package xlsx import ( "archive/zip" "encoding/xml" "errors" "fmt" "io" "strconv" "strings" ) // XLSXReaderError is the standard error type for otherwise undefined // errors in the XSLX reading process. type XLSXReaderError struct { Err string } // String() returns a string value from an XLSXReaderError struct in // order that it might comply with the os.Error interface. func (e *XLSXReaderError) Error() string { return e.Err } // getRangeFromString is an internal helper function that converts // XLSX internal range syntax to a pair of integers. For example, // the range string "1:3" yield the upper and lower intergers 1 and 3. func getRangeFromString(rangeString string) (lower int, upper int, error error) { var parts []string parts = strings.SplitN(rangeString, ":", 2) if parts[0] == "" { error = errors.New(fmt.Sprintf("Invalid range '%s'\n", rangeString)) } if parts[1] == "" { error = errors.New(fmt.Sprintf("Invalid range '%s'\n", rangeString)) } lower, error = strconv.Atoi(parts[0]) if error != nil { error = errors.New(fmt.Sprintf("Invalid range (not integer in lower bound) %s\n", rangeString)) } upper, error = strconv.Atoi(parts[1]) if error != nil { error = errors.New(fmt.Sprintf("Invalid range (not integer in upper bound) %s\n", rangeString)) } return lower, upper, error } // lettersToNumeric is used to convert a character based column // reference to a zero based numeric column identifier. func lettersToNumeric(letters string) int { sum, mul, n := 0, 1, 0 for i := len(letters) - 1; i >= 0; i, mul, n = i-1, mul*26, 1 { c := letters[i] switch { case 'A' <= c && c <= 'Z': n += int(c - 'A') case 'a' <= c && c <= 'z': n += int(c - 'a') } sum += n * mul } return sum } // Get the largestDenominator that is a multiple of a basedDenominator // and fits at least once into a given numerator. func getLargestDenominator(numerator, multiple, baseDenominator, power int) (int, int) { if numerator / multiple == 0 { return 1, power } next, nextPower := getLargestDenominator( numerator, multiple * baseDenominator, baseDenominator, power + 1) if next > multiple { return next, nextPower } return multiple, power } // Convers a list of numbers representing a column into a alphabetic // representation, as used in the spreadsheet. func formatColumnName(colId []int) string { lastPart := len(colId) - 1 result := "" for n, part := range(colId) { if n == lastPart { // The least significant number is in the // range 0-25, all other numbers are 1-26, // hence we use a differente offset for the // last part. result += string(part + 65) } else { // Don't output leading 0s, as there is no // representation of 0 in this format. if part > 0 { result += string(part + 64) } } } return result } func smooshBase26Slice(b26 []int) []int { // Smoosh values together, eliminating 0s from all but the // least significant part. lastButOnePart := len(b26) - 2 for i := lastButOnePart; i > 0; i-- { part := b26[i] if part == 0 { greaterPart := b26[i-1] if greaterPart > 0 { b26[i-1] = greaterPart - 1 b26[i] = 26 } } } return b26 } func intToBase26(x int) (parts []int) { // Excel column codes are pure evil - in essence they're just // base26, but they don't represent the number 0. b26Denominator, _ := getLargestDenominator(x, 1, 26, 0) // This loop terminates because integer division of 1 / 26 // returns 0. for d := b26Denominator; d > 0; d = d / 26 { value := x / d remainder := x % d parts = append(parts, value) x = remainder } return parts } // numericToLetters is used to convert a zero based, numeric column // indentifier into a character code. func numericToLetters(colRef int) string { parts := intToBase26(colRef) return formatColumnName(smooshBase26Slice(parts)) } // letterOnlyMapF is used in conjunction with strings.Map to return // only the characters A-Z and a-z in a string func letterOnlyMapF(rune rune) rune { switch { case 'A' <= rune && rune <= 'Z': return rune case 'a' <= rune && rune <= 'z': return rune - 32 } return -1 } // intOnlyMapF is used in conjunction with strings.Map to return only // the numeric portions of a string. func intOnlyMapF(rune rune) rune { if rune >= 48 && rune < 58 { return rune } return -1 } // getCoordsFromCellIDString returns the zero based cartesian // coordinates from a cell name in Excel format, e.g. the cellIDString // "A1" returns 0, 0 and the "B3" return 1, 2. func getCoordsFromCellIDString(cellIDString string) (x, y int, error error) { var letterPart string = strings.Map(letterOnlyMapF, cellIDString) y, error = strconv.Atoi(strings.Map(intOnlyMapF, cellIDString)) if error != nil { return x, y, error } y -= 1 // Zero based x = lettersToNumeric(letterPart) return x, y, error } // getCellIDStringFromCoords returns the Excel format cell name that // represents a pair of zero based cartesian coordinates. func getCellIDStringFromCoords(x, y int) string { letterPart := numericToLetters(x); numericPart := y + 1 return fmt.Sprintf("%s%d", letterPart, numericPart) } // getMaxMinFromDimensionRef return the zero based cartesian maximum // and minimum coordinates from the dimension reference embedded in a // XLSX worksheet. For example, the dimension reference "A1:B2" // returns "0,0", "1,1". func getMaxMinFromDimensionRef(ref string) (minx, miny, maxx, maxy int, err error) { var parts []string parts = strings.Split(ref, ":") minx, miny, err = getCoordsFromCellIDString(parts[0]) if err != nil { return -1, -1, -1, -1, err } if len(parts) == 1 { maxx, maxy = minx, miny return } maxx, maxy, err = getCoordsFromCellIDString(parts[1]) if err != nil { return -1, -1, -1, -1, err } return } // makeRowFromSpan will, when given a span expressed as a string, // return an empty Row large enough to encompass that span and // populate it with empty cells. All rows start from cell 1 - // regardless of the lower bound of the span. func makeRowFromSpan(spans string) *Row { var error error var upper int var row *Row var cell *Cell row = new(Row) _, upper, error = getRangeFromString(spans) if error != nil { panic(error) } error = nil row.Cells = make([]*Cell, upper) for i := 0; i < upper; i++ { cell = new(Cell) cell.Value = "" row.Cells[i] = cell } return row } // makeRowFromRaw returns the Row representation of the xlsxRow. func makeRowFromRaw(rawrow xlsxRow) *Row { var upper int var row *Row var cell *Cell row = new(Row) upper = -1 for _, rawcell := range rawrow.C { x, _, error := getCoordsFromCellIDString(rawcell.R) if error != nil { panic(fmt.Sprintf("Invalid Cell Coord, %s\n", rawcell.R)) } if x > upper { upper = x } } upper++ row.Cells = make([]*Cell, upper) for i := 0; i < upper; i++ { cell = new(Cell) cell.Value = "" row.Cells[i] = cell } return row } // getValueFromCellData attempts to extract a valid value, usable in // CSV form from the raw cell value. Note - this is not actually // general enough - we should support retaining tabs and newlines. func getValueFromCellData(rawcell xlsxC, reftable *RefTable) string { var value string = "" var data string = rawcell.V if len(data) > 0 { vval := strings.Trim(data, " \t\n\r") if rawcell.T == "s" { ref, error := strconv.Atoi(vval) if error != nil { panic(error) } value = reftable.ResolveSharedString(ref) } else { value = vval } } return value } // readRowsFromSheet is an internal helper function that extracts the // rows from a XSLXWorksheet, poulates them with Cells and resolves // the value references from the reference table and stores them in func readRowsFromSheet(Worksheet *xlsxWorksheet, file *File) ([]*Row, int, int) { var rows []*Row var row *Row var minCol, maxCol, minRow, maxRow, colCount, rowCount int var reftable *RefTable var err error var insertRowIndex, insertColIndex int if len(Worksheet.SheetData.Row) == 0 { return nil, 0, 0 } reftable = file.referenceTable minCol, minRow, maxCol, maxRow, err = getMaxMinFromDimensionRef(Worksheet.Dimension.Ref) if err != nil { panic(err.Error()) } rowCount = (maxRow - minRow) + 1 colCount = (maxCol - minCol) + 1 rows = make([]*Row, rowCount) insertRowIndex = minRow for rowIndex := 0; rowIndex < len(Worksheet.SheetData.Row); rowIndex++ { rawrow := Worksheet.SheetData.Row[rowIndex] // Some spreadsheets will omit blank rows from the // stored data for rawrow.R > (insertRowIndex + 1) { // Put an empty Row into the array rows[insertRowIndex-minRow] = new(Row) insertRowIndex++ } // range is not empty if len(rawrow.Spans) != 0 { row = makeRowFromSpan(rawrow.Spans) } else { row = makeRowFromRaw(rawrow) } insertColIndex = minCol for _, rawcell := range rawrow.C { x, _, _ := getCoordsFromCellIDString(rawcell.R) // Some spreadsheets will omit blank cells // from the data. for x > insertColIndex { // Put an empty Cell into the array row.Cells[insertColIndex-minCol] = new(Cell) insertColIndex++ } cellX := insertColIndex - minCol row.Cells[cellX].Value = getValueFromCellData(rawcell, reftable) row.Cells[cellX].styleIndex = rawcell.S row.Cells[cellX].styles = file.styles insertColIndex++ } rows[insertRowIndex-minRow] = row insertRowIndex++ } return rows, colCount, rowCount } type indexedSheet struct { Index int Sheet *Sheet Error error } // readSheetFromFile is the logic of converting a xlsxSheet struct // into a Sheet struct. This work can be done in parallel and so // readSheetsFromZipFile will spawn an instance of this function per // sheet and get the results back on the provided channel. func readSheetFromFile(sc chan *indexedSheet, index int, rsheet xlsxSheet, fi *File, sheetXMLMap map[string]string) { result := &indexedSheet{Index: index, Sheet: nil, Error: nil} worksheet, error := getWorksheetFromSheet(rsheet, fi.worksheets, sheetXMLMap) if error != nil { result.Error = error sc <- result return } sheet := new(Sheet) sheet.Rows, sheet.MaxCol, sheet.MaxRow = readRowsFromSheet(worksheet, fi) result.Sheet = sheet sc <- result } // readSheetsFromZipFile is an internal helper function that loops // over the Worksheets defined in the XSLXWorkbook and loads them into // Sheet objects stored in the Sheets slice of a xlsx.File struct. func readSheetsFromZipFile(f *zip.File, file *File, sheetXMLMap map[string]string) ([]*Sheet, []string, error) { var workbook *xlsxWorkbook var error error var rc io.ReadCloser var decoder *xml.Decoder var sheetCount int workbook = new(xlsxWorkbook) rc, error = f.Open() if error != nil { return nil, nil, error } decoder = xml.NewDecoder(rc) error = decoder.Decode(workbook) if error != nil { return nil, nil, error } sheetCount = len(workbook.Sheets.Sheet) sheets := make([]*Sheet, sheetCount) names := make([]string, sheetCount) sheetChan := make(chan *indexedSheet, sheetCount) for i, rawsheet := range workbook.Sheets.Sheet { go readSheetFromFile(sheetChan, i, rawsheet, file, sheetXMLMap) } for j := 0; j < sheetCount; j++ { sheet := <-sheetChan if sheet.Error != nil { return nil, nil, sheet.Error } sheets[sheet.Index] = sheet.Sheet names[sheet.Index] = workbook.Sheets.Sheet[sheet.Index].Name } return sheets, names, nil } // readSharedStringsFromZipFile() is an internal helper function to // extract a reference table from the sharedStrings.xml file within // the XLSX zip file. func readSharedStringsFromZipFile(f *zip.File) (*RefTable, error) { var sst *xlsxSST var error error var rc io.ReadCloser var decoder *xml.Decoder var reftable *RefTable rc, error = f.Open() if error != nil { return nil, error } sst = new(xlsxSST) decoder = xml.NewDecoder(rc) error = decoder.Decode(sst) if error != nil { return nil, error } reftable = MakeSharedStringRefTable(sst) return reftable, nil } // readStylesFromZipFile() is an internal helper function to // extract a style table from the style.xml file within // the XLSX zip file. func readStylesFromZipFile(f *zip.File) (*xlsxStyles, error) { var style *xlsxStyles var error error var rc io.ReadCloser var decoder *xml.Decoder rc, error = f.Open() if error != nil { return nil, error } style = new(xlsxStyles) decoder = xml.NewDecoder(rc) error = decoder.Decode(style) if error != nil { return nil, error } return style, nil } // readWorkbookRelationsFromZipFile is an internal helper function to // extract a map of relationship ID strings to the name of the // worksheet.xml file they refer to. The resulting map can be used to // reliably derefence the worksheets in the XLSX file. func readWorkbookRelationsFromZipFile(workbookRels *zip.File) (map[string]string, error) { var sheetXMLMap map[string]string var wbRelationships *xlsxWorkbookRels var rc io.ReadCloser var decoder *xml.Decoder var err error rc, err = workbookRels.Open() if err != nil { return nil, err } decoder = xml.NewDecoder(rc) wbRelationships = new(xlsxWorkbookRels) err = decoder.Decode(wbRelationships) if err != nil { return nil, err } sheetXMLMap = make(map[string]string) for _, rel := range wbRelationships.Relationships { if strings.HasSuffix(rel.Target, ".xml") && strings.HasPrefix(rel.Target, "worksheets/") { sheetXMLMap[rel.Id] = strings.Replace(rel.Target[len("worksheets/"):], ".xml", "", 1) } } return sheetXMLMap, nil } // ReadZip() takes a pointer to a zip.ReadCloser and returns a // xlsx.File struct populated with its contents. In most cases // ReadZip is not used directly, but is called internally by OpenFile. func ReadZip(f *zip.ReadCloser) (*File, error) { defer f.Close() return ReadZipReader(&f.Reader) } // ReadZipReader() can be used to read an XLSX in memory without // touching thes filesystem. func ReadZipReader(r *zip.Reader) (*File, error) { var err error var file *File var names []string var reftable *RefTable var sharedStrings *zip.File var sheetMap map[string]*Sheet var sheetXMLMap map[string]string var sheets []*Sheet var style *xlsxStyles var styles *zip.File var v *zip.File var workbook *zip.File var workbookRels *zip.File var worksheets map[string]*zip.File file = new(File) worksheets = make(map[string]*zip.File, len(r.File)) for _, v = range r.File { switch v.Name { case "xl/sharedStrings.xml": sharedStrings = v case "xl/workbook.xml": workbook = v case "xl/_rels/workbook.xml.rels": workbookRels = v case "xl/styles.xml": styles = v default: if len(v.Name) > 14 { if v.Name[0:13] == "xl/worksheets" { worksheets[v.Name[14:len(v.Name)-4]] = v } } } } sheetXMLMap, err = readWorkbookRelationsFromZipFile(workbookRels) if err != nil { return nil, err } file.worksheets = worksheets reftable, err = readSharedStringsFromZipFile(sharedStrings) if err != nil { return nil, err } if reftable == nil { readerErr := new(XLSXReaderError) readerErr.Err = "No valid sharedStrings.xml found in XLSX file" return nil, readerErr } file.referenceTable = reftable style, err = readStylesFromZipFile(styles) if err != nil { return nil, err } file.styles = style sheets, names, err = readSheetsFromZipFile(workbook, file, sheetXMLMap) if err != nil { return nil, err } if sheets == nil { readerErr := new(XLSXReaderError) readerErr.Err = "No sheets found in XLSX File" return nil, readerErr } file.Sheets = sheets sheetMap = make(map[string]*Sheet, len(names)) for i := 0; i < len(names); i++ { sheetMap[names[i]] = sheets[i] } file.Sheet = sheetMap return file, nil }