// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. package codec import ( "math" "time" ) const bincDoPrune = true // No longer needed. Needed before as C lib did not support pruning. // vd as low 4 bits (there are 16 slots) const ( bincVdSpecial byte = iota bincVdPosInt bincVdNegInt bincVdFloat bincVdString bincVdByteArray bincVdArray bincVdMap bincVdTimestamp bincVdSmallInt bincVdUnicodeOther bincVdSymbol bincVdDecimal _ // open slot _ // open slot bincVdCustomExt = 0x0f ) const ( bincSpNil byte = iota bincSpFalse bincSpTrue bincSpNan bincSpPosInf bincSpNegInf bincSpZeroFloat bincSpZero bincSpNegOne ) const ( bincFlBin16 byte = iota bincFlBin32 _ // bincFlBin32e bincFlBin64 _ // bincFlBin64e // others not currently supported ) var ( bincdescSpecialVsNames = map[byte]string{ bincSpNil: "nil", bincSpFalse: "false", bincSpTrue: "true", bincSpNan: "float", bincSpPosInf: "float", bincSpNegInf: "float", bincSpZeroFloat: "float", bincSpZero: "uint", bincSpNegOne: "int", } bincdescVdNames = map[byte]string{ bincVdSpecial: "special", bincVdSmallInt: "uint", bincVdPosInt: "uint", bincVdFloat: "float", bincVdSymbol: "string", bincVdString: "string", bincVdByteArray: "bytes", bincVdTimestamp: "time", bincVdCustomExt: "ext", bincVdArray: "array", bincVdMap: "map", } ) func bincdesc(vd, vs byte) (s string) { if vd == bincVdSpecial { s = bincdescSpecialVsNames[vs] } else { s = bincdescVdNames[vd] } if s == "" { s = "unknown" } return // switch vd { // case bincVdSpecial: // switch vs { // case bincSpNil: // return "nil" // case bincSpFalse: // return "false" // case bincSpTrue: // return "true" // case bincSpNan, bincSpPosInf, bincSpNegInf, bincSpZeroFloat: // return "float" // case bincSpZero: // return "uint" // case bincSpNegOne: // return "int" // default: // return "unknown" // } // case bincVdSmallInt, bincVdPosInt: // return "uint" // case bincVdNegInt: // return "int" // case bincVdFloat: // return "float" // case bincVdSymbol: // return "string" // case bincVdString: // return "string" // case bincVdByteArray: // return "bytes" // case bincVdTimestamp: // return "time" // case bincVdCustomExt: // return "ext" // case bincVdArray: // return "array" // case bincVdMap: // return "map" // default: // return "unknown" // } } type bincEncDriver struct { noBuiltInTypes encDriverNoopContainerWriter h *BincHandle m map[string]uint16 // symbols b [8]byte // scratch, used for encoding numbers - bigendian style s uint16 // symbols sequencer _ [4]uint64 // padding e Encoder } func (e *bincEncDriver) encoder() *Encoder { return &e.e } func (e *bincEncDriver) EncodeNil() { e.e.encWr.writen1(bincVdSpecial<<4 | bincSpNil) } func (e *bincEncDriver) EncodeTime(t time.Time) { if t.IsZero() { e.EncodeNil() } else { bs := bincEncodeTime(t) e.e.encWr.writen1(bincVdTimestamp<<4 | uint8(len(bs))) e.e.encWr.writeb(bs) } } func (e *bincEncDriver) EncodeBool(b bool) { if b { e.e.encWr.writen1(bincVdSpecial<<4 | bincSpTrue) } else { e.e.encWr.writen1(bincVdSpecial<<4 | bincSpFalse) } } func (e *bincEncDriver) EncodeFloat32(f float32) { if f == 0 { e.e.encWr.writen1(bincVdSpecial<<4 | bincSpZeroFloat) return } e.e.encWr.writen1(bincVdFloat<<4 | bincFlBin32) bigenHelper{e.b[:4], e.e.w()}.writeUint32(math.Float32bits(f)) } func (e *bincEncDriver) EncodeFloat64(f float64) { if f == 0 { e.e.encWr.writen1(bincVdSpecial<<4 | bincSpZeroFloat) return } bigen.PutUint64(e.b[:8], math.Float64bits(f)) if bincDoPrune { i := 7 for ; i >= 0 && (e.b[i] == 0); i-- { } i++ if i <= 6 { e.e.encWr.writen1(bincVdFloat<<4 | 0x8 | bincFlBin64) e.e.encWr.writen1(byte(i)) e.e.encWr.writeb(e.b[:i]) return } } e.e.encWr.writen1(bincVdFloat<<4 | bincFlBin64) e.e.encWr.writeb(e.b[:8]) } func (e *bincEncDriver) encIntegerPrune(bd byte, pos bool, v uint64, lim uint8) { if lim == 4 { bigen.PutUint32(e.b[:lim], uint32(v)) } else { bigen.PutUint64(e.b[:lim], v) } if bincDoPrune { i := pruneSignExt(e.b[:lim], pos) e.e.encWr.writen1(bd | lim - 1 - byte(i)) e.e.encWr.writeb(e.b[i:lim]) } else { e.e.encWr.writen1(bd | lim - 1) e.e.encWr.writeb(e.b[:lim]) } } func (e *bincEncDriver) EncodeInt(v int64) { // const nbd byte = bincVdNegInt << 4 if v >= 0 { e.encUint(bincVdPosInt<<4, true, uint64(v)) } else if v == -1 { e.e.encWr.writen1(bincVdSpecial<<4 | bincSpNegOne) } else { e.encUint(bincVdNegInt<<4, false, uint64(-v)) } } func (e *bincEncDriver) EncodeUint(v uint64) { e.encUint(bincVdPosInt<<4, true, v) } func (e *bincEncDriver) encUint(bd byte, pos bool, v uint64) { if v == 0 { e.e.encWr.writen1(bincVdSpecial<<4 | bincSpZero) } else if pos && v >= 1 && v <= 16 { e.e.encWr.writen1(bincVdSmallInt<<4 | byte(v-1)) } else if v <= math.MaxUint8 { e.e.encWr.writen2(bd|0x0, byte(v)) } else if v <= math.MaxUint16 { e.e.encWr.writen1(bd | 0x01) bigenHelper{e.b[:2], e.e.w()}.writeUint16(uint16(v)) } else if v <= math.MaxUint32 { e.encIntegerPrune(bd, pos, v, 4) } else { e.encIntegerPrune(bd, pos, v, 8) } } func (e *bincEncDriver) EncodeExt(v interface{}, xtag uint64, ext Ext) { var bs []byte if ext == SelfExt { bs = e.e.blist.get(1024)[:0] e.e.sideEncode(v, &bs) } else { bs = ext.WriteExt(v) } if bs == nil { e.EncodeNil() return } e.encodeExtPreamble(uint8(xtag), len(bs)) e.e.encWr.writeb(bs) if ext == SelfExt { e.e.blist.put(bs) } } func (e *bincEncDriver) EncodeRawExt(re *RawExt) { e.encodeExtPreamble(uint8(re.Tag), len(re.Data)) e.e.encWr.writeb(re.Data) } func (e *bincEncDriver) encodeExtPreamble(xtag byte, length int) { e.encLen(bincVdCustomExt<<4, uint64(length)) e.e.encWr.writen1(xtag) } func (e *bincEncDriver) WriteArrayStart(length int) { e.encLen(bincVdArray<<4, uint64(length)) } func (e *bincEncDriver) WriteMapStart(length int) { e.encLen(bincVdMap<<4, uint64(length)) } func (e *bincEncDriver) EncodeSymbol(v string) { // if WriteSymbolsNoRefs { // e.encodeString(cUTF8, v) // return // } //symbols only offer benefit when string length > 1. //This is because strings with length 1 take only 2 bytes to store //(bd with embedded length, and single byte for string val). l := len(v) if l == 0 { e.encBytesLen(cUTF8, 0) return } else if l == 1 { e.encBytesLen(cUTF8, 1) e.e.encWr.writen1(v[0]) return } if e.m == nil { e.m = make(map[string]uint16, 16) } ui, ok := e.m[v] if ok { if ui <= math.MaxUint8 { e.e.encWr.writen2(bincVdSymbol<<4, byte(ui)) } else { e.e.encWr.writen1(bincVdSymbol<<4 | 0x8) bigenHelper{e.b[:2], e.e.w()}.writeUint16(ui) } } else { e.s++ ui = e.s //ui = uint16(atomic.AddUint32(&e.s, 1)) e.m[v] = ui var lenprec uint8 if l <= math.MaxUint8 { // lenprec = 0 } else if l <= math.MaxUint16 { lenprec = 1 } else if int64(l) <= math.MaxUint32 { lenprec = 2 } else { lenprec = 3 } if ui <= math.MaxUint8 { e.e.encWr.writen2(bincVdSymbol<<4|0x0|0x4|lenprec, byte(ui)) } else { e.e.encWr.writen1(bincVdSymbol<<4 | 0x8 | 0x4 | lenprec) bigenHelper{e.b[:2], e.e.w()}.writeUint16(ui) } if lenprec == 0 { e.e.encWr.writen1(byte(l)) } else if lenprec == 1 { bigenHelper{e.b[:2], e.e.w()}.writeUint16(uint16(l)) } else if lenprec == 2 { bigenHelper{e.b[:4], e.e.w()}.writeUint32(uint32(l)) } else { bigenHelper{e.b[:8], e.e.w()}.writeUint64(uint64(l)) } e.e.encWr.writestr(v) } } func (e *bincEncDriver) EncodeString(v string) { if e.h.StringToRaw { e.encLen(bincVdByteArray<<4, uint64(len(v))) // e.encBytesLen(c, l) if len(v) > 0 { e.e.encWr.writestr(v) } return } e.EncodeStringEnc(cUTF8, v) } func (e *bincEncDriver) EncodeStringEnc(c charEncoding, v string) { if e.e.c == containerMapKey && c == cUTF8 && (e.h.AsSymbols == 1) { e.EncodeSymbol(v) return } e.encLen(bincVdString<<4, uint64(len(v))) // e.encBytesLen(c, l) if len(v) > 0 { e.e.encWr.writestr(v) } } func (e *bincEncDriver) EncodeStringBytesRaw(v []byte) { if v == nil { e.EncodeNil() return } e.encLen(bincVdByteArray<<4, uint64(len(v))) // e.encBytesLen(c, l) if len(v) > 0 { e.e.encWr.writeb(v) } } func (e *bincEncDriver) encBytesLen(c charEncoding, length uint64) { // NOTE: we currently only support UTF-8 (string) and RAW (bytearray). // We should consider supporting bincUnicodeOther. if c == cRAW { e.encLen(bincVdByteArray<<4, length) } else { e.encLen(bincVdString<<4, length) } } func (e *bincEncDriver) encLen(bd byte, l uint64) { if l < 12 { e.e.encWr.writen1(bd | uint8(l+4)) } else { e.encLenNumber(bd, l) } } func (e *bincEncDriver) encLenNumber(bd byte, v uint64) { if v <= math.MaxUint8 { e.e.encWr.writen2(bd, byte(v)) } else if v <= math.MaxUint16 { e.e.encWr.writen1(bd | 0x01) bigenHelper{e.b[:2], e.e.w()}.writeUint16(uint16(v)) } else if v <= math.MaxUint32 { e.e.encWr.writen1(bd | 0x02) bigenHelper{e.b[:4], e.e.w()}.writeUint32(uint32(v)) } else { e.e.encWr.writen1(bd | 0x03) bigenHelper{e.b[:8], e.e.w()}.writeUint64(uint64(v)) } } //------------------------------------ type bincDecDriver struct { decDriverNoopContainerReader noBuiltInTypes h *BincHandle bdRead bool bd byte vd byte vs byte fnil bool // _ [3]byte // padding // linear searching on this slice is ok, // because we typically expect < 32 symbols in each stream. s map[uint16][]byte // []bincDecSymbol b [8]byte // scratch for decoding numbers - big endian style _ [4]uint64 // padding cache-aligned d Decoder } func (d *bincDecDriver) decoder() *Decoder { return &d.d } func (d *bincDecDriver) readNextBd() { d.bd = d.d.decRd.readn1() d.vd = d.bd >> 4 d.vs = d.bd & 0x0f d.bdRead = true } // func (d *bincDecDriver) uncacheRead() { // if d.bdRead { // d.d.decRd.unreadn1() // d.bdRead = false // } // } func (d *bincDecDriver) advanceNil() (null bool) { d.fnil = false if !d.bdRead { d.readNextBd() } if d.bd == bincVdSpecial<<4|bincSpNil { d.bdRead = false d.fnil = true null = true } return } // func (d *bincDecDriver) Nil() bool { // return d.fnil // } func (d *bincDecDriver) TryNil() bool { return d.advanceNil() } func (d *bincDecDriver) ContainerType() (vt valueType) { if !d.bdRead { d.readNextBd() } d.fnil = false // if d.vd == bincVdSpecial && d.vs == bincSpNil { if d.bd == bincVdSpecial<<4|bincSpNil { d.bdRead = false d.fnil = true return valueTypeNil } else if d.vd == bincVdByteArray { return valueTypeBytes } else if d.vd == bincVdString { return valueTypeString } else if d.vd == bincVdArray { return valueTypeArray } else if d.vd == bincVdMap { return valueTypeMap } return valueTypeUnset } func (d *bincDecDriver) DecodeTime() (t time.Time) { if d.advanceNil() { return } if d.vd != bincVdTimestamp { d.d.errorf("cannot decode time - %s %x-%x/%s", msgBadDesc, d.vd, d.vs, bincdesc(d.vd, d.vs)) return } t, err := bincDecodeTime(d.d.decRd.readx(uint(d.vs))) if err != nil { panic(err) } d.bdRead = false return } func (d *bincDecDriver) decFloatPre(vs, defaultLen byte) { if vs&0x8 == 0 { d.d.decRd.readb(d.b[0:defaultLen]) } else { l := d.d.decRd.readn1() if l > 8 { d.d.errorf("cannot read float - at most 8 bytes used to represent float - received %v bytes", l) return } for i := l; i < 8; i++ { d.b[i] = 0 } d.d.decRd.readb(d.b[0:l]) } } func (d *bincDecDriver) decFloat() (f float64) { //if true { f = math.Float64frombits(bigen.Uint64(d.d.decRd.readx(8))); break; } if x := d.vs & 0x7; x == bincFlBin32 { d.decFloatPre(d.vs, 4) f = float64(math.Float32frombits(bigen.Uint32(d.b[0:4]))) } else if x == bincFlBin64 { d.decFloatPre(d.vs, 8) f = math.Float64frombits(bigen.Uint64(d.b[0:8])) } else { d.d.errorf("read float - only float32 and float64 are supported - %s %x-%x/%s", msgBadDesc, d.vd, d.vs, bincdesc(d.vd, d.vs)) return } return } func (d *bincDecDriver) decUint() (v uint64) { // need to inline the code (interface conversion and type assertion expensive) switch d.vs { case 0: v = uint64(d.d.decRd.readn1()) case 1: d.d.decRd.readb(d.b[6:8]) v = uint64(bigen.Uint16(d.b[6:8])) case 2: d.b[4] = 0 d.d.decRd.readb(d.b[5:8]) v = uint64(bigen.Uint32(d.b[4:8])) case 3: d.d.decRd.readb(d.b[4:8]) v = uint64(bigen.Uint32(d.b[4:8])) case 4, 5, 6: lim := 7 - d.vs d.d.decRd.readb(d.b[lim:8]) for i := uint8(0); i < lim; i++ { d.b[i] = 0 } v = uint64(bigen.Uint64(d.b[:8])) case 7: d.d.decRd.readb(d.b[:8]) v = uint64(bigen.Uint64(d.b[:8])) default: d.d.errorf("unsigned integers with greater than 64 bits of precision not supported") return } return } func (d *bincDecDriver) decCheckInteger() (ui uint64, neg bool) { vd, vs := d.vd, d.vs if vd == bincVdPosInt { ui = d.decUint() } else if vd == bincVdNegInt { ui = d.decUint() neg = true } else if vd == bincVdSmallInt { ui = uint64(d.vs) + 1 } else if vd == bincVdSpecial { if vs == bincSpZero { //i = 0 } else if vs == bincSpNegOne { neg = true ui = 1 } else { d.d.errorf("integer decode fails - invalid special value from descriptor %x-%x/%s", d.vd, d.vs, bincdesc(d.vd, d.vs)) return } } else { d.d.errorf("integer can only be decoded from int/uint. d.bd: 0x%x, d.vd: 0x%x", d.bd, d.vd) return } return } func (d *bincDecDriver) DecodeInt64() (i int64) { if d.advanceNil() { return } ui, neg := d.decCheckInteger() i = chkOvf.SignedIntV(ui) if neg { i = -i } d.bdRead = false return } func (d *bincDecDriver) DecodeUint64() (ui uint64) { if d.advanceNil() { return } ui, neg := d.decCheckInteger() if neg { d.d.errorf("assigning negative signed value to unsigned integer type") return } d.bdRead = false return } func (d *bincDecDriver) DecodeFloat64() (f float64) { if d.advanceNil() { return } vd, vs := d.vd, d.vs if vd == bincVdSpecial { d.bdRead = false if vs == bincSpNan { return math.NaN() } else if vs == bincSpPosInf { return math.Inf(1) } else if vs == bincSpZeroFloat || vs == bincSpZero { return } else if vs == bincSpNegInf { return math.Inf(-1) } else { d.d.errorf("float - invalid special value from descriptor %x-%x/%s", d.vd, d.vs, bincdesc(d.vd, d.vs)) return } } else if vd == bincVdFloat { f = d.decFloat() } else { f = float64(d.DecodeInt64()) } d.bdRead = false return } // bool can be decoded from bool only (single byte). func (d *bincDecDriver) DecodeBool() (b bool) { if d.advanceNil() { return } if d.bd == (bincVdSpecial | bincSpFalse) { // b = false } else if d.bd == (bincVdSpecial | bincSpTrue) { b = true } else { d.d.errorf("bool - %s %x-%x/%s", msgBadDesc, d.vd, d.vs, bincdesc(d.vd, d.vs)) return } d.bdRead = false return } func (d *bincDecDriver) ReadMapStart() (length int) { if d.advanceNil() { return decContainerLenNil } if d.vd != bincVdMap { d.d.errorf("map - %s %x-%x/%s", msgBadDesc, d.vd, d.vs, bincdesc(d.vd, d.vs)) return } length = d.decLen() d.bdRead = false return } func (d *bincDecDriver) ReadArrayStart() (length int) { if d.advanceNil() { return decContainerLenNil } if d.vd != bincVdArray { d.d.errorf("array - %s %x-%x/%s", msgBadDesc, d.vd, d.vs, bincdesc(d.vd, d.vs)) return } length = d.decLen() d.bdRead = false return } func (d *bincDecDriver) decLen() int { if d.vs > 3 { return int(d.vs - 4) } return int(d.decLenNumber()) } func (d *bincDecDriver) decLenNumber() (v uint64) { if x := d.vs; x == 0 { v = uint64(d.d.decRd.readn1()) } else if x == 1 { d.d.decRd.readb(d.b[6:8]) v = uint64(bigen.Uint16(d.b[6:8])) } else if x == 2 { d.d.decRd.readb(d.b[4:8]) v = uint64(bigen.Uint32(d.b[4:8])) } else { d.d.decRd.readb(d.b[:8]) v = bigen.Uint64(d.b[:8]) } return } func (d *bincDecDriver) decStringBytes(bs []byte, zerocopy bool) (bs2 []byte) { if d.advanceNil() { return } var slen = -1 // var ok bool switch d.vd { case bincVdString, bincVdByteArray: slen = d.decLen() if zerocopy { if d.d.bytes { bs2 = d.d.decRd.rb.readx(uint(slen)) } else if len(bs) == 0 { bs2 = decByteSlice(d.d.r(), slen, d.d.h.MaxInitLen, d.d.b[:]) } else { bs2 = decByteSlice(d.d.r(), slen, d.d.h.MaxInitLen, bs) } } else { bs2 = decByteSlice(d.d.r(), slen, d.d.h.MaxInitLen, bs) } case bincVdSymbol: // zerocopy doesn't apply for symbols, // as the values must be stored in a table for later use. // //from vs: extract numSymbolBytes, containsStringVal, strLenPrecision, //extract symbol //if containsStringVal, read it and put in map //else look in map for string value var symbol uint16 vs := d.vs if vs&0x8 == 0 { symbol = uint16(d.d.decRd.readn1()) } else { symbol = uint16(bigen.Uint16(d.d.decRd.readx(2))) } if d.s == nil { // d.s = pool4mapU16Bytes.Get().(map[uint16][]byte) // make([]bincDecSymbol, 0, 16) d.s = make(map[uint16][]byte, 16) } if vs&0x4 == 0 { bs2 = d.s[symbol] } else { switch vs & 0x3 { case 0: slen = int(d.d.decRd.readn1()) case 1: slen = int(bigen.Uint16(d.d.decRd.readx(2))) case 2: slen = int(bigen.Uint32(d.d.decRd.readx(4))) case 3: slen = int(bigen.Uint64(d.d.decRd.readx(8))) } // since using symbols, do not store any part of // the parameter bs in the map, as it might be a shared buffer. // bs2 = decByteSlice(d.d.r(), slen, bs) bs2 = decByteSlice(d.d.r(), slen, d.d.h.MaxInitLen, nil) d.s[symbol] = bs2 // d.s = append(d.s, bincDecSymbol{i: symbol, s: s, b: bs2}) } default: d.d.errorf("string/bytes - %s %x-%x/%s", msgBadDesc, d.vd, d.vs, bincdesc(d.vd, d.vs)) return } d.bdRead = false return } func (d *bincDecDriver) DecodeStringAsBytes() (s []byte) { return d.decStringBytes(d.d.b[:], true) } func (d *bincDecDriver) DecodeBytes(bs []byte, zerocopy bool) (bsOut []byte) { if d.advanceNil() { return } // check if an "array" of uint8's (see ContainerType for how to infer if an array) if d.vd == bincVdArray { if zerocopy && len(bs) == 0 { bs = d.d.b[:] } // bsOut, _ = fastpathTV.DecSliceUint8V(bs, true, d.d) slen := d.ReadArrayStart() bs = usableByteSlice(bs, slen) for i := 0; i < slen; i++ { bs[i] = uint8(chkOvf.UintV(d.DecodeUint64(), 8)) } return bs } var clen int if d.vd == bincVdString || d.vd == bincVdByteArray { clen = d.decLen() } else { d.d.errorf("bytes - %s %x-%x/%s", msgBadDesc, d.vd, d.vs, bincdesc(d.vd, d.vs)) return } d.bdRead = false if d.d.bytes && (zerocopy || d.h.ZeroCopy) { return d.d.decRd.rb.readx(uint(clen)) } if zerocopy && len(bs) == 0 { bs = d.d.b[:] } return decByteSlice(d.d.r(), clen, d.d.h.MaxInitLen, bs) } func (d *bincDecDriver) DecodeExt(rv interface{}, xtag uint64, ext Ext) { if xtag > 0xff { d.d.errorf("ext: tag must be <= 0xff; got: %v", xtag) return } if d.advanceNil() { return } realxtag1, xbs := d.decodeExtV(ext != nil, uint8(xtag)) realxtag := uint64(realxtag1) if ext == nil { re := rv.(*RawExt) re.Tag = realxtag re.Data = detachZeroCopyBytes(d.d.bytes, re.Data, xbs) } else if ext == SelfExt { d.d.sideDecode(rv, xbs) } else { ext.ReadExt(rv, xbs) } } func (d *bincDecDriver) decodeExtV(verifyTag bool, tag byte) (xtag byte, xbs []byte) { if d.vd == bincVdCustomExt { l := d.decLen() xtag = d.d.decRd.readn1() if verifyTag && xtag != tag { d.d.errorf("wrong extension tag - got %b, expecting: %v", xtag, tag) return } if d.d.bytes { xbs = d.d.decRd.rb.readx(uint(l)) } else { xbs = decByteSlice(d.d.r(), l, d.d.h.MaxInitLen, d.d.b[:]) } } else if d.vd == bincVdByteArray { xbs = d.DecodeBytes(nil, true) } else { d.d.errorf("ext - expecting extensions or byte array - %s %x-%x/%s", msgBadDesc, d.vd, d.vs, bincdesc(d.vd, d.vs)) return } d.bdRead = false return } func (d *bincDecDriver) DecodeNaked() { if !d.bdRead { d.readNextBd() } d.fnil = false n := d.d.naked() var decodeFurther bool switch d.vd { case bincVdSpecial: switch d.vs { case bincSpNil: n.v = valueTypeNil d.fnil = true case bincSpFalse: n.v = valueTypeBool n.b = false case bincSpTrue: n.v = valueTypeBool n.b = true case bincSpNan: n.v = valueTypeFloat n.f = math.NaN() case bincSpPosInf: n.v = valueTypeFloat n.f = math.Inf(1) case bincSpNegInf: n.v = valueTypeFloat n.f = math.Inf(-1) case bincSpZeroFloat: n.v = valueTypeFloat n.f = float64(0) case bincSpZero: n.v = valueTypeUint n.u = uint64(0) // int8(0) case bincSpNegOne: n.v = valueTypeInt n.i = int64(-1) // int8(-1) default: d.d.errorf("cannot infer value - unrecognized special value from descriptor %x-%x/%s", d.vd, d.vs, bincdesc(d.vd, d.vs)) } case bincVdSmallInt: n.v = valueTypeUint n.u = uint64(int8(d.vs)) + 1 // int8(d.vs) + 1 case bincVdPosInt: n.v = valueTypeUint n.u = d.decUint() case bincVdNegInt: n.v = valueTypeInt n.i = -(int64(d.decUint())) case bincVdFloat: n.v = valueTypeFloat n.f = d.decFloat() case bincVdSymbol: n.v = valueTypeSymbol n.s = string(d.DecodeStringAsBytes()) case bincVdString: n.v = valueTypeString n.s = string(d.DecodeStringAsBytes()) case bincVdByteArray: fauxUnionReadRawBytes(d, &d.d, n, d.h.RawToString) case bincVdTimestamp: n.v = valueTypeTime tt, err := bincDecodeTime(d.d.decRd.readx(uint(d.vs))) if err != nil { panic(err) } n.t = tt case bincVdCustomExt: n.v = valueTypeExt l := d.decLen() n.u = uint64(d.d.decRd.readn1()) if d.d.bytes { n.l = d.d.decRd.rb.readx(uint(l)) } else { n.l = decByteSlice(d.d.r(), l, d.d.h.MaxInitLen, d.d.b[:]) } case bincVdArray: n.v = valueTypeArray decodeFurther = true case bincVdMap: n.v = valueTypeMap decodeFurther = true default: d.d.errorf("cannot infer value - %s %x-%x/%s", msgBadDesc, d.vd, d.vs, bincdesc(d.vd, d.vs)) } if !decodeFurther { d.bdRead = false } if n.v == valueTypeUint && d.h.SignedInteger { n.v = valueTypeInt n.i = int64(n.u) } } //------------------------------------ //BincHandle is a Handle for the Binc Schema-Free Encoding Format //defined at https://github.com/ugorji/binc . // //BincHandle currently supports all Binc features with the following EXCEPTIONS: // - only integers up to 64 bits of precision are supported. // big integers are unsupported. // - Only IEEE 754 binary32 and binary64 floats are supported (ie Go float32 and float64 types). // extended precision and decimal IEEE 754 floats are unsupported. // - Only UTF-8 strings supported. // Unicode_Other Binc types (UTF16, UTF32) are currently unsupported. // //Note that these EXCEPTIONS are temporary and full support is possible and may happen soon. type BincHandle struct { BasicHandle binaryEncodingType // noElemSeparators // AsSymbols defines what should be encoded as symbols. // // Encoding as symbols can reduce the encoded size significantly. // // However, during decoding, each string to be encoded as a symbol must // be checked to see if it has been seen before. Consequently, encoding time // will increase if using symbols, because string comparisons has a clear cost. // // Values: // - 0: default: library uses best judgement // - 1: use symbols // - 2: do not use symbols AsSymbols uint8 // AsSymbols: may later on introduce more options ... // - m: map keys // - s: struct fields // - n: none // - a: all: same as m, s, ... _ [7]uint64 // padding (cache-aligned) } // Name returns the name of the handle: binc func (h *BincHandle) Name() string { return "binc" } func (h *BincHandle) newEncDriver() encDriver { var e = &bincEncDriver{h: h} e.e.e = e e.e.init(h) e.reset() return e } func (h *BincHandle) newDecDriver() decDriver { d := &bincDecDriver{h: h} d.d.d = d d.d.init(h) d.reset() return d } func (e *bincEncDriver) reset() { e.s = 0 e.m = nil } func (e *bincEncDriver) atEndOfEncode() { if e.m != nil { for k := range e.m { delete(e.m, k) } } } func (d *bincDecDriver) reset() { d.s = nil d.bd, d.bdRead, d.vd, d.vs = 0, false, 0, 0 d.fnil = false } func (d *bincDecDriver) atEndOfDecode() { if d.s != nil { for k := range d.s { delete(d.s, k) } } } // var timeDigits = [...]byte{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'} // EncodeTime encodes a time.Time as a []byte, including // information on the instant in time and UTC offset. // // Format Description // // A timestamp is composed of 3 components: // // - secs: signed integer representing seconds since unix epoch // - nsces: unsigned integer representing fractional seconds as a // nanosecond offset within secs, in the range 0 <= nsecs < 1e9 // - tz: signed integer representing timezone offset in minutes east of UTC, // and a dst (daylight savings time) flag // // When encoding a timestamp, the first byte is the descriptor, which // defines which components are encoded and how many bytes are used to // encode secs and nsecs components. *If secs/nsecs is 0 or tz is UTC, it // is not encoded in the byte array explicitly*. // // Descriptor 8 bits are of the form `A B C DDD EE`: // A: Is secs component encoded? 1 = true // B: Is nsecs component encoded? 1 = true // C: Is tz component encoded? 1 = true // DDD: Number of extra bytes for secs (range 0-7). // If A = 1, secs encoded in DDD+1 bytes. // If A = 0, secs is not encoded, and is assumed to be 0. // If A = 1, then we need at least 1 byte to encode secs. // DDD says the number of extra bytes beyond that 1. // E.g. if DDD=0, then secs is represented in 1 byte. // if DDD=2, then secs is represented in 3 bytes. // EE: Number of extra bytes for nsecs (range 0-3). // If B = 1, nsecs encoded in EE+1 bytes (similar to secs/DDD above) // // Following the descriptor bytes, subsequent bytes are: // // secs component encoded in `DDD + 1` bytes (if A == 1) // nsecs component encoded in `EE + 1` bytes (if B == 1) // tz component encoded in 2 bytes (if C == 1) // // secs and nsecs components are integers encoded in a BigEndian // 2-complement encoding format. // // tz component is encoded as 2 bytes (16 bits). Most significant bit 15 to // Least significant bit 0 are described below: // // Timezone offset has a range of -12:00 to +14:00 (ie -720 to +840 minutes). // Bit 15 = have\_dst: set to 1 if we set the dst flag. // Bit 14 = dst\_on: set to 1 if dst is in effect at the time, or 0 if not. // Bits 13..0 = timezone offset in minutes. It is a signed integer in Big Endian format. // func bincEncodeTime(t time.Time) []byte { // t := rv2i(rv).(time.Time) tsecs, tnsecs := t.Unix(), t.Nanosecond() var ( bd byte btmp [8]byte bs [16]byte i int = 1 ) l := t.Location() if l == time.UTC { l = nil } if tsecs != 0 { bd = bd | 0x80 bigen.PutUint64(btmp[:], uint64(tsecs)) f := pruneSignExt(btmp[:], tsecs >= 0) bd = bd | (byte(7-f) << 2) copy(bs[i:], btmp[f:]) i = i + (8 - f) } if tnsecs != 0 { bd = bd | 0x40 bigen.PutUint32(btmp[:4], uint32(tnsecs)) f := pruneSignExt(btmp[:4], true) bd = bd | byte(3-f) copy(bs[i:], btmp[f:4]) i = i + (4 - f) } if l != nil { bd = bd | 0x20 // Note that Go Libs do not give access to dst flag. _, zoneOffset := t.Zone() // zoneName, zoneOffset := t.Zone() zoneOffset /= 60 z := uint16(zoneOffset) bigen.PutUint16(btmp[:2], z) // clear dst flags bs[i] = btmp[0] & 0x3f bs[i+1] = btmp[1] i = i + 2 } bs[0] = bd return bs[0:i] } // bincDecodeTime decodes a []byte into a time.Time. func bincDecodeTime(bs []byte) (tt time.Time, err error) { bd := bs[0] var ( tsec int64 tnsec uint32 tz uint16 i byte = 1 i2 byte n byte ) if bd&(1<<7) != 0 { var btmp [8]byte n = ((bd >> 2) & 0x7) + 1 i2 = i + n copy(btmp[8-n:], bs[i:i2]) // if first bit of bs[i] is set, then fill btmp[0..8-n] with 0xff (ie sign extend it) if bs[i]&(1<<7) != 0 { copy(btmp[0:8-n], bsAll0xff) // for j,k := byte(0), 8-n; j < k; j++ { btmp[j] = 0xff } } i = i2 tsec = int64(bigen.Uint64(btmp[:])) } if bd&(1<<6) != 0 { var btmp [4]byte n = (bd & 0x3) + 1 i2 = i + n copy(btmp[4-n:], bs[i:i2]) i = i2 tnsec = bigen.Uint32(btmp[:]) } if bd&(1<<5) == 0 { tt = time.Unix(tsec, int64(tnsec)).UTC() return } // In stdlib time.Parse, when a date is parsed without a zone name, it uses "" as zone name. // However, we need name here, so it can be shown when time is printf.d. // Zone name is in form: UTC-08:00. // Note that Go Libs do not give access to dst flag, so we ignore dst bits i2 = i + 2 tz = bigen.Uint16(bs[i:i2]) // i = i2 // sign extend sign bit into top 2 MSB (which were dst bits): if tz&(1<<13) == 0 { // positive tz = tz & 0x3fff //clear 2 MSBs: dst bits } else { // negative tz = tz | 0xc000 //set 2 MSBs: dst bits } tzint := int16(tz) if tzint == 0 { tt = time.Unix(tsec, int64(tnsec)).UTC() } else { // For Go Time, do not use a descriptive timezone. // It's unnecessary, and makes it harder to do a reflect.DeepEqual. // The Offset already tells what the offset should be, if not on UTC and unknown zone name. // var zoneName = timeLocUTCName(tzint) tt = time.Unix(tsec, int64(tnsec)).In(time.FixedZone("", int(tzint)*60)) } return } // func timeLocUTCName(tzint int16) string { // if tzint == 0 { // return "UTC" // } // var tzname = []byte("UTC+00:00") // //tzname := fmt.Sprintf("UTC%s%02d:%02d", tzsign, tz/60, tz%60) //perf issue using Sprintf.. inline below. // //tzhr, tzmin := tz/60, tz%60 //faster if u convert to int first // var tzhr, tzmin int16 // if tzint < 0 { // tzname[3] = '-' // tzhr, tzmin = -tzint/60, (-tzint)%60 // } else { // tzhr, tzmin = tzint/60, tzint%60 // } // tzname[4] = timeDigits[tzhr/10] // tzname[5] = timeDigits[tzhr%10] // tzname[7] = timeDigits[tzmin/10] // tzname[8] = timeDigits[tzmin%10] // return string(tzname) // //return time.FixedZone(string(tzname), int(tzint)*60) // } var _ decDriver = (*bincDecDriver)(nil) var _ encDriver = (*bincEncDriver)(nil)