123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- // Copyright 2016 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- //go:generate go run gen.go gen_common.go
- // Package plural provides utilities for handling linguistic plurals in text.
- //
- // The definitions in this package are based on the plural rule handling defined
- // in CLDR. See
- // https://unicode.org/reports/tr35/tr35-numbers.html#Language_Plural_Rules for
- // details.
- package plural
- import (
- "golang.org/x/text/internal/language/compact"
- "golang.org/x/text/internal/number"
- "golang.org/x/text/language"
- )
- // Rules defines the plural rules for all languages for a certain plural type.
- //
- //
- // This package is UNDER CONSTRUCTION and its API may change.
- type Rules struct {
- rules []pluralCheck
- index []byte
- langToIndex []byte
- inclusionMasks []uint64
- }
- var (
- // Cardinal defines the plural rules for numbers indicating quantities.
- Cardinal *Rules = cardinal
- // Ordinal defines the plural rules for numbers indicating position
- // (first, second, etc.).
- Ordinal *Rules = ordinal
- ordinal = &Rules{
- ordinalRules,
- ordinalIndex,
- ordinalLangToIndex,
- ordinalInclusionMasks[:],
- }
- cardinal = &Rules{
- cardinalRules,
- cardinalIndex,
- cardinalLangToIndex,
- cardinalInclusionMasks[:],
- }
- )
- // getIntApprox converts the digits in slice digits[start:end] to an integer
- // according to the following rules:
- // - Let i be asInt(digits[start:end]), where out-of-range digits are assumed
- // to be zero.
- // - Result n is big if i / 10^nMod > 1.
- // - Otherwise the result is i % 10^nMod.
- //
- // For example, if digits is {1, 2, 3} and start:end is 0:5, then the result
- // for various values of nMod is:
- // - when nMod == 2, n == big
- // - when nMod == 3, n == big
- // - when nMod == 4, n == big
- // - when nMod == 5, n == 12300
- // - when nMod == 6, n == 12300
- // - when nMod == 7, n == 12300
- func getIntApprox(digits []byte, start, end, nMod, big int) (n int) {
- // Leading 0 digits just result in 0.
- p := start
- if p < 0 {
- p = 0
- }
- // Range only over the part for which we have digits.
- mid := end
- if mid >= len(digits) {
- mid = len(digits)
- }
- // Check digits more significant that nMod.
- if q := end - nMod; q > 0 {
- if q > mid {
- q = mid
- }
- for ; p < q; p++ {
- if digits[p] != 0 {
- return big
- }
- }
- }
- for ; p < mid; p++ {
- n = 10*n + int(digits[p])
- }
- // Multiply for trailing zeros.
- for ; p < end; p++ {
- n *= 10
- }
- return n
- }
- // MatchDigits computes the plural form for the given language and the given
- // decimal floating point digits. The digits are stored in big-endian order and
- // are of value byte(0) - byte(9). The floating point position is indicated by
- // exp and the number of visible decimals is scale. All leading and trailing
- // zeros may be omitted from digits.
- //
- // The following table contains examples of possible arguments to represent
- // the given numbers.
- // decimal digits exp scale
- // 123 []byte{1, 2, 3} 3 0
- // 123.4 []byte{1, 2, 3, 4} 3 1
- // 123.40 []byte{1, 2, 3, 4} 3 2
- // 100000 []byte{1} 6 0
- // 100000.00 []byte{1} 6 3
- func (p *Rules) MatchDigits(t language.Tag, digits []byte, exp, scale int) Form {
- index := tagToID(t)
- // Differentiate up to including mod 1000000 for the integer part.
- n := getIntApprox(digits, 0, exp, 6, 1000000)
- // Differentiate up to including mod 100 for the fractional part.
- f := getIntApprox(digits, exp, exp+scale, 2, 100)
- return matchPlural(p, index, n, f, scale)
- }
- func (p *Rules) matchDisplayDigits(t language.Tag, d *number.Digits) (Form, int) {
- n := getIntApprox(d.Digits, 0, int(d.Exp), 6, 1000000)
- return p.MatchDigits(t, d.Digits, int(d.Exp), d.NumFracDigits()), n
- }
- func validForms(p *Rules, t language.Tag) (forms []Form) {
- offset := p.langToIndex[tagToID(t)]
- rules := p.rules[p.index[offset]:p.index[offset+1]]
- forms = append(forms, Other)
- last := Other
- for _, r := range rules {
- if cat := Form(r.cat & formMask); cat != andNext && last != cat {
- forms = append(forms, cat)
- last = cat
- }
- }
- return forms
- }
- func (p *Rules) matchComponents(t language.Tag, n, f, scale int) Form {
- return matchPlural(p, tagToID(t), n, f, scale)
- }
- // MatchPlural returns the plural form for the given language and plural
- // operands (as defined in
- // https://unicode.org/reports/tr35/tr35-numbers.html#Language_Plural_Rules):
- // where
- // n absolute value of the source number (integer and decimals)
- // input
- // i integer digits of n.
- // v number of visible fraction digits in n, with trailing zeros.
- // w number of visible fraction digits in n, without trailing zeros.
- // f visible fractional digits in n, with trailing zeros (f = t * 10^(v-w))
- // t visible fractional digits in n, without trailing zeros.
- //
- // If any of the operand values is too large to fit in an int, it is okay to
- // pass the value modulo 10,000,000.
- func (p *Rules) MatchPlural(lang language.Tag, i, v, w, f, t int) Form {
- return matchPlural(p, tagToID(lang), i, f, v)
- }
- func matchPlural(p *Rules, index compact.ID, n, f, v int) Form {
- nMask := p.inclusionMasks[n%maxMod]
- // Compute the fMask inline in the rules below, as it is relatively rare.
- // fMask := p.inclusionMasks[f%maxMod]
- vMask := p.inclusionMasks[v%maxMod]
- // Do the matching
- offset := p.langToIndex[index]
- rules := p.rules[p.index[offset]:p.index[offset+1]]
- for i := 0; i < len(rules); i++ {
- rule := rules[i]
- setBit := uint64(1 << rule.setID)
- var skip bool
- switch op := opID(rule.cat >> opShift); op {
- case opI: // i = x
- skip = n >= numN || nMask&setBit == 0
- case opI | opNotEqual: // i != x
- skip = n < numN && nMask&setBit != 0
- case opI | opMod: // i % m = x
- skip = nMask&setBit == 0
- case opI | opMod | opNotEqual: // i % m != x
- skip = nMask&setBit != 0
- case opN: // n = x
- skip = f != 0 || n >= numN || nMask&setBit == 0
- case opN | opNotEqual: // n != x
- skip = f == 0 && n < numN && nMask&setBit != 0
- case opN | opMod: // n % m = x
- skip = f != 0 || nMask&setBit == 0
- case opN | opMod | opNotEqual: // n % m != x
- skip = f == 0 && nMask&setBit != 0
- case opF: // f = x
- skip = f >= numN || p.inclusionMasks[f%maxMod]&setBit == 0
- case opF | opNotEqual: // f != x
- skip = f < numN && p.inclusionMasks[f%maxMod]&setBit != 0
- case opF | opMod: // f % m = x
- skip = p.inclusionMasks[f%maxMod]&setBit == 0
- case opF | opMod | opNotEqual: // f % m != x
- skip = p.inclusionMasks[f%maxMod]&setBit != 0
- case opV: // v = x
- skip = v < numN && vMask&setBit == 0
- case opV | opNotEqual: // v != x
- skip = v < numN && vMask&setBit != 0
- case opW: // w == 0
- skip = f != 0
- case opW | opNotEqual: // w != 0
- skip = f == 0
- // Hard-wired rules that cannot be handled by our algorithm.
- case opBretonM:
- skip = f != 0 || n == 0 || n%1000000 != 0
- case opAzerbaijan00s:
- // 100,200,300,400,500,600,700,800,900
- skip = n == 0 || n >= 1000 || n%100 != 0
- case opItalian800:
- skip = (f != 0 || n >= numN || nMask&setBit == 0) && n != 800
- }
- if skip {
- // advance over AND entries.
- for ; i < len(rules) && rules[i].cat&formMask == andNext; i++ {
- }
- continue
- }
- // return if we have a final entry.
- if cat := rule.cat & formMask; cat != andNext {
- return Form(cat)
- }
- }
- return Other
- }
- func tagToID(t language.Tag) compact.ID {
- id, _ := compact.RegionalID(compact.Tag(t))
- return id
- }
|