructPool16:
  428. rvals = vv.r[:newlen]
  429. if toMap {
  430. encnames = vv.s[:newlen]
  431. }
  432. case *encStructPool32:
  433. rvals = vv.r[:newlen]
  434. if toMap {
  435. encnames = vv.s[:newlen]
  436. }
  437. case *encStructPool64:
  438. rvals = vv.r[:newlen]
  439. if toMap {
  440. encnames = vv.s[:newlen]
  441. }
  442. }
  443. }
  444. if rvals == nil {
  445. rvals = make([]reflect.Value, newlen)
  446. }
  447. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  448. if toMap {
  449. tisfi = fti.sfi
  450. if encnames == nil {
  451. encnames = make([]string, newlen)
  452. }
  453. }
  454. newlen = 0
  455. for _, si := range tisfi {
  456. rvals[newlen] = si.field(rv, false)
  457. // if si.i != -1 {
  458. // rvals[newlen] = rv.Field(int(si.i))
  459. // } else {
  460. // rvals[newlen] = rv.FieldByIndex(si.is)
  461. // }
  462. if toMap {
  463. if si.omitEmpty && isEmptyValue(rvals[newlen]) {
  464. continue
  465. }
  466. encnames[newlen] = si.encName
  467. } else {
  468. // use the zero value.
  469. // if a reference or struct, set to nil (so you do not output too much)
  470. if si.omitEmpty && isEmptyValue(rvals[newlen]) {
  471. switch rvals[newlen].Kind() {
  472. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array,
  473. reflect.Map, reflect.Slice:
  474. rvals[newlen] = reflect.Value{} //encode as nil
  475. }
  476. }
  477. }
  478. newlen++
  479. }
  480. // debugf(">>>> kStruct: newlen: %v", newlen)
  481. sep := !e.be
  482. ee := f.ee //don't dereference everytime
  483. if sep {
  484. if toMap {
  485. ee.EncodeMapStart(newlen)
  486. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  487. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  488. for j := 0; j < newlen; j++ {
  489. if j > 0 {
  490. ee.EncodeMapEntrySeparator()
  491. }
  492. if asSymbols {
  493. ee.EncodeSymbol(encnames[j])
  494. } else {
  495. ee.EncodeString(c_UTF8, encnames[j])
  496. }
  497. ee.EncodeMapKVSeparator()
  498. e.encodeValue(rvals[j], encFn{})
  499. }
  500. ee.EncodeMapEnd()
  501. } else {
  502. ee.EncodeArrayStart(newlen)
  503. for j := 0; j < newlen; j++ {
  504. if j > 0 {
  505. ee.EncodeArrayEntrySeparator()
  506. }
  507. e.encodeValue(rvals[j], encFn{})
  508. }
  509. ee.EncodeArrayEnd()
  510. }
  511. } else {
  512. if toMap {
  513. ee.EncodeMapStart(newlen)
  514. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  515. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  516. for j := 0; j < newlen; j++ {
  517. if asSymbols {
  518. ee.EncodeSymbol(encnames[j])
  519. } else {
  520. ee.EncodeString(c_UTF8, encnames[j])
  521. }
  522. e.encodeValue(rvals[j], encFn{})
  523. }
  524. } else {
  525. ee.EncodeArrayStart(newlen)
  526. for j := 0; j < newlen; j++ {
  527. e.encodeValue(rvals[j], encFn{})
  528. }
  529. }
  530. }
  531. // do not use defer. Instead, use explicit pool return at end of function.
  532. // defer has a cost we are trying to avoid.
  533. // If there is a panic and these slices are not returned, it is ok.
  534. if pool != nil {
  535. pool.Put(poolv)
  536. }
  537. }
  538. // func (f encFnInfo) kPtr(rv reflect.Value) {
  539. // debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
  540. // if rv.IsNil() {
  541. // f.ee.encodeNil()
  542. // return
  543. // }
  544. // f.e.encodeValue(rv.Elem())
  545. // }
  546. func (f encFnInfo) kInterface(rv reflect.Value) {
  547. if rv.IsNil() {
  548. f.ee.EncodeNil()
  549. return
  550. }
  551. f.e.encodeValue(rv.Elem(), encFn{})
  552. }
  553. func (f encFnInfo) kMap(rv reflect.Value) {
  554. if rv.IsNil() {
  555. f.ee.EncodeNil()
  556. return
  557. }
  558. l := rv.Len()
  559. f.ee.EncodeMapStart(l)
  560. e := f.e
  561. sep := !e.be
  562. if l == 0 {
  563. if sep {
  564. f.ee.EncodeMapEnd()
  565. }
  566. return
  567. }
  568. var asSymbols bool
  569. // determine the underlying key and val encFn's for the map.
  570. // This eliminates some work which is done for each loop iteration i.e.
  571. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  572. //
  573. // However, if kind is reflect.Interface, do not pre-determine the
  574. // encoding type, because preEncodeValue may break it down to
  575. // a concrete type and kInterface will bomb.
  576. var keyFn, valFn encFn
  577. ti := f.ti
  578. rtkey := ti.rt.Key()
  579. rtval := ti.rt.Elem()
  580. rtkeyid := reflect.ValueOf(rtkey).Pointer()
  581. // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
  582. var keyTypeIsString = rtkeyid == stringTypId
  583. if keyTypeIsString {
  584. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  585. } else {
  586. for rtkey.Kind() == reflect.Ptr {
  587. rtkey = rtkey.Elem()
  588. }
  589. if rtkey.Kind() != reflect.Interface {
  590. rtkeyid = reflect.ValueOf(rtkey).Pointer()
  591. keyFn = e.getEncFn(rtkeyid, rtkey, true)
  592. }
  593. }
  594. for rtval.Kind() == reflect.Ptr {
  595. rtval = rtval.Elem()
  596. }
  597. if rtval.Kind() != reflect.Interface {
  598. rtvalid := reflect.ValueOf(rtval).Pointer()
  599. valFn = e.getEncFn(rtvalid, rtval, true)
  600. }
  601. mks := rv.MapKeys()
  602. // for j, lmks := 0, len(mks); j < lmks; j++ {
  603. ee := f.ee //don't dereference everytime
  604. if sep {
  605. for j := range mks {
  606. if j > 0 {
  607. ee.EncodeMapEntrySeparator()
  608. }
  609. if keyTypeIsString {
  610. if asSymbols {
  611. ee.EncodeSymbol(mks[j].String())
  612. } else {
  613. ee.EncodeString(c_UTF8, mks[j].String())
  614. }
  615. } else {
  616. e.encodeValue(mks[j], keyFn)
  617. }
  618. ee.EncodeMapKVSeparator()
  619. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  620. }
  621. ee.EncodeMapEnd()
  622. } else {
  623. for j := range mks {
  624. if keyTypeIsString {
  625. if asSymbols {
  626. ee.EncodeSymbol(mks[j].String())
  627. } else {
  628. ee.EncodeString(c_UTF8, mks[j].String())
  629. }
  630. } else {
  631. e.encodeValue(mks[j], keyFn)
  632. }
  633. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  634. }
  635. }
  636. }
  637. // --------------------------------------------------
  638. // encFn encapsulates the captured variables and the encode function.
  639. // This way, we only do some calculations one times, and pass to the
  640. // code block that should be called (encapsulated in a function)
  641. // instead of executing the checks every time.
  642. type encFn struct {
  643. i encFnInfo
  644. f func(encFnInfo, reflect.Value)
  645. }
  646. // --------------------------------------------------
  647. type rtidEncFn struct {
  648. rtid uintptr
  649. fn encFn
  650. }
  651. // An Encoder writes an object to an output stream in the codec format.
  652. type Encoder struct {
  653. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  654. w encWriter
  655. wi ioEncWriter
  656. wb bytesEncWriter
  657. e encDriver
  658. h *BasicHandle
  659. hh Handle
  660. f map[uintptr]encFn
  661. s []rtidEncFn
  662. be bool // is binary encoding
  663. }
  664. // NewEncoder returns an Encoder for encoding into an io.Writer.
  665. //
  666. // For efficiency, Users are encouraged to pass in a memory buffered writer
  667. // (eg bufio.Writer, bytes.Buffer).
  668. func NewEncoder(w io.Writer, h Handle) *Encoder {
  669. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinaryEncoding()}
  670. ww, ok := w.(ioEncWriterWriter)
  671. if !ok {
  672. sww := simpleIoEncWriterWriter{w: w}
  673. sww.bw, _ = w.(io.ByteWriter)
  674. sww.sw, _ = w.(ioEncStringWriter)
  675. ww = &sww
  676. //ww = bufio.NewWriterSize(w, defEncByteBufSize)
  677. }
  678. e.wi.w = ww
  679. e.w = &e.wi
  680. e.e = h.newEncDriver(e.w)
  681. return e
  682. }
  683. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  684. // into a byte slice, using zero-copying to temporary slices.
  685. //
  686. // It will potentially replace the output byte slice pointed to.
  687. // After encoding, the out parameter contains the encoded contents.
  688. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  689. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinaryEncoding()}
  690. in := *out
  691. if in == nil {
  692. in = make([]byte, defEncByteBufSize)
  693. }
  694. e.wb.b, e.wb.out = in, out
  695. e.w = &e.wb
  696. e.e = h.newEncDriver(e.w)
  697. return e
  698. }
  699. // Encode writes an object into a stream in the codec format.
  700. //
  701. // Encoding can be configured via the "codec" struct tag for the fields.
  702. //
  703. // The "codec" key in struct field's tag value is the key name,
  704. // followed by an optional comma and options.
  705. //
  706. // To set an option on all fields (e.g. omitempty on all fields), you
  707. // can create a field called _struct, and set flags on it.
  708. //
  709. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  710. // - the field's codec tag is "-", OR
  711. // - the field is empty and its codec tag specifies the "omitempty" option.
  712. //
  713. // When encoding as a map, the first string in the tag (before the comma)
  714. // is the map key string to use when encoding.
  715. //
  716. // However, struct values may encode as arrays. This happens when:
  717. // - StructToArray Encode option is set, OR
  718. // - the codec tag on the _struct field sets the "toarray" option
  719. //
  720. // Values with types that implement MapBySlice are encoded as stream maps.
  721. //
  722. // The empty values (for omitempty option) are false, 0, any nil pointer
  723. // or interface value, and any array, slice, map, or string of length zero.
  724. //
  725. // Anonymous fields are encoded inline if no struct tag is present.
  726. // Else they are encoded as regular fields.
  727. //
  728. // Examples:
  729. //
  730. // type MyStruct struct {
  731. // _struct bool `codec:",omitempty"` //set omitempty for every field
  732. // Field1 string `codec:"-"` //skip this field
  733. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  734. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  735. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  736. // ...
  737. // }
  738. //
  739. // type MyStruct struct {
  740. // _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
  741. // //and encode struct as an array
  742. // }
  743. //
  744. // The mode of encoding is based on the type of the value. When a value is seen:
  745. // - If an extension is registered for it, call that extension function
  746. // - If it implements BinaryMarshaler, call its MarshalBinary() (data []byte, err error)
  747. // - Else encode it based on its reflect.Kind
  748. //
  749. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  750. // Some formats support symbols (e.g. binc) and will properly encode the string
  751. // only once in the stream, and use a tag to refer to it thereafter.
  752. func (e *Encoder) Encode(v interface{}) (err error) {
  753. defer panicToErr(&err)
  754. e.encode(v)
  755. e.w.atEndOfEncode()
  756. return
  757. }
  758. // MustEncode is like Encode, but panics if unable to Encode.
  759. // This provides insight to the code location that triggered the error.
  760. func (e *Encoder) MustEncode(v interface{}) {
  761. e.encode(v)
  762. e.w.atEndOfEncode()
  763. }
  764. // comment out these (Must)Write methods. They were only put there to support cbor.
  765. // However, users already have access to the streams, and can write directly.
  766. //
  767. // // Write allows users write to the Encoder stream directly.
  768. // func (e *Encoder) Write(bs []byte) (err error) {
  769. // defer panicToErr(&err)
  770. // e.w.writeb(bs)
  771. // return
  772. // }
  773. // // MustWrite is like write, but panics if unable to Write.
  774. // func (e *Encoder) MustWrite(bs []byte) {
  775. // e.w.writeb(bs)
  776. // }
  777. func (e *Encoder) encode(iv interface{}) {
  778. // if ics, ok := iv.(Selfer); ok {
  779. // ics.CodecEncodeSelf(e)
  780. // return
  781. // }
  782. switch v := iv.(type) {
  783. case nil:
  784. e.e.EncodeNil()
  785. case Selfer:
  786. v.CodecEncodeSelf(e)
  787. case reflect.Value:
  788. e.encodeValue(v, encFn{})
  789. case string:
  790. e.e.EncodeString(c_UTF8, v)
  791. case bool:
  792. e.e.EncodeBool(v)
  793. case int:
  794. e.e.EncodeInt(int64(v))
  795. case int8:
  796. e.e.EncodeInt(int64(v))
  797. case int16:
  798. e.e.EncodeInt(int64(v))
  799. case int32:
  800. e.e.EncodeInt(int64(v))
  801. case int64:
  802. e.e.EncodeInt(v)
  803. case uint:
  804. e.e.EncodeUint(uint64(v))
  805. case uint8:
  806. e.e.EncodeUint(uint64(v))
  807. case uint16:
  808. e.e.EncodeUint(uint64(v))
  809. case uint32:
  810. e.e.EncodeUint(uint64(v))
  811. case uint64:
  812. e.e.EncodeUint(v)
  813. case float32:
  814. e.e.EncodeFloat32(v)
  815. case float64:
  816. e.e.EncodeFloat64(v)
  817. case []uint8:
  818. e.e.EncodeStringBytes(c_RAW, v)
  819. case *string:
  820. e.e.EncodeString(c_UTF8, *v)
  821. case *bool:
  822. e.e.EncodeBool(*v)
  823. case *int:
  824. e.e.EncodeInt(int64(*v))
  825. case *int8:
  826. e.e.EncodeInt(int64(*v))
  827. case *int16:
  828. e.e.EncodeInt(int64(*v))
  829. case *int32:
  830. e.e.EncodeInt(int64(*v))
  831. case *int64:
  832. e.e.EncodeInt(*v)
  833. case *uint:
  834. e.e.EncodeUint(uint64(*v))
  835. case *uint8:
  836. e.e.EncodeUint(uint64(*v))
  837. case *uint16:
  838. e.e.EncodeUint(uint64(*v))
  839. case *uint32:
  840. e.e.EncodeUint(uint64(*v))
  841. case *uint64:
  842. e.e.EncodeUint(*v)
  843. case *float32:
  844. e.e.EncodeFloat32(*v)
  845. case *float64:
  846. e.e.EncodeFloat64(*v)
  847. case *[]uint8:
  848. e.e.EncodeStringBytes(c_RAW, *v)
  849. default:
  850. if !fastpathEncodeTypeSwitch(iv, e) {
  851. e.encodeI(iv, false)
  852. }
  853. }
  854. }
  855. func (e *Encoder) encodeI(iv interface{}, encFnCheckAll bool) {
  856. if rv, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
  857. rt := rv.Type()
  858. rtid := reflect.ValueOf(rt).Pointer()
  859. fn := e.getEncFn(rtid, rt, encFnCheckAll)
  860. fn.f(fn.i, rv)
  861. }
  862. }
  863. func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, proceed bool) {
  864. LOOP:
  865. for {
  866. switch rv.Kind() {
  867. case reflect.Ptr, reflect.Interface:
  868. if rv.IsNil() {
  869. e.e.EncodeNil()
  870. return
  871. }
  872. rv = rv.Elem()
  873. continue LOOP
  874. case reflect.Slice, reflect.Map:
  875. if rv.IsNil() {
  876. e.e.EncodeNil()
  877. return
  878. }
  879. case reflect.Invalid, reflect.Chan, reflect.Func:
  880. e.e.EncodeNil()
  881. return
  882. }
  883. break
  884. }
  885. return rv, true
  886. }
  887. func (e *Encoder) encodeValue(rv reflect.Value, fn encFn) {
  888. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  889. if rv, proceed := e.preEncodeValue(rv); proceed {
  890. if fn.f == nil {
  891. rt := rv.Type()
  892. rtid := reflect.ValueOf(rt).Pointer()
  893. fn = e.getEncFn(rtid, rt, true)
  894. }
  895. fn.f(fn.i, rv)
  896. }
  897. }
  898. func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkAll bool) (fn encFn) {
  899. // rtid := reflect.ValueOf(rt).Pointer()
  900. var ok bool
  901. if useMapForCodecCache {
  902. fn, ok = e.f[rtid]
  903. } else {
  904. for _, v := range e.s {
  905. if v.rtid == rtid {
  906. fn, ok = v.fn, true
  907. break
  908. }
  909. }
  910. }
  911. if ok {
  912. return
  913. }
  914. // fi.encFnInfoX = new(encFnInfoX)
  915. ti := getTypeInfo(rtid, rt)
  916. var fi encFnInfo
  917. fi.ee = e.e
  918. if checkAll && ti.cs {
  919. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  920. fn.f = (encFnInfo).selferMarshal
  921. } else if rtid == rawExtTypId {
  922. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  923. fn.f = (encFnInfo).rawExt
  924. } else if e.e.IsBuiltinType(rtid) {
  925. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  926. fn.f = (encFnInfo).builtin
  927. } else if xfFn := e.h.getExt(rtid); xfFn != nil {
  928. // fi.encFnInfoX = new(encFnInfoX)
  929. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  930. fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
  931. fn.f = (encFnInfo).ext
  932. } else if supportMarshalInterfaces && e.be && ti.bm {
  933. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  934. fn.f = (encFnInfo).binaryMarshal
  935. } else if supportMarshalInterfaces && !e.be && ti.tm {
  936. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  937. fn.f = (encFnInfo).textMarshal
  938. } else {
  939. rk := rt.Kind()
  940. if fastpathEnabled && checkAll && (rk == reflect.Map || rk == reflect.Slice) {
  941. if rt.PkgPath() == "" {
  942. if idx := fastpathAV.index(rtid); idx != -1 {
  943. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  944. fn.f = fastpathAV[idx].encfn
  945. }
  946. } else {
  947. ok = false
  948. // use mapping for underlying type if there
  949. var rtu reflect.Type
  950. if rk == reflect.Map {
  951. rtu = reflect.MapOf(rt.Key(), rt.Elem())
  952. } else {
  953. rtu = reflect.SliceOf(rt.Elem())
  954. }
  955. rtuid := reflect.ValueOf(rtu).Pointer()
  956. if idx := fastpathAV.index(rtuid); idx != -1 {
  957. xfnf := fastpathAV[idx].encfn
  958. xrt := fastpathAV[idx].rt
  959. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  960. fn.f = func(xf encFnInfo, xrv reflect.Value) {
  961. xfnf(xf, xrv.Convert(xrt))
  962. }
  963. }
  964. }
  965. }
  966. if fn.f == nil {
  967. switch rk {
  968. case reflect.Bool:
  969. fn.f = (encFnInfo).kBool
  970. case reflect.String:
  971. fn.f = (encFnInfo).kString
  972. case reflect.Float64:
  973. fn.f = (encFnInfo).kFloat64
  974. case reflect.Float32:
  975. fn.f = (encFnInfo).kFloat32
  976. case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
  977. fn.f = (encFnInfo).kInt
  978. case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16:
  979. fn.f = (encFnInfo).kUint
  980. case reflect.Invalid:
  981. fn.f = (encFnInfo).kInvalid
  982. case reflect.Slice:
  983. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  984. fn.f = (encFnInfo).kSlice
  985. case reflect.Array:
  986. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, array: true}
  987. // fi.array = true
  988. fn.f = (encFnInfo).kSlice
  989. case reflect.Struct:
  990. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  991. fn.f = (encFnInfo).kStruct
  992. // case reflect.Ptr:
  993. // fn.f = (encFnInfo).kPtr
  994. case reflect.Interface:
  995. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  996. fn.f = (encFnInfo).kInterface
  997. case reflect.Map:
  998. fi.encFnInfoX = &encFnInfoX{e: e, ti: ti}
  999. fn.f = (encFnInfo).kMap
  1000. default:
  1001. fn.f = (encFnInfo).kErr
  1002. }
  1003. }
  1004. }
  1005. fn.i = fi
  1006. if useMapForCodecCache {
  1007. if e.f == nil {
  1008. e.f = make(map[uintptr]encFn, 32)
  1009. }
  1010. e.f[rtid] = fn
  1011. } else {
  1012. if e.s == nil {
  1013. e.s = make([]rtidEncFn, 0, 32)
  1014. }
  1015. e.s = append(e.s, rtidEncFn{rtid, fn})
  1016. }
  1017. return
  1018. }
  1019. // ----------------------------------------
  1020. const encStructPoolLen = 4
  1021. // encStructPool is an array of sync.Pool.
  1022. // Each element of the array pools one of encStructPool(8|16|32|64).
  1023. // It allows the re-use of slices up to 64 in length.
  1024. // A performance cost of encoding structs was collecting
  1025. // which values were empty and should be omitted.
  1026. // We needed slices of reflect.Value and string to collect them.
  1027. // This shared pool reduces the amount of unnecessary creation we do.
  1028. // The cost is that of locking sometimes, but sync.Pool is efficient
  1029. // enough to reduce thread contention.
  1030. var encStructPool [encStructPoolLen]sync.Pool
  1031. type encStructPool8 struct {
  1032. r [8]reflect.Value
  1033. s [8]string
  1034. }
  1035. type encStructPool16 struct {
  1036. r [16]reflect.Value
  1037. s [16]string
  1038. }
  1039. type encStructPool32 struct {
  1040. r [32]reflect.Value
  1041. s [32]string
  1042. }
  1043. type encStructPool64 struct {
  1044. r [64]reflect.Value
  1045. s [64]string
  1046. }
  1047. func init() {
  1048. encStructPool[0].New = func() interface{} { return new(encStructPool8) }
  1049. encStructPool[1].New = func() interface{} { return new(encStructPool16) }
  1050. encStructPool[2].New = func() interface{} { return new(encStructPool32) }
  1051. encStructPool[3].New = func() interface{} { return new(encStructPool64) }
  1052. }
  1053. // ----------------------------------------
  1054. func encErr(format string, params ...interface{}) {
  1055. doPanic(msgTagEnc, format, params...)
  1056. }