// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. package codec // Contains code shared by both encode and decode. // Some shared ideas around encoding/decoding // ------------------------------------------ // // If an interface{} is passed, we first do a type assertion to see if it is // a primitive type or a map/slice of primitive types, and use a fastpath to handle it. // // If we start with a reflect.Value, we are already in reflect.Value land and // will try to grab the function for the underlying Type and directly call that function. // This is more performant than calling reflect.Value.Interface(). // // This still helps us bypass many layers of reflection, and give best performance. // // Containers // ------------ // Containers in the stream are either associative arrays (key-value pairs) or // regular arrays (indexed by incrementing integers). // // Some streams support indefinite-length containers, and use a breaking // byte-sequence to denote that the container has come to an end. // // Some streams also are text-based, and use explicit separators to denote the // end/beginning of different values. // // Philosophy // ------------ // On decode, this codec will update containers appropriately: // - If struct, update fields from stream into fields of struct. // If field in stream not found in struct, handle appropriately (based on option). // If a struct field has no corresponding value in the stream, leave it AS IS. // If nil in stream, set value to nil/zero value. // - If map, update map from stream. // If the stream value is NIL, set the map to nil. // - if slice, try to update up to length of array in stream. // if container len is less than stream array length, // and container cannot be expanded, handled (based on option). // This means you can decode 4-element stream array into 1-element array. // // ------------------------------------ // On encode, user can specify omitEmpty. This means that the value will be omitted // if the zero value. The problem may occur during decode, where omitted values do not affect // the value being decoded into. This means that if decoding into a struct with an // int field with current value=5, and the field is omitted in the stream, then after // decoding, the value will still be 5 (not 0). // omitEmpty only works if you guarantee that you always decode into zero-values. // // ------------------------------------ // We could have truncated a map to remove keys not available in the stream, // or set values in the struct which are not in the stream to their zero values. // We decided against it because there is no efficient way to do it. // We may introduce it as an option later. // However, that will require enabling it for both runtime and code generation modes. // // To support truncate, we need to do 2 passes over the container: // map // - first collect all keys (e.g. in k1) // - for each key in stream, mark k1 that the key should not be removed // - after updating map, do second pass and call delete for all keys in k1 which are not marked // struct: // - for each field, track the *typeInfo s1 // - iterate through all s1, and for each one not marked, set value to zero // - this involves checking the possible anonymous fields which are nil ptrs. // too much work. // // ------------------------------------------ // Error Handling is done within the library using panic. // // This way, the code doesn't have to keep checking if an error has happened, // and we don't have to keep sending the error value along with each call // or storing it in the En|Decoder and checking it constantly along the way. // // We considered storing the error is En|Decoder. // - once it has its err field set, it cannot be used again. // - panicing will be optional, controlled by const flag. // - code should always check error first and return early. // // We eventually decided against it as it makes the code clumsier to always // check for these error conditions. // // ------------------------------------------ // We use sync.Pool only for the aid of long-lived objects shared across multiple goroutines. // Encoder, Decoder, enc|decDriver, reader|writer, etc do not fall into this bucket. // // Also, GC is much better now, eliminating some of the reasons to use a shared pool structure. // Instead, the short-lived objects use free-lists that live as long as the object exists. // // ------------------------------------------ // Performance is affected by the following: // - Bounds Checking // - Inlining // - Pointer chasing // This package tries hard to manage the performance impact of these. // // ------------------------------------------ // To alleviate performance due to pointer-chasing: // - Prefer non-pointer values in a struct field // - Refer to these directly within helper classes // e.g. json.go refers directly to d.d.decRd // // We made the changes to embed En/Decoder in en/decDriver, // but we had to explicitly reference the fields as opposed to using a function // to get the better performance that we were looking for. // For example, we explicitly call d.d.decRd.fn() instead of d.d.r().fn(). // // ------------------------------------------ // Bounds Checking // - Allow bytesDecReader to incur "bounds check error", and // recover that as an io.EOF. // This allows the bounds check branch to always be taken by the branch predictor, // giving better performance (in theory), while ensuring that the code is shorter. // // ------------------------------------------ // Escape Analysis // - Prefer to return non-pointers if the value is used right away. // Newly allocated values returned as pointers will be heap-allocated as they escape. // // Prefer functions and methods that // - take no parameters and // - return no results and // - do not allocate. // These are optimized by the runtime. // For example, in json, we have dedicated functions for ReadMapElemKey, etc // which do not delegate to readDelim, as readDelim takes a parameter. // The difference in runtime was as much as 5%. import ( "bytes" "encoding" "encoding/binary" "errors" "fmt" "io" "math" "reflect" "sort" "strconv" "strings" "sync" "sync/atomic" "time" "unicode/utf8" ) const ( // rvNLen is the length of the array for readn or writen calls rwNLen = 7 // scratchByteArrayLen = 64 // initCollectionCap = 16 // 32 is defensive. 16 is preferred. // Support encoding.(Binary|Text)(Unm|M)arshaler. // This constant flag will enable or disable it. supportMarshalInterfaces = true // for debugging, set this to false, to catch panic traces. // Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic. recoverPanicToErr = true // arrayCacheLen is the length of the cache used in encoder or decoder for // allowing zero-alloc initialization. // arrayCacheLen = 8 // size of the cacheline: defaulting to value for archs: amd64, arm64, 386 // should use "runtime/internal/sys".CacheLineSize, but that is not exposed. cacheLineSize = 64 wordSizeBits = 32 << (^uint(0) >> 63) // strconv.IntSize wordSize = wordSizeBits / 8 // so structFieldInfo fits into 8 bytes maxLevelsEmbedding = 14 // xdebug controls whether xdebugf prints any output xdebug = true ) var ( oneByteArr [1]byte zeroByteSlice = oneByteArr[:0:0] codecgen bool halt panicHdl refBitset bitset32 isnilBitset bitset32 scalarBitset bitset32 digitCharBitset bitset256 numCharBitset bitset256 whitespaceCharBitset bitset256 numCharWithExpBitset64 bitset64 numCharNoExpBitset64 bitset64 whitespaceCharBitset64 bitset64 ) var ( errMapTypeNotMapKind = errors.New("MapType MUST be of Map Kind") errSliceTypeNotSliceKind = errors.New("SliceType MUST be of Slice Kind") ) var pool4tiload = sync.Pool{New: func() interface{} { return new(typeInfoLoadArray) }} func init() { refBitset = refBitset. set(byte(reflect.Map)). set(byte(reflect.Ptr)). set(byte(reflect.Func)). set(byte(reflect.Chan)). set(byte(reflect.UnsafePointer)) isnilBitset = isnilBitset. set(byte(reflect.Map)). set(byte(reflect.Ptr)). set(byte(reflect.Func)). set(byte(reflect.Chan)). set(byte(reflect.UnsafePointer)). set(byte(reflect.Interface)). set(byte(reflect.Slice)) scalarBitset = scalarBitset. set(byte(reflect.Bool)). set(byte(reflect.Int)). set(byte(reflect.Int8)). set(byte(reflect.Int16)). set(byte(reflect.Int32)). set(byte(reflect.Int64)). set(byte(reflect.Uint)). set(byte(reflect.Uint8)). set(byte(reflect.Uint16)). set(byte(reflect.Uint32)). set(byte(reflect.Uint64)). set(byte(reflect.Uintptr)). set(byte(reflect.Float32)). set(byte(reflect.Float64)). set(byte(reflect.Complex64)). set(byte(reflect.Complex128)). set(byte(reflect.String)) var i byte for i = 0; i <= utf8.RuneSelf; i++ { switch i { case ' ', '\t', '\r', '\n': whitespaceCharBitset.set(i) whitespaceCharBitset64 = whitespaceCharBitset64.set(i) case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9': digitCharBitset.set(i) numCharBitset.set(i) numCharWithExpBitset64 = numCharWithExpBitset64.set(i - 42) numCharNoExpBitset64 = numCharNoExpBitset64.set(i) case '.', '+', '-': numCharBitset.set(i) numCharWithExpBitset64 = numCharWithExpBitset64.set(i - 42) numCharNoExpBitset64 = numCharNoExpBitset64.set(i) case 'e', 'E': numCharBitset.set(i) numCharWithExpBitset64 = numCharWithExpBitset64.set(i - 42) } } } type handleFlag uint8 const ( initedHandleFlag handleFlag = 1 << iota binaryHandleFlag jsonHandleFlag ) type clsErr struct { closed bool // is it closed? errClosed error // error on closing } type charEncoding uint8 const ( _ charEncoding = iota // make 0 unset cUTF8 cUTF16LE cUTF16BE cUTF32LE cUTF32BE // Deprecated: not a true char encoding value cRAW charEncoding = 255 ) // valueType is the stream type type valueType uint8 const ( valueTypeUnset valueType = iota valueTypeNil valueTypeInt valueTypeUint valueTypeFloat valueTypeBool valueTypeString valueTypeSymbol valueTypeBytes valueTypeMap valueTypeArray valueTypeTime valueTypeExt // valueTypeInvalid = 0xff ) var valueTypeStrings = [...]string{ "Unset", "Nil", "Int", "Uint", "Float", "Bool", "String", "Symbol", "Bytes", "Map", "Array", "Timestamp", "Ext", } func (x valueType) String() string { if int(x) < len(valueTypeStrings) { return valueTypeStrings[x] } return strconv.FormatInt(int64(x), 10) } type seqType uint8 const ( _ seqType = iota seqTypeArray seqTypeSlice seqTypeChan ) // note that containerMapStart and containerArraySend are not sent. // This is because the ReadXXXStart and EncodeXXXStart already does these. type containerState uint8 const ( _ containerState = iota containerMapStart containerMapKey containerMapValue containerMapEnd containerArrayStart containerArrayElem containerArrayEnd ) // do not recurse if a containing type refers to an embedded type // which refers back to its containing type (via a pointer). // The second time this back-reference happens, break out, // so as not to cause an infinite loop. const rgetMaxRecursion = 2 // Anecdotally, we believe most types have <= 12 fields. // - even Java's PMD rules set TooManyFields threshold to 15. // However, go has embedded fields, which should be regarded as // top level, allowing structs to possibly double or triple. // In addition, we don't want to keep creating transient arrays, // especially for the sfi index tracking, and the evtypes tracking. // // So - try to keep typeInfoLoadArray within 2K bytes const ( typeInfoLoadArraySfisLen = 16 typeInfoLoadArraySfiidxLen = 8 * 112 typeInfoLoadArrayEtypesLen = 12 typeInfoLoadArrayBLen = 8 * 4 ) // fauxUnion is used to keep track of the primitives decoded. // // Without it, we would have to decode each primitive and wrap it // in an interface{}, causing an allocation. // In this model, the primitives are decoded in a "pseudo-atomic" fashion, // so we can rest assured that no other decoding happens while these // primitives are being decoded. // // maps and arrays are not handled by this mechanism. type fauxUnion struct { // r RawExt // used for RawExt, uint, []byte. // primitives below u uint64 i int64 f float64 l []byte s string // ---- cpu cache line boundary? t time.Time b bool // state v valueType } // typeInfoLoad is a transient object used while loading up a typeInfo. type typeInfoLoad struct { etypes []uintptr sfis []structFieldInfo } // typeInfoLoadArray is a cache object used to efficiently load up a typeInfo without // much allocation. type typeInfoLoadArray struct { sfis [typeInfoLoadArraySfisLen]structFieldInfo sfiidx [typeInfoLoadArraySfiidxLen]byte etypes [typeInfoLoadArrayEtypesLen]uintptr b [typeInfoLoadArrayBLen]byte // scratch - used for struct field names } // mirror json.Marshaler and json.Unmarshaler here, // so we don't import the encoding/json package type jsonMarshaler interface { MarshalJSON() ([]byte, error) } type jsonUnmarshaler interface { UnmarshalJSON([]byte) error } type isZeroer interface { IsZero() bool } type codecError struct { name string err interface{} } func (e codecError) Cause() error { switch xerr := e.err.(type) { case nil: return nil case error: return xerr case string: return errors.New(xerr) case fmt.Stringer: return errors.New(xerr.String()) default: return fmt.Errorf("%v", e.err) } } func (e codecError) Error() string { return fmt.Sprintf("%s error: %v", e.name, e.err) } var ( bigen = binary.BigEndian structInfoFieldName = "_struct" mapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil)) mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil)) intfSliceTyp = reflect.TypeOf([]interface{}(nil)) intfTyp = intfSliceTyp.Elem() reflectValTyp = reflect.TypeOf((*reflect.Value)(nil)).Elem() stringTyp = reflect.TypeOf("") timeTyp = reflect.TypeOf(time.Time{}) rawExtTyp = reflect.TypeOf(RawExt{}) rawTyp = reflect.TypeOf(Raw{}) uintptrTyp = reflect.TypeOf(uintptr(0)) uint8Typ = reflect.TypeOf(uint8(0)) uint8SliceTyp = reflect.TypeOf([]uint8(nil)) uintTyp = reflect.TypeOf(uint(0)) intTyp = reflect.TypeOf(int(0)) mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem() binaryMarshalerTyp = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem() binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem() textMarshalerTyp = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem() textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem() jsonMarshalerTyp = reflect.TypeOf((*jsonMarshaler)(nil)).Elem() jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem() selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem() missingFielderTyp = reflect.TypeOf((*MissingFielder)(nil)).Elem() iszeroTyp = reflect.TypeOf((*isZeroer)(nil)).Elem() uint8TypId = rt2id(uint8Typ) uint8SliceTypId = rt2id(uint8SliceTyp) rawExtTypId = rt2id(rawExtTyp) rawTypId = rt2id(rawTyp) intfTypId = rt2id(intfTyp) timeTypId = rt2id(timeTyp) stringTypId = rt2id(stringTyp) mapStrIntfTypId = rt2id(mapStrIntfTyp) mapIntfIntfTypId = rt2id(mapIntfIntfTyp) intfSliceTypId = rt2id(intfSliceTyp) // mapBySliceTypId = rt2id(mapBySliceTyp) intBitsize = uint8(intTyp.Bits()) uintBitsize = uint8(uintTyp.Bits()) // bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0} bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff} chkOvf checkOverflow errNoFieldNameToStructFieldInfo = errors.New("no field name passed to parseStructFieldInfo") ) var defTypeInfos = NewTypeInfos([]string{"codec", "json"}) var immutableKindsSet = [32]bool{ // reflect.Invalid: , reflect.Bool: true, reflect.Int: true, reflect.Int8: true, reflect.Int16: true, reflect.Int32: true, reflect.Int64: true, reflect.Uint: true, reflect.Uint8: true, reflect.Uint16: true, reflect.Uint32: true, reflect.Uint64: true, reflect.Uintptr: true, reflect.Float32: true, reflect.Float64: true, reflect.Complex64: true, reflect.Complex128: true, // reflect.Array // reflect.Chan // reflect.Func: true, // reflect.Interface // reflect.Map // reflect.Ptr // reflect.Slice reflect.String: true, // reflect.Struct // reflect.UnsafePointer } // SelfExt is a sentinel extension signifying that types // registered with it SHOULD be encoded and decoded // based on the native mode of the format. // // This allows users to define a tag for an extension, // but signify that the types should be encoded/decoded as the native encoding. // This way, users need not also define how to encode or decode the extension. var SelfExt = &extFailWrapper{} // Selfer defines methods by which a value can encode or decode itself. // // Any type which implements Selfer will be able to encode or decode itself. // Consequently, during (en|de)code, this takes precedence over // (text|binary)(M|Unm)arshal or extension support. // // By definition, it is not allowed for a Selfer to directly call Encode or Decode on itself. // If that is done, Encode/Decode will rightfully fail with a Stack Overflow style error. // For example, the snippet below will cause such an error. // type testSelferRecur struct{} // func (s *testSelferRecur) CodecEncodeSelf(e *Encoder) { e.MustEncode(s) } // func (s *testSelferRecur) CodecDecodeSelf(d *Decoder) { d.MustDecode(s) } // // Note: *the first set of bytes of any value MUST NOT represent nil in the format*. // This is because, during each decode, we first check the the next set of bytes // represent nil, and if so, we just set the value to nil. type Selfer interface { CodecEncodeSelf(*Encoder) CodecDecodeSelf(*Decoder) } // MissingFielder defines the interface allowing structs to internally decode or encode // values which do not map to struct fields. // // We expect that this interface is bound to a pointer type (so the mutation function works). // // A use-case is if a version of a type unexports a field, but you want compatibility between // both versions during encoding and decoding. // // Note that the interface is completely ignored during codecgen. type MissingFielder interface { // CodecMissingField is called to set a missing field and value pair. // // It returns true if the missing field was set on the struct. CodecMissingField(field []byte, value interface{}) bool // CodecMissingFields returns the set of fields which are not struct fields CodecMissingFields() map[string]interface{} } // MapBySlice is a tag interface that denotes wrapped slice should encode as a map in the stream. // The slice contains a sequence of key-value pairs. // This affords storing a map in a specific sequence in the stream. // // Example usage: // type T1 []string // or []int or []Point or any other "slice" type // func (_ T1) MapBySlice{} // T1 now implements MapBySlice, and will be encoded as a map // type T2 struct { KeyValues T1 } // // var kvs = []string{"one", "1", "two", "2", "three", "3"} // var v2 = T2{ KeyValues: T1(kvs) } // // v2 will be encoded like the map: {"KeyValues": {"one": "1", "two": "2", "three": "3"} } // // The support of MapBySlice affords the following: // - A slice type which implements MapBySlice will be encoded as a map // - A slice can be decoded from a map in the stream // - It MUST be a slice type (not a pointer receiver) that implements MapBySlice type MapBySlice interface { MapBySlice() } // BasicHandle encapsulates the common options and extension functions. // // Deprecated: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED. type BasicHandle struct { // BasicHandle is always a part of a different type. // It doesn't have to fit into it own cache lines. // TypeInfos is used to get the type info for any type. // // If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json TypeInfos *TypeInfos // Note: BasicHandle is not comparable, due to these slices here (extHandle, intf2impls). // If *[]T is used instead, this becomes comparable, at the cost of extra indirection. // Thses slices are used all the time, so keep as slices (not pointers). extHandle rtidFns atomicRtidFnSlice rtidFnsNoExt atomicRtidFnSlice // ---- cache line DecodeOptions // ---- cache line EncodeOptions intf2impls mu sync.Mutex inited uint32 // holds if inited, and also handle flags (binary encoding, json handler, etc) RPCOptions // TimeNotBuiltin configures whether time.Time should be treated as a builtin type. // // All Handlers should know how to encode/decode time.Time as part of the core // format specification, or as a standard extension defined by the format. // // However, users can elect to handle time.Time as a custom extension, or via the // standard library's encoding.Binary(M|Unm)arshaler or Text(M|Unm)arshaler interface. // To elect this behavior, users can set TimeNotBuiltin=true. // // Note: Setting TimeNotBuiltin=true can be used to enable the legacy behavior // (for Cbor and Msgpack), where time.Time was not a builtin supported type. // // Note: DO NOT CHANGE AFTER FIRST USE. // // Once a Handle has been used, do not modify this option. // It will lead to unexpected behaviour during encoding and decoding. TimeNotBuiltin bool // ExplicitRelease configures whether Release() is implicitly called after an encode or // decode call. // // If you will hold onto an Encoder or Decoder for re-use, by calling Reset(...) // on it or calling (Must)Encode repeatedly into a given []byte or io.Writer, // then you do not want it to be implicitly closed after each Encode/Decode call. // Doing so will unnecessarily return resources to the shared pool, only for you to // grab them right after again to do another Encode/Decode call. // // Instead, you configure ExplicitRelease=true, and you explicitly call Release() when // you are truly done. // // As an alternative, you can explicitly set a finalizer - so its resources // are returned to the shared pool before it is garbage-collected. Do it as below: // runtime.SetFinalizer(e, (*Encoder).Release) // runtime.SetFinalizer(d, (*Decoder).Release) // // Deprecated: This is not longer used as pools are only used for long-lived objects // which are shared across goroutines. // Setting this value has no effect. It is maintained for backward compatibility. ExplicitRelease bool // ---- cache line } // basicHandle returns an initialized BasicHandle from the Handle. func basicHandle(hh Handle) (x *BasicHandle) { x = hh.getBasicHandle() // ** We need to simulate once.Do, to ensure no data race within the block. // ** Consequently, below would not work. // if atomic.CompareAndSwapUint32(&x.inited, 0, 1) { // x.be = hh.isBinary() // _, x.js = hh.(*JsonHandle) // x.n = hh.Name()[0] // } // simulate once.Do using our own stored flag and mutex as a CompareAndSwap // is not sufficient, since a race condition can occur within init(Handle) function. // init is made noinline, so that this function can be inlined by its caller. if atomic.LoadUint32(&x.inited) == 0 { x.init(hh) } return } func (x *BasicHandle) isJs() bool { return handleFlag(x.inited)&jsonHandleFlag != 0 } func (x *BasicHandle) isBe() bool { return handleFlag(x.inited)&binaryHandleFlag != 0 } //go:noinline func (x *BasicHandle) init(hh Handle) { // make it uninlineable, as it is called at most once x.mu.Lock() if x.inited == 0 { var f = initedHandleFlag if hh.isBinary() { f |= binaryHandleFlag } if _, b := hh.(*JsonHandle); b { f |= jsonHandleFlag } atomic.StoreUint32(&x.inited, uint32(f)) // ensure MapType and SliceType are of correct type if x.MapType != nil && x.MapType.Kind() != reflect.Map { panic(errMapTypeNotMapKind) } if x.SliceType != nil && x.SliceType.Kind() != reflect.Slice { panic(errSliceTypeNotSliceKind) } } x.mu.Unlock() } func (x *BasicHandle) getBasicHandle() *BasicHandle { return x } func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) { if x.TypeInfos == nil { return defTypeInfos.get(rtid, rt) } return x.TypeInfos.get(rtid, rt) } func findFn(s []codecRtidFn, rtid uintptr) (i uint, fn *codecFn) { // binary search. adapted from sort/search.go. // Note: we use goto (instead of for loop) so this can be inlined. // h, i, j := 0, 0, len(s) var h uint // var h, i uint var j = uint(len(s)) LOOP: if i < j { h = i + (j-i)/2 if s[h].rtid < rtid { i = h + 1 } else { j = h } goto LOOP } if i < uint(len(s)) && s[i].rtid == rtid { fn = s[i].fn } return } func (x *BasicHandle) fn(rt reflect.Type) (fn *codecFn) { return x.fnVia(rt, &x.rtidFns, true) } func (x *BasicHandle) fnNoExt(rt reflect.Type) (fn *codecFn) { return x.fnVia(rt, &x.rtidFnsNoExt, false) } func (x *BasicHandle) fnVia(rt reflect.Type, fs *atomicRtidFnSlice, checkExt bool) (fn *codecFn) { rtid := rt2id(rt) sp := fs.load() if sp != nil { if _, fn = findFn(sp, rtid); fn != nil { return } } fn = x.fnLoad(rt, rtid, checkExt) x.mu.Lock() var sp2 []codecRtidFn sp = fs.load() if sp == nil { sp2 = []codecRtidFn{{rtid, fn}} fs.store(sp2) } else { idx, fn2 := findFn(sp, rtid) if fn2 == nil { sp2 = make([]codecRtidFn, len(sp)+1) copy(sp2, sp[:idx]) copy(sp2[idx+1:], sp[idx:]) sp2[idx] = codecRtidFn{rtid, fn} fs.store(sp2) } } x.mu.Unlock() return } func (x *BasicHandle) fnLoad(rt reflect.Type, rtid uintptr, checkExt bool) (fn *codecFn) { fn = new(codecFn) fi := &(fn.i) ti := x.getTypeInfo(rtid, rt) fi.ti = ti rk := reflect.Kind(ti.kind) // anything can be an extension except the built-in ones: time, raw and rawext if rtid == timeTypId && !x.TimeNotBuiltin { fn.fe = (*Encoder).kTime fn.fd = (*Decoder).kTime } else if rtid == rawTypId { fn.fe = (*Encoder).raw fn.fd = (*Decoder).raw } else if rtid == rawExtTypId { fn.fe = (*Encoder).rawExt fn.fd = (*Decoder).rawExt fi.addrF = true fi.addrD = true fi.addrE = true } else if xfFn := x.getExt(rtid, checkExt); xfFn != nil { fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext fn.fe = (*Encoder).ext fn.fd = (*Decoder).ext fi.addrF = true fi.addrD = true if rk == reflect.Struct || rk == reflect.Array { fi.addrE = true } } else if ti.isFlag(tiflagSelfer) || ti.isFlag(tiflagSelferPtr) { fn.fe = (*Encoder).selferMarshal fn.fd = (*Decoder).selferUnmarshal fi.addrF = true fi.addrD = ti.isFlag(tiflagSelferPtr) fi.addrE = ti.isFlag(tiflagSelferPtr) } else if supportMarshalInterfaces && x.isBe() && (ti.isFlag(tiflagBinaryMarshaler) || ti.isFlag(tiflagBinaryMarshalerPtr)) && (ti.isFlag(tiflagBinaryUnmarshaler) || ti.isFlag(tiflagBinaryUnmarshalerPtr)) { fn.fe = (*Encoder).binaryMarshal fn.fd = (*Decoder).binaryUnmarshal fi.addrF = true fi.addrD = ti.isFlag(tiflagBinaryUnmarshalerPtr) fi.addrE = ti.isFlag(tiflagBinaryMarshalerPtr) } else if supportMarshalInterfaces && !x.isBe() && x.isJs() && (ti.isFlag(tiflagJsonMarshaler) || ti.isFlag(tiflagJsonMarshalerPtr)) && (ti.isFlag(tiflagJsonUnmarshaler) || ti.isFlag(tiflagJsonUnmarshalerPtr)) { //If JSON, we should check JSONMarshal before textMarshal fn.fe = (*Encoder).jsonMarshal fn.fd = (*Decoder).jsonUnmarshal fi.addrF = true fi.addrD = ti.isFlag(tiflagJsonUnmarshalerPtr) fi.addrE = ti.isFlag(tiflagJsonMarshalerPtr) } else if supportMarshalInterfaces && !x.isBe() && (ti.isFlag(tiflagTextMarshaler) || ti.isFlag(tiflagTextMarshalerPtr)) && (ti.isFlag(tiflagTextUnmarshaler) || ti.isFlag(tiflagTextUnmarshalerPtr)) { fn.fe = (*Encoder).textMarshal fn.fd = (*Decoder).textUnmarshal fi.addrF = true fi.addrD = ti.isFlag(tiflagTextUnmarshalerPtr) fi.addrE = ti.isFlag(tiflagTextMarshalerPtr) } else { if fastpathEnabled && (rk == reflect.Map || rk == reflect.Slice) { if ti.pkgpath == "" { // un-named slice or map if idx := fastpathAV.index(rtid); idx != -1 { fn.fe = fastpathAV[idx].encfn fn.fd = fastpathAV[idx].decfn fi.addrD = true fi.addrF = false } } else { // use mapping for underlying type if there var rtu reflect.Type if rk == reflect.Map { rtu = reflect.MapOf(ti.key, ti.elem) } else { rtu = reflect.SliceOf(ti.elem) } rtuid := rt2id(rtu) if idx := fastpathAV.index(rtuid); idx != -1 { xfnf := fastpathAV[idx].encfn xrt := fastpathAV[idx].rt fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) { xfnf(e, xf, rvConvert(xrv, xrt)) } fi.addrD = true fi.addrF = false // meaning it can be an address(ptr) or a value xfnf2 := fastpathAV[idx].decfn xptr2rt := reflect.PtrTo(xrt) fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) { if xrv.Kind() == reflect.Ptr { xfnf2(d, xf, rvConvert(xrv, xptr2rt)) } else { xfnf2(d, xf, rvConvert(xrv, xrt)) } } } } } if fn.fe == nil && fn.fd == nil { switch rk { case reflect.Bool: fn.fe = (*Encoder).kBool fn.fd = (*Decoder).kBool case reflect.String: // Do not use different functions based on StringToRaw option, // as that will statically set the function for a string type, // and if the Handle is modified thereafter, behaviour is non-deterministic. // i.e. DO NOT DO: // if x.StringToRaw { // fn.fe = (*Encoder).kStringToRaw // } else { // fn.fe = (*Encoder).kStringEnc // } fn.fe = (*Encoder).kString fn.fd = (*Decoder).kString case reflect.Int: fn.fd = (*Decoder).kInt fn.fe = (*Encoder).kInt case reflect.Int8: fn.fe = (*Encoder).kInt8 fn.fd = (*Decoder).kInt8 case reflect.Int16: fn.fe = (*Encoder).kInt16 fn.fd = (*Decoder).kInt16 case reflect.Int32: fn.fe = (*Encoder).kInt32 fn.fd = (*Decoder).kInt32 case reflect.Int64: fn.fe = (*Encoder).kInt64 fn.fd = (*Decoder).kInt64 case reflect.Uint: fn.fd = (*Decoder).kUint fn.fe = (*Encoder).kUint case reflect.Uint8: fn.fe = (*Encoder).kUint8 fn.fd = (*Decoder).kUint8 case reflect.Uint16: fn.fe = (*Encoder).kUint16 fn.fd = (*Decoder).kUint16 case reflect.Uint32: fn.fe = (*Encoder).kUint32 fn.fd = (*Decoder).kUint32 case reflect.Uint64: fn.fe = (*Encoder).kUint64 fn.fd = (*Decoder).kUint64 case reflect.Uintptr: fn.fe = (*Encoder).kUintptr fn.fd = (*Decoder).kUintptr case reflect.Float32: fn.fe = (*Encoder).kFloat32 fn.fd = (*Decoder).kFloat32 case reflect.Float64: fn.fe = (*Encoder).kFloat64 fn.fd = (*Decoder).kFloat64 case reflect.Invalid: fn.fe = (*Encoder).kInvalid fn.fd = (*Decoder).kErr case reflect.Chan: fi.seq = seqTypeChan fn.fe = (*Encoder).kChan fn.fd = (*Decoder).kSliceForChan case reflect.Slice: fi.seq = seqTypeSlice fn.fe = (*Encoder).kSlice fn.fd = (*Decoder).kSlice case reflect.Array: fi.seq = seqTypeArray fn.fe = (*Encoder).kArray fi.addrF = false fi.addrD = false rt2 := reflect.SliceOf(ti.elem) fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) { // call fnVia directly, so fn(...) is not recursive, and can be inlined d.h.fnVia(rt2, &x.rtidFns, true).fd(d, xf, rvGetSlice4Array(xrv, rt2)) } case reflect.Struct: if ti.anyOmitEmpty || ti.isFlag(tiflagMissingFielder) || ti.isFlag(tiflagMissingFielderPtr) { fn.fe = (*Encoder).kStruct } else { fn.fe = (*Encoder).kStructNoOmitempty } fn.fd = (*Decoder).kStruct case reflect.Map: fn.fe = (*Encoder).kMap fn.fd = (*Decoder).kMap case reflect.Interface: // encode: reflect.Interface are handled already by preEncodeValue fn.fd = (*Decoder).kInterface fn.fe = (*Encoder).kErr default: // reflect.Ptr and reflect.Interface are handled already by preEncodeValue fn.fe = (*Encoder).kErr fn.fd = (*Decoder).kErr } } } return } // Handle defines a specific encoding format. It also stores any runtime state // used during an Encoding or Decoding session e.g. stored state about Types, etc. // // Once a handle is configured, it can be shared across multiple Encoders and Decoders. // // Note that a Handle is NOT safe for concurrent modification. // // A Handle also should not be modified after it is configured and has // been used at least once. This is because stored state may be out of sync with the // new configuration, and a data race can occur when multiple goroutines access it. // i.e. multiple Encoders or Decoders in different goroutines. // // Consequently, the typical usage model is that a Handle is pre-configured // before first time use, and not modified while in use. // Such a pre-configured Handle is safe for concurrent access. type Handle interface { Name() string // return the basic handle. It may not have been inited. // Prefer to use basicHandle() helper function that ensures it has been inited. getBasicHandle() *BasicHandle newEncDriver() encDriver newDecDriver() decDriver isBinary() bool } // Raw represents raw formatted bytes. // We "blindly" store it during encode and retrieve the raw bytes during decode. // Note: it is dangerous during encode, so we may gate the behaviour // behind an Encode flag which must be explicitly set. type Raw []byte // RawExt represents raw unprocessed extension data. // Some codecs will decode extension data as a *RawExt // if there is no registered extension for the tag. // // Only one of Data or Value is nil. // If Data is nil, then the content of the RawExt is in the Value. type RawExt struct { Tag uint64 // Data is the []byte which represents the raw ext. If nil, ext is exposed in Value. // Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of types Data []byte // Value represents the extension, if Data is nil. // Value is used by codecs (e.g. cbor, json) which leverage the format to do // custom serialization of the types. Value interface{} } // BytesExt handles custom (de)serialization of types to/from []byte. // It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types. type BytesExt interface { // WriteExt converts a value to a []byte. // // Note: v is a pointer iff the registered extension type is a struct or array kind. WriteExt(v interface{}) []byte // ReadExt updates a value from a []byte. // // Note: dst is always a pointer kind to the registered extension type. ReadExt(dst interface{}, src []byte) } // InterfaceExt handles custom (de)serialization of types to/from another interface{} value. // The Encoder or Decoder will then handle the further (de)serialization of that known type. // // It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of types. type InterfaceExt interface { // ConvertExt converts a value into a simpler interface for easy encoding // e.g. convert time.Time to int64. // // Note: v is a pointer iff the registered extension type is a struct or array kind. ConvertExt(v interface{}) interface{} // UpdateExt updates a value from a simpler interface for easy decoding // e.g. convert int64 to time.Time. // // Note: dst is always a pointer kind to the registered extension type. UpdateExt(dst interface{}, src interface{}) } // Ext handles custom (de)serialization of custom types / extensions. type Ext interface { BytesExt InterfaceExt } // addExtWrapper is a wrapper implementation to support former AddExt exported method. type addExtWrapper struct { encFn func(reflect.Value) ([]byte, error) decFn func(reflect.Value, []byte) error } func (x addExtWrapper) WriteExt(v interface{}) []byte { bs, err := x.encFn(rv4i(v)) if err != nil { panic(err) } return bs } func (x addExtWrapper) ReadExt(v interface{}, bs []byte) { if err := x.decFn(rv4i(v), bs); err != nil { panic(err) } } func (x addExtWrapper) ConvertExt(v interface{}) interface{} { return x.WriteExt(v) } func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) { x.ReadExt(dest, v.([]byte)) } type bytesExtFailer struct{} func (bytesExtFailer) WriteExt(v interface{}) []byte { halt.errorstr("BytesExt.WriteExt is not supported") return nil } func (bytesExtFailer) ReadExt(v interface{}, bs []byte) { halt.errorstr("BytesExt.ReadExt is not supported") } type interfaceExtFailer struct{} func (interfaceExtFailer) ConvertExt(v interface{}) interface{} { halt.errorstr("InterfaceExt.ConvertExt is not supported") return nil } func (interfaceExtFailer) UpdateExt(dest interface{}, v interface{}) { halt.errorstr("InterfaceExt.UpdateExt is not supported") } type bytesExtWrapper struct { interfaceExtFailer BytesExt } type interfaceExtWrapper struct { bytesExtFailer InterfaceExt } type extFailWrapper struct { bytesExtFailer interfaceExtFailer } type binaryEncodingType struct{} func (binaryEncodingType) isBinary() bool { return true } type textEncodingType struct{} func (textEncodingType) isBinary() bool { return false } // noBuiltInTypes is embedded into many types which do not support builtins // e.g. msgpack, simple, cbor. type noBuiltInTypes struct{} func (noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {} func (noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {} // bigenHelper. // Users must already slice the x completely, because we will not reslice. type bigenHelper struct { x []byte // must be correctly sliced to appropriate len. slicing is a cost. w *encWr } func (z bigenHelper) writeUint16(v uint16) { bigen.PutUint16(z.x, v) z.w.writeb(z.x) } func (z bigenHelper) writeUint32(v uint32) { bigen.PutUint32(z.x, v) z.w.writeb(z.x) } func (z bigenHelper) writeUint64(v uint64) { bigen.PutUint64(z.x, v) z.w.writeb(z.x) } type extTypeTagFn struct { rtid uintptr rtidptr uintptr rt reflect.Type tag uint64 ext Ext // _ [1]uint64 // padding } type extHandle []extTypeTagFn // AddExt registes an encode and decode function for a reflect.Type. // To deregister an Ext, call AddExt with nil encfn and/or nil decfn. // // Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead. func (o *extHandle) AddExt(rt reflect.Type, tag byte, encfn func(reflect.Value) ([]byte, error), decfn func(reflect.Value, []byte) error) (err error) { if encfn == nil || decfn == nil { return o.SetExt(rt, uint64(tag), nil) } return o.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn}) } // SetExt will set the extension for a tag and reflect.Type. // Note that the type must be a named type, and specifically not a pointer or Interface. // An error is returned if that is not honored. // To Deregister an ext, call SetExt with nil Ext. // // Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead. func (o *extHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) { // o is a pointer, because we may need to initialize it // We EXPECT *o is a pointer to a non-nil extHandle. rk := rt.Kind() for rk == reflect.Ptr { rt = rt.Elem() rk = rt.Kind() } if rt.PkgPath() == "" || rk == reflect.Interface { // || rk == reflect.Ptr { return fmt.Errorf("codec.Handle.SetExt: Takes named type, not a pointer or interface: %v", rt) } rtid := rt2id(rt) switch rtid { case timeTypId, rawTypId, rawExtTypId: // all natively supported type, so cannot have an extension. // However, we do not return an error for these, as we do not document that. // Instead, we silently treat as a no-op, and return. return } o2 := *o for i := range o2 { v := &o2[i] if v.rtid == rtid { v.tag, v.ext = tag, ext return } } rtidptr := rt2id(reflect.PtrTo(rt)) *o = append(o2, extTypeTagFn{rtid, rtidptr, rt, tag, ext}) // , [1]uint64{}}) return } func (o extHandle) getExt(rtid uintptr, check bool) (v *extTypeTagFn) { if !check { return } for i := range o { v = &o[i] if v.rtid == rtid || v.rtidptr == rtid { return } } return nil } func (o extHandle) getExtForTag(tag uint64) (v *extTypeTagFn) { for i := range o { v = &o[i] if v.tag == tag { return } } return nil } type intf2impl struct { rtid uintptr // for intf impl reflect.Type // _ [1]uint64 // padding // not-needed, as *intf2impl is never returned. } type intf2impls []intf2impl // Intf2Impl maps an interface to an implementing type. // This allows us support infering the concrete type // and populating it when passed an interface. // e.g. var v io.Reader can be decoded as a bytes.Buffer, etc. // // Passing a nil impl will clear the mapping. func (o *intf2impls) Intf2Impl(intf, impl reflect.Type) (err error) { if impl != nil && !impl.Implements(intf) { return fmt.Errorf("Intf2Impl: %v does not implement %v", impl, intf) } rtid := rt2id(intf) o2 := *o for i := range o2 { v := &o2[i] if v.rtid == rtid { v.impl = impl return } } *o = append(o2, intf2impl{rtid, impl}) return } func (o intf2impls) intf2impl(rtid uintptr) (rv reflect.Value) { for i := range o { v := &o[i] if v.rtid == rtid { if v.impl == nil { return } vkind := v.impl.Kind() if vkind == reflect.Ptr { return reflect.New(v.impl.Elem()) } return rvZeroAddrK(v.impl, vkind) } } return } type structFieldInfoFlag uint8 const ( _ structFieldInfoFlag = 1 << iota structFieldInfoFlagReady structFieldInfoFlagOmitEmpty ) func (x *structFieldInfoFlag) flagSet(f structFieldInfoFlag) { *x = *x | f } func (x *structFieldInfoFlag) flagClr(f structFieldInfoFlag) { *x = *x &^ f } func (x structFieldInfoFlag) flagGet(f structFieldInfoFlag) bool { return x&f != 0 } func (x structFieldInfoFlag) omitEmpty() bool { return x.flagGet(structFieldInfoFlagOmitEmpty) } func (x structFieldInfoFlag) ready() bool { return x.flagGet(structFieldInfoFlagReady) } type structFieldInfo struct { encName string // encode name fieldName string // field name is [maxLevelsEmbedding]uint16 // (recursive/embedded) field index in struct nis uint8 // num levels of embedding. if 1, then it's not embedded. encNameAsciiAlphaNum bool // the encName only contains ascii alphabet and numbers structFieldInfoFlag // _ [1]byte // padding } // func (si *structFieldInfo) setToZeroValue(v reflect.Value) { // if v, valid := si.field(v, false); valid { // v.Set(reflect.Zero(v.Type())) // } // } // rv returns the field of the struct. // If anonymous, it returns an Invalid func (si *structFieldInfo) field(v reflect.Value, update bool) (rv2 reflect.Value, valid bool) { // replicate FieldByIndex for i, x := range si.is { if uint8(i) == si.nis { break } if v, valid = baseStructRv(v, update); !valid { return } v = v.Field(int(x)) } return v, true } func parseStructInfo(stag string) (toArray, omitEmpty bool, keytype valueType) { keytype = valueTypeString // default if stag == "" { return } for i, s := range strings.Split(stag, ",") { if i == 0 { } else { switch s { case "omitempty": omitEmpty = true case "toarray": toArray = true case "int": keytype = valueTypeInt case "uint": keytype = valueTypeUint case "float": keytype = valueTypeFloat // case "bool": // keytype = valueTypeBool case "string": keytype = valueTypeString } } } return } func (si *structFieldInfo) parseTag(stag string) { // if fname == "" { // panic(errNoFieldNameToStructFieldInfo) // } if stag == "" { return } for i, s := range strings.Split(stag, ",") { if i == 0 { if s != "" { si.encName = s } } else { switch s { case "omitempty": si.flagSet(structFieldInfoFlagOmitEmpty) } } } } type sfiSortedByEncName []*structFieldInfo func (p sfiSortedByEncName) Len() int { return len(p) } func (p sfiSortedByEncName) Less(i, j int) bool { return p[uint(i)].encName < p[uint(j)].encName } func (p sfiSortedByEncName) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] } const structFieldNodeNumToCache = 4 type structFieldNodeCache struct { rv [structFieldNodeNumToCache]reflect.Value idx [structFieldNodeNumToCache]uint32 num uint8 } func (x *structFieldNodeCache) get(key uint32) (fv reflect.Value, valid bool) { for i, k := range &x.idx { if uint8(i) == x.num { return // break } if key == k { return x.rv[i], true } } return } func (x *structFieldNodeCache) tryAdd(fv reflect.Value, key uint32) { if x.num < structFieldNodeNumToCache { x.rv[x.num] = fv x.idx[x.num] = key x.num++ return } } type structFieldNode struct { v reflect.Value cache2 structFieldNodeCache cache3 structFieldNodeCache update bool } func (x *structFieldNode) field(si *structFieldInfo) (fv reflect.Value) { // return si.fieldval(x.v, x.update) // Note: we only cache if nis=2 or nis=3 i.e. up to 2 levels of embedding // This mostly saves us time on the repeated calls to v.Elem, v.Field, etc. var valid bool switch si.nis { case 1: fv = x.v.Field(int(si.is[0])) case 2: if fv, valid = x.cache2.get(uint32(si.is[0])); valid { fv = fv.Field(int(si.is[1])) return } fv = x.v.Field(int(si.is[0])) if fv, valid = baseStructRv(fv, x.update); !valid { return } x.cache2.tryAdd(fv, uint32(si.is[0])) fv = fv.Field(int(si.is[1])) case 3: var key uint32 = uint32(si.is[0])<<16 | uint32(si.is[1]) if fv, valid = x.cache3.get(key); valid { fv = fv.Field(int(si.is[2])) return } fv = x.v.Field(int(si.is[0])) if fv, valid = baseStructRv(fv, x.update); !valid { return } fv = fv.Field(int(si.is[1])) if fv, valid = baseStructRv(fv, x.update); !valid { return } x.cache3.tryAdd(fv, key) fv = fv.Field(int(si.is[2])) default: fv, _ = si.field(x.v, x.update) } return } func baseStructRv(v reflect.Value, update bool) (v2 reflect.Value, valid bool) { for v.Kind() == reflect.Ptr { if rvIsNil(v) { if !update { return } rvSetDirect(v, reflect.New(v.Type().Elem())) } v = v.Elem() } return v, true } type tiflag uint32 const ( _ tiflag = 1 << iota tiflagComparable tiflagIsZeroer tiflagIsZeroerPtr tiflagBinaryMarshaler tiflagBinaryMarshalerPtr tiflagBinaryUnmarshaler tiflagBinaryUnmarshalerPtr tiflagTextMarshaler tiflagTextMarshalerPtr tiflagTextUnmarshaler tiflagTextUnmarshalerPtr tiflagJsonMarshaler tiflagJsonMarshalerPtr tiflagJsonUnmarshaler tiflagJsonUnmarshalerPtr tiflagSelfer tiflagSelferPtr tiflagMissingFielder tiflagMissingFielderPtr ) // typeInfo keeps static (non-changing readonly)information // about each (non-ptr) type referenced in the encode/decode sequence. // // During an encode/decode sequence, we work as below: // - If base is a built in type, en/decode base value // - If base is registered as an extension, en/decode base value // - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method // - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method // - Else decode appropriately based on the reflect.Kind type typeInfo struct { rt reflect.Type elem reflect.Type pkgpath string rtid uintptr numMeth uint16 // number of methods kind uint8 chandir uint8 anyOmitEmpty bool // true if a struct, and any of the fields are tagged "omitempty" toArray bool // whether this (struct) type should be encoded as an array keyType valueType // if struct, how is the field name stored in a stream? default is string mbs bool // base type (T or *T) is a MapBySlice // ---- cpu cache line boundary? sfiSort []*structFieldInfo // sorted. Used when enc/dec struct to map. sfiSrc []*structFieldInfo // unsorted. Used when enc/dec struct to array. key reflect.Type // ---- cpu cache line boundary? // sfis []structFieldInfo // all sfi, in src order, as created. sfiNamesSort []byte // all names, with indexes into the sfiSort // rv0 is the zero value for the type. // It is mostly beneficial for all non-reference kinds // i.e. all but map/chan/func/ptr/unsafe.pointer // so beneficial for intXX, bool, slices, structs, etc rv0 reflect.Value elemsize uintptr // other flags, with individual bits representing if set. flags tiflag infoFieldOmitempty bool elemkind uint8 _ [2]byte // padding // _ [1]uint64 // padding } func (ti *typeInfo) isFlag(f tiflag) bool { return ti.flags&f != 0 } func (ti *typeInfo) flag(when bool, f tiflag) *typeInfo { if when { ti.flags |= f } return ti } func (ti *typeInfo) indexForEncName(name []byte) (index int16) { var sn []byte if len(name)+2 <= 32 { var buf [32]byte // should not escape to heap sn = buf[:len(name)+2] } else { sn = make([]byte, len(name)+2) } copy(sn[1:], name) sn[0], sn[len(sn)-1] = tiSep2(name), 0xff j := bytes.Index(ti.sfiNamesSort, sn) if j < 0 { return -1 } index = int16(uint16(ti.sfiNamesSort[j+len(sn)+1]) | uint16(ti.sfiNamesSort[j+len(sn)])<<8) return } type rtid2ti struct { rtid uintptr ti *typeInfo } // TypeInfos caches typeInfo for each type on first inspection. // // It is configured with a set of tag keys, which are used to get // configuration for the type. type TypeInfos struct { // infos: formerly map[uintptr]*typeInfo, now *[]rtid2ti, 2 words expected infos atomicTypeInfoSlice mu sync.Mutex _ uint64 // padding (cache-aligned) tags []string _ uint64 // padding (cache-aligned) } // NewTypeInfos creates a TypeInfos given a set of struct tags keys. // // This allows users customize the struct tag keys which contain configuration // of their types. func NewTypeInfos(tags []string) *TypeInfos { return &TypeInfos{tags: tags} } func (x *TypeInfos) structTag(t reflect.StructTag) (s string) { // check for tags: codec, json, in that order. // this allows seamless support for many configured structs. for _, x := range x.tags { s = t.Get(x) if s != "" { return s } } return } func findTypeInfo(s []rtid2ti, rtid uintptr) (i uint, ti *typeInfo) { // binary search. adapted from sort/search.go. // Note: we use goto (instead of for loop) so this can be inlined. // h, i, j := 0, 0, len(s) var h uint // var h, i uint var j = uint(len(s)) LOOP: if i < j { h = i + (j-i)/2 if s[h].rtid < rtid { i = h + 1 } else { j = h } goto LOOP } if i < uint(len(s)) && s[i].rtid == rtid { ti = s[i].ti } return } func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) { sp := x.infos.load() if sp != nil { _, pti = findTypeInfo(sp, rtid) if pti != nil { return } } rk := rt.Kind() if rk == reflect.Ptr { // || (rk == reflect.Interface && rtid != intfTypId) { halt.errorf("invalid kind passed to TypeInfos.get: %v - %v", rk, rt) } // do not hold lock while computing this. // it may lead to duplication, but that's ok. ti := typeInfo{ rt: rt, rtid: rtid, kind: uint8(rk), pkgpath: rt.PkgPath(), keyType: valueTypeString, // default it - so it's never 0 } ti.rv0 = reflect.Zero(rt) ti.numMeth = uint16(rt.NumMethod()) var b1, b2 bool b1, b2 = implIntf(rt, binaryMarshalerTyp) ti.flag(b1, tiflagBinaryMarshaler).flag(b2, tiflagBinaryMarshalerPtr) b1, b2 = implIntf(rt, binaryUnmarshalerTyp) ti.flag(b1, tiflagBinaryUnmarshaler).flag(b2, tiflagBinaryUnmarshalerPtr) b1, b2 = implIntf(rt, textMarshalerTyp) ti.flag(b1, tiflagTextMarshaler).flag(b2, tiflagTextMarshalerPtr) b1, b2 = implIntf(rt, textUnmarshalerTyp) ti.flag(b1, tiflagTextUnmarshaler).flag(b2, tiflagTextUnmarshalerPtr) b1, b2 = implIntf(rt, jsonMarshalerTyp) ti.flag(b1, tiflagJsonMarshaler).flag(b2, tiflagJsonMarshalerPtr) b1, b2 = implIntf(rt, jsonUnmarshalerTyp) ti.flag(b1, tiflagJsonUnmarshaler).flag(b2, tiflagJsonUnmarshalerPtr) b1, b2 = implIntf(rt, selferTyp) ti.flag(b1, tiflagSelfer).flag(b2, tiflagSelferPtr) b1, b2 = implIntf(rt, missingFielderTyp) ti.flag(b1, tiflagMissingFielder).flag(b2, tiflagMissingFielderPtr) b1, b2 = implIntf(rt, iszeroTyp) ti.flag(b1, tiflagIsZeroer).flag(b2, tiflagIsZeroerPtr) b1 = rt.Comparable() ti.flag(b1, tiflagComparable) switch rk { case reflect.Struct: var omitEmpty bool if f, ok := rt.FieldByName(structInfoFieldName); ok { ti.toArray, omitEmpty, ti.keyType = parseStructInfo(x.structTag(f.Tag)) ti.infoFieldOmitempty = omitEmpty } else { ti.keyType = valueTypeString } pp, pi := &pool4tiload, pool4tiload.Get() // pool.tiLoad() pv := pi.(*typeInfoLoadArray) pv.etypes[0] = ti.rtid // vv := typeInfoLoad{pv.fNames[:0], pv.encNames[:0], pv.etypes[:1], pv.sfis[:0]} vv := typeInfoLoad{pv.etypes[:1], pv.sfis[:0]} x.rget(rt, rtid, omitEmpty, nil, &vv) ti.sfiSrc, ti.sfiSort, ti.sfiNamesSort, ti.anyOmitEmpty = rgetResolveSFI(rt, vv.sfis, pv) pp.Put(pi) case reflect.Map: ti.elem = rt.Elem() ti.key = rt.Key() case reflect.Slice: ti.mbs, _ = implIntf(rt, mapBySliceTyp) ti.elem = rt.Elem() ti.elemsize = ti.elem.Size() ti.elemkind = uint8(ti.elem.Kind()) case reflect.Chan: ti.elem = rt.Elem() ti.chandir = uint8(rt.ChanDir()) case reflect.Array: ti.elem = rt.Elem() ti.elemsize = ti.elem.Size() ti.elemkind = uint8(ti.elem.Kind()) case reflect.Ptr: ti.elem = rt.Elem() } x.mu.Lock() sp = x.infos.load() var sp2 []rtid2ti if sp == nil { pti = &ti sp2 = []rtid2ti{{rtid, pti}} x.infos.store(sp2) } else { var idx uint idx, pti = findTypeInfo(sp, rtid) if pti == nil { pti = &ti sp2 = make([]rtid2ti, len(sp)+1) copy(sp2, sp[:idx]) copy(sp2[idx+1:], sp[idx:]) sp2[idx] = rtid2ti{rtid, pti} x.infos.store(sp2) } } x.mu.Unlock() return } func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr, omitEmpty bool, indexstack []uint16, pv *typeInfoLoad) { // Read up fields and store how to access the value. // // It uses go's rules for message selectors, // which say that the field with the shallowest depth is selected. // // Note: we consciously use slices, not a map, to simulate a set. // Typically, types have < 16 fields, // and iteration using equals is faster than maps there flen := rt.NumField() if flen > (1< %v fields are not supported - has %v fields", (1<= 0; i-- { // bounds-check elimination b := si.encName[i] if (b >= '0' && b <= '9') || (b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z') { continue } si.encNameAsciiAlphaNum = false break } si.fieldName = f.Name si.flagSet(structFieldInfoFlagReady) if len(indexstack) > maxLevelsEmbedding-1 { halt.errorf("codec: only supports up to %v depth of embedding - type has %v depth", maxLevelsEmbedding-1, len(indexstack)) } si.nis = uint8(len(indexstack)) + 1 copy(si.is[:], indexstack) si.is[len(indexstack)] = j if omitEmpty { si.flagSet(structFieldInfoFlagOmitEmpty) } pv.sfis = append(pv.sfis, si) } } func tiSep(name string) uint8 { // (xn[0]%64) // (between 192-255 - outside ascii BMP) // Tried the following before settling on correct implementation: // return 0xfe - (name[0] & 63) // return 0xfe - (name[0] & 63) - uint8(len(name)) // return 0xfe - (name[0] & 63) - uint8(len(name)&63) // return ((0xfe - (name[0] & 63)) & 0xf8) | (uint8(len(name) & 0x07)) return 0xfe - (name[0] & 63) - uint8(len(name)&63) } func tiSep2(name []byte) uint8 { return 0xfe - (name[0] & 63) - uint8(len(name)&63) } // resolves the struct field info got from a call to rget. // Returns a trimmed, unsorted and sorted []*structFieldInfo. func rgetResolveSFI(rt reflect.Type, x []structFieldInfo, pv *typeInfoLoadArray) ( y, z []*structFieldInfo, ss []byte, anyOmitEmpty bool) { sa := pv.sfiidx[:0] sn := pv.b[:] n := len(x) var xn string var ui uint16 var sep byte for i := range x { ui = uint16(i) xn = x[i].encName // fieldName or encName? use encName for now. if len(xn)+2 > cap(sn) { sn = make([]byte, len(xn)+2) } else { sn = sn[:len(xn)+2] } // use a custom sep, so that misses are less frequent, // since the sep (first char in search) is as unique as first char in field name. sep = tiSep(xn) sn[0], sn[len(sn)-1] = sep, 0xff copy(sn[1:], xn) j := bytes.Index(sa, sn) if j == -1 { sa = append(sa, sep) sa = append(sa, xn...) sa = append(sa, 0xff, byte(ui>>8), byte(ui)) } else { index := uint16(sa[j+len(sn)+1]) | uint16(sa[j+len(sn)])<<8 // one of them must be cleared (reset to nil), // and the index updated appropriately i2clear := ui // index to be cleared if x[i].nis < x[index].nis { // this one is shallower // update the index to point to this later one. sa[j+len(sn)], sa[j+len(sn)+1] = byte(ui>>8), byte(ui) // clear the earlier one, as this later one is shallower. i2clear = index } if x[i2clear].ready() { x[i2clear].flagClr(structFieldInfoFlagReady) n-- } } } var w []structFieldInfo sharingArray := len(x) <= typeInfoLoadArraySfisLen // sharing array with typeInfoLoadArray if sharingArray { w = make([]structFieldInfo, n) } // remove all the nils (non-ready) y = make([]*structFieldInfo, n) n = 0 var sslen int for i := range x { if !x[i].ready() { continue } if !anyOmitEmpty && x[i].omitEmpty() { anyOmitEmpty = true } if sharingArray { w[n] = x[i] y[n] = &w[n] } else { y[n] = &x[i] } sslen = sslen + len(x[i].encName) + 4 n++ } if n != len(y) { halt.errorf("failure reading struct %v - expecting %d of %d valid fields, got %d", rt, len(y), len(x), n) } z = make([]*structFieldInfo, len(y)) copy(z, y) sort.Sort(sfiSortedByEncName(z)) sharingArray = len(sa) <= typeInfoLoadArraySfiidxLen if sharingArray { ss = make([]byte, 0, sslen) } else { ss = sa[:0] // reuse the newly made sa array if necessary } for i := range z { xn = z[i].encName sep = tiSep(xn) ui = uint16(i) ss = append(ss, sep) ss = append(ss, xn...) ss = append(ss, 0xff, byte(ui>>8), byte(ui)) } return } func implIntf(rt, iTyp reflect.Type) (base bool, indir bool) { return rt.Implements(iTyp), reflect.PtrTo(rt).Implements(iTyp) } // isEmptyStruct is only called from isEmptyValue, and checks if a struct is empty: // - does it implement IsZero() bool // - is it comparable, and can i compare directly using == // - if checkStruct, then walk through the encodable fields // and check if they are empty or not. func isEmptyStruct(v reflect.Value, tinfos *TypeInfos, deref, checkStruct bool) bool { // v is a struct kind - no need to check again. // We only check isZero on a struct kind, to reduce the amount of times // that we lookup the rtid and typeInfo for each type as we walk the tree. vt := v.Type() rtid := rt2id(vt) if tinfos == nil { tinfos = defTypeInfos } ti := tinfos.get(rtid, vt) if ti.rtid == timeTypId { return rv2i(v).(time.Time).IsZero() } if ti.isFlag(tiflagIsZeroerPtr) && v.CanAddr() { return rv2i(v.Addr()).(isZeroer).IsZero() } if ti.isFlag(tiflagIsZeroer) { return rv2i(v).(isZeroer).IsZero() } if ti.isFlag(tiflagComparable) { return rv2i(v) == rv2i(reflect.Zero(vt)) } if !checkStruct { return false } // We only care about what we can encode/decode, // so that is what we use to check omitEmpty. for _, si := range ti.sfiSrc { sfv, valid := si.field(v, false) if valid && !isEmptyValue(sfv, tinfos, deref, checkStruct) { return false } } return true } // func roundFloat(x float64) float64 { // t := math.Trunc(x) // if math.Abs(x-t) >= 0.5 { // return t + math.Copysign(1, x) // } // return t // } func panicToErr(h errDecorator, err *error) { // Note: This method MUST be called directly from defer i.e. defer panicToErr ... // else it seems the recover is not fully handled if recoverPanicToErr { if x := recover(); x != nil { // fmt.Printf("panic'ing with: %v\n", x) // debug.PrintStack() panicValToErr(h, x, err) } } } func isSliceBoundsError(s string) bool { return strings.Contains(s, "index out of range") || strings.Contains(s, "slice bounds out of range") } func panicValToErr(h errDecorator, v interface{}, err *error) { d, dok := h.(*Decoder) switch xerr := v.(type) { case nil: case error: switch xerr { case nil: case io.EOF, io.ErrUnexpectedEOF, errEncoderNotInitialized, errDecoderNotInitialized: // treat as special (bubble up) *err = xerr default: if dok && d.bytes && isSliceBoundsError(xerr.Error()) { *err = io.EOF } else { h.wrapErr(xerr, err) } } case string: if xerr != "" { if dok && d.bytes && isSliceBoundsError(xerr) { *err = io.EOF } else { h.wrapErr(xerr, err) } } case fmt.Stringer: if xerr != nil { h.wrapErr(xerr, err) } default: h.wrapErr(v, err) } } func isImmutableKind(k reflect.Kind) (v bool) { // return immutableKindsSet[k] // since we know reflect.Kind is in range 0..31, then use the k%32 == k constraint return immutableKindsSet[k%reflect.Kind(len(immutableKindsSet))] // bounds-check-elimination } func usableByteSlice(bs []byte, slen int) []byte { if cap(bs) >= slen { if bs == nil { return []byte{} } return bs[:slen] } return make([]byte, slen) } // ---- type codecFnInfo struct { ti *typeInfo xfFn Ext xfTag uint64 seq seqType addrD bool addrF bool // if addrD, this says whether decode function can take a value or a ptr addrE bool } // codecFn encapsulates the captured variables and the encode function. // This way, we only do some calculations one times, and pass to the // code block that should be called (encapsulated in a function) // instead of executing the checks every time. type codecFn struct { i codecFnInfo fe func(*Encoder, *codecFnInfo, reflect.Value) fd func(*Decoder, *codecFnInfo, reflect.Value) _ [1]uint64 // padding (cache-aligned) } type codecRtidFn struct { rtid uintptr fn *codecFn } func makeExt(ext interface{}) Ext { if ext == nil { return &extFailWrapper{} } switch t := ext.(type) { case nil: return &extFailWrapper{} case Ext: return t case BytesExt: return &bytesExtWrapper{BytesExt: t} case InterfaceExt: return &interfaceExtWrapper{InterfaceExt: t} } return &extFailWrapper{} } func baseRV(v interface{}) (rv reflect.Value) { for rv = rv4i(v); rv.Kind() == reflect.Ptr; rv = rv.Elem() { } return } // ---- // these "checkOverflow" functions must be inlinable, and not call anybody. // Overflow means that the value cannot be represented without wrapping/overflow. // Overflow=false does not mean that the value can be represented without losing precision // (especially for floating point). type checkOverflow struct{} // func (checkOverflow) Float16(f float64) (overflow bool) { // halt.errorf("unimplemented") // if f < 0 { // f = -f // } // return math.MaxFloat32 < f && f <= math.MaxFloat64 // } func (checkOverflow) Float32(v float64) (overflow bool) { if v < 0 { v = -v } return math.MaxFloat32 < v && v <= math.MaxFloat64 } func (checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) { // if bitsize == 0 || bitsize >= 64 || v == 0 { // if v == 0 { // return // } // if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc { if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) { overflow = true } return } func (checkOverflow) Int(v int64, bitsize uint8) (overflow bool) { // if bitsize == 0 || bitsize >= 64 || v == 0 { // if v == 0 { // return // } // if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc { // overflow = true // } if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) { overflow = true } return } func (checkOverflow) Uint2Int(v uint64, neg bool) (overflow bool) { return (neg && v > 1<<63) || (!neg && v >= 1<<63) } func (checkOverflow) SignedInt(v uint64) (overflow bool) { //e.g. -127 to 128 for int8 pos := (v >> 63) == 0 ui2 := v & 0x7fffffffffffffff if pos { if ui2 > math.MaxInt64 { overflow = true } } else { if ui2 > math.MaxInt64-1 { overflow = true } } return } func (x checkOverflow) Float32V(v float64) float64 { if x.Float32(v) { halt.errorf("float32 overflow: %v", v) } return v } func (x checkOverflow) UintV(v uint64, bitsize uint8) uint64 { if x.Uint(v, bitsize) { halt.errorf("uint64 overflow: %v", v) } return v } func (x checkOverflow) IntV(v int64, bitsize uint8) int64 { if x.Int(v, bitsize) { halt.errorf("int64 overflow: %v", v) } return v } func (x checkOverflow) SignedIntV(v uint64) int64 { if x.SignedInt(v) { halt.errorf("uint64 to int64 overflow: %v", v) } return int64(v) } // ------------------ FLOATING POINT ----------------- func isNaN64(f float64) bool { return f != f } func isNaN32(f float32) bool { return f != f } func abs32(f float32) float32 { return math.Float32frombits(math.Float32bits(f) &^ (1 << 31)) } // Per go spec, floats are represented in memory as // IEEE single or double precision floating point values. // // We also looked at the source for stdlib math/modf.go, // reviewed https://github.com/chewxy/math32 // and read wikipedia documents describing the formats. // // It became clear that we could easily look at the bits to determine // whether any fraction exists. // // This is all we need for now. func noFrac64(f float64) (v bool) { x := math.Float64bits(f) e := uint64(x>>52)&0x7FF - 1023 // uint(x>>shift)&mask - bias // clear top 12+e bits, the integer part; if the rest is 0, then no fraction. if e < 52 { // return x&((1<<64-1)>>(12+e)) == 0 return x<<(12+e) == 0 } return } func noFrac32(f float32) (v bool) { x := math.Float32bits(f) e := uint32(x>>23)&0xFF - 127 // uint(x>>shift)&mask - bias // clear top 9+e bits, the integer part; if the rest is 0, then no fraction. if e < 23 { // return x&((1<<32-1)>>(9+e)) == 0 return x<<(9+e) == 0 } return } func isWhitespaceChar(v byte) bool { // these are in order of speed below ... return v < 33 // return v < 33 && whitespaceCharBitset64.isset(v) // return v < 33 && (v == ' ' || v == '\n' || v == '\t' || v == '\r') // return v == ' ' || v == '\n' || v == '\t' || v == '\r' // return whitespaceCharBitset.isset(v) } func isNumberChar(v byte) bool { // these are in order of speed below ... return numCharBitset.isset(v) // return v < 64 && numCharNoExpBitset64.isset(v) || v == 'e' || v == 'E' // return v > 42 && v < 102 && numCharWithExpBitset64.isset(v-42) } func isDigitChar(v byte) bool { // these are in order of speed below ... return digitCharBitset.isset(v) // return v >= '0' && v <= '9' } // func noFrac(f float64) bool { // _, frac := math.Modf(float64(f)) // return frac == 0 // } // ----------------------- type ioFlusher interface { Flush() error } type ioPeeker interface { Peek(int) ([]byte, error) } type ioBuffered interface { Buffered() int } // ----------------------- type sfiRv struct { v *structFieldInfo r reflect.Value } // ----------------- type set []interface{} func (s *set) add(v interface{}) (exists bool) { // e.ci is always nil, or len >= 1 x := *s if x == nil { x = make([]interface{}, 1, 8) x[0] = v *s = x return } // typically, length will be 1. make this perform. if len(x) == 1 { if j := x[0]; j == 0 { x[0] = v } else if j == v { exists = true } else { x = append(x, v) *s = x } return } // check if it exists for _, j := range x { if j == v { exists = true return } } // try to replace a "deleted" slot for i, j := range x { if j == 0 { x[i] = v return } } // if unable to replace deleted slot, just append it. x = append(x, v) *s = x return } func (s *set) remove(v interface{}) (exists bool) { x := *s if len(x) == 0 { return } if len(x) == 1 { if x[0] == v { x[0] = 0 } return } for i, j := range x { if j == v { exists = true x[i] = 0 // set it to 0, as way to delete it. // copy(x[i:], x[i+1:]) // x = x[:len(x)-1] return } } return } // ------ // bitset types are better than [256]bool, because they permit the whole // bitset array being on a single cache line and use less memory. // // Also, since pos is a byte (0-255), there's no bounds checks on indexing (cheap). // // We previously had bitset128 [16]byte, and bitset32 [4]byte, but those introduces // bounds checking, so we discarded them, and everyone uses bitset256. // // given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1). // consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7 // type bitset256 [32]byte // func (x *bitset256) set(pos byte) { // x[pos>>3] |= (1 << (pos & 7)) // } // func (x *bitset256) check(pos byte) uint8 { // return x[pos>>3] & (1 << (pos & 7)) // } // func (x *bitset256) isset(pos byte) bool { // return x.check(pos) != 0 // // return x[pos>>3]&(1<<(pos&7)) != 0 // } // func (x *bitset256) isnotset(pos byte) bool { // return x.check(pos) == 0 // } // type bitset256 [4]uint64 // func (x *bitset256) set(pos byte) { // x[pos>>6] |= (1 << (pos & 63)) // } // func (x *bitset256) check(pos byte) uint64 { // return x[pos>>6] & (1 << (pos & 63)) // } // func (x *bitset256) isset(pos byte) bool { // return x.check(pos) != 0 // } // func (x *bitset256) isnotset(pos byte) bool { // return x.check(pos) == 0 // } type bitset256 [256]bool func (x *bitset256) set(pos byte) { x[pos] = true } func (x *bitset256) isset(pos byte) bool { return x[pos] } func (x *bitset256) isnotset(pos byte) bool { return !x[pos] } type bitset32 uint32 func (x bitset32) set(pos byte) bitset32 { return x | (1 << pos) } func (x bitset32) check(pos byte) uint32 { return uint32(x) & (1 << pos) } func (x bitset32) isset(pos byte) bool { return x.check(pos) != 0 } func (x bitset32) isnotset(pos byte) bool { return x.check(pos) == 0 } type bitset64 uint64 func (x bitset64) set(pos byte) bitset64 { return x | (1 << pos) } func (x bitset64) check(pos byte) uint64 { return uint64(x) & (1 << pos) } func (x bitset64) isset(pos byte) bool { return x.check(pos) != 0 } func (x bitset64) isnotset(pos byte) bool { return x.check(pos) == 0 } // func (x *bitset256) unset(pos byte) { // x[pos>>3] &^= (1 << (pos & 7)) // } // type bit2set256 [64]byte // func (x *bit2set256) set(pos byte, v1, v2 bool) { // var pos2 uint8 = (pos & 3) << 1 // returning 0, 2, 4 or 6 // if v1 { // x[pos>>2] |= 1 << (pos2 + 1) // } // if v2 { // x[pos>>2] |= 1 << pos2 // } // } // func (x *bit2set256) get(pos byte) uint8 { // var pos2 uint8 = (pos & 3) << 1 // returning 0, 2, 4 or 6 // return x[pos>>2] << (6 - pos2) >> 6 // 11000000 -> 00000011 // } // ------------ type panicHdl struct{} func (panicHdl) errorv(err error) { if err != nil { panic(err) } } func (panicHdl) errorstr(message string) { if message != "" { panic(message) } } func (panicHdl) errorf(format string, params ...interface{}) { if len(params) != 0 { panic(fmt.Sprintf(format, params...)) } if len(params) == 0 { panic(format) } panic("undefined error") } // ---------------------------------------------------- type errDecorator interface { wrapErr(in interface{}, out *error) } type errDecoratorDef struct{} func (errDecoratorDef) wrapErr(v interface{}, e *error) { *e = fmt.Errorf("%v", v) } // ---------------------------------------------------- type must struct{} func (must) String(s string, err error) string { if err != nil { halt.errorv(err) } return s } func (must) Int(s int64, err error) int64 { if err != nil { halt.errorv(err) } return s } func (must) Uint(s uint64, err error) uint64 { if err != nil { halt.errorv(err) } return s } func (must) Float(s float64, err error) float64 { if err != nil { halt.errorv(err) } return s } // ------------------- func freelistCapacity(length int) (capacity int) { for capacity = 8; capacity < length; capacity *= 2 { } return } type bytesFreelist [][]byte func (x *bytesFreelist) get(length int) (out []byte) { var j int = -1 for i := 0; i < len(*x); i++ { if cap((*x)[i]) >= length && (j == -1 || cap((*x)[j]) > cap((*x)[i])) { j = i } } if j == -1 { return make([]byte, length, freelistCapacity(length)) } out = (*x)[j][:length] (*x)[j] = nil for i := 0; i < len(out); i++ { out[i] = 0 } return } func (x *bytesFreelist) put(v []byte) { if len(v) == 0 { return } for i := 0; i < len(*x); i++ { if cap((*x)[i]) == 0 { (*x)[i] = v return } } *x = append(*x, v) } func (x *bytesFreelist) check(v []byte, length int) (out []byte) { if cap(v) < length { x.put(v) return x.get(length) } return v[:length] } // ------------------------- type sfiRvFreelist [][]sfiRv func (x *sfiRvFreelist) get(length int) (out []sfiRv) { var j int = -1 for i := 0; i < len(*x); i++ { if cap((*x)[i]) >= length && (j == -1 || cap((*x)[j]) > cap((*x)[i])) { j = i } } if j == -1 { return make([]sfiRv, length, freelistCapacity(length)) } out = (*x)[j][:length] (*x)[j] = nil for i := 0; i < len(out); i++ { out[i] = sfiRv{} } return } func (x *sfiRvFreelist) put(v []sfiRv) { for i := 0; i < len(*x); i++ { if cap((*x)[i]) == 0 { (*x)[i] = v return } } *x = append(*x, v) } // ----------- // xdebugf printf. the message in red on the terminal. // Use it in place of fmt.Printf (which it calls internally) func xdebugf(pattern string, args ...interface{}) { xdebugAnyf("31", pattern, args...) } // xdebug2f printf. the message in blue on the terminal. // Use it in place of fmt.Printf (which it calls internally) func xdebug2f(pattern string, args ...interface{}) { xdebugAnyf("34", pattern, args...) } func xdebugAnyf(colorcode, pattern string, args ...interface{}) { if !xdebug { return } var delim string if len(pattern) > 0 && pattern[len(pattern)-1] != '\n' { delim = "\n" } fmt.Printf("\033[1;"+colorcode+"m"+pattern+delim+"\033[0m", args...) // os.Stderr.Flush() } // register these here, so that staticcheck stops barfing var _ = xdebug2f var _ = xdebugf var _ = isNaN32