// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package webdav import ( "fmt" "math/rand" "path" "reflect" "sort" "strings" "testing" "time" ) func TestWalkToRoot(t *testing.T) { testCases := []struct { name string want []string }{{ "/a/b/c/d", []string{ "/a/b/c/d", "/a/b/c", "/a/b", "/a", "/", }, }, { "/a", []string{ "/a", "/", }, }, { "/", []string{ "/", }, }} for _, tc := range testCases { var got []string if !walkToRoot(tc.name, func(name0 string, first bool) bool { if first != (len(got) == 0) { t.Errorf("name=%q: first=%t but len(got)==%d", tc.name, first, len(got)) return false } got = append(got, name0) return true }) { continue } if !reflect.DeepEqual(got, tc.want) { t.Errorf("name=%q:\ngot %q\nwant %q", tc.name, got, tc.want) } } } // lockTestNames are the names of a set of mutually compatible locks. For each // name fragment: // - _ means no explicit lock. // - i means a infinite-depth lock, // - z means a zero-depth lock, var lockTestNames = []string{ "/_/_/_/_/z", "/_/_/i", "/_/z", "/_/z/i", "/_/z/z", "/_/z/_/i", "/_/z/_/z", "/i", "/z", "/z/_/i", "/z/_/z", } func lockTestZeroDepth(name string) bool { switch name[len(name)-1] { case 'i': return false case 'z': return true } panic(fmt.Sprintf("lock name %q did not end with 'i' or 'z'", name)) } func TestMemLSCanCreate(t *testing.T) { now := time.Unix(0, 0) m := NewMemLS().(*memLS) for _, name := range lockTestNames { _, err := m.Create(now, LockDetails{ Root: name, Duration: -1, ZeroDepth: lockTestZeroDepth(name), }) if err != nil { t.Fatalf("creating lock for %q: %v", name, err) } } wantCanCreate := func(name string, zeroDepth bool) bool { for _, n := range lockTestNames { switch { case n == name: // An existing lock has the same name as the proposed lock. return false case strings.HasPrefix(n, name): // An existing lock would be a child of the proposed lock, // which conflicts if the proposed lock has infinite depth. if !zeroDepth { return false } case strings.HasPrefix(name, n): // An existing lock would be an ancestor of the proposed lock, // which conflicts if the ancestor has infinite depth. if n[len(n)-1] == 'i' { return false } } } return true } var check func(int, string) check = func(recursion int, name string) { for _, zeroDepth := range []bool{false, true} { got := m.canCreate(name, zeroDepth) want := wantCanCreate(name, zeroDepth) if got != want { t.Errorf("canCreate name=%q zeroDepth=%d: got %t, want %t", name, zeroDepth, got, want) } } if recursion == 6 { return } if name != "/" { name += "/" } for _, c := range "_iz" { check(recursion+1, name+string(c)) } } check(0, "/") } func TestMemLSCreateUnlock(t *testing.T) { now := time.Unix(0, 0) m := NewMemLS().(*memLS) rng := rand.New(rand.NewSource(0)) tokens := map[string]string{} for i := 0; i < 1000; i++ { name := lockTestNames[rng.Intn(len(lockTestNames))] if token := tokens[name]; token != "" { if err := m.Unlock(now, token); err != nil { t.Fatalf("iteration #%d: unlock %q: %v", i, name, err) } tokens[name] = "" } else { token, err := m.Create(now, LockDetails{ Root: name, Duration: -1, ZeroDepth: lockTestZeroDepth(name), }) if err != nil { t.Fatalf("iteration #%d: create %q: %v", i, name, err) } tokens[name] = token } if err := m.consistent(); err != nil { t.Fatalf("iteration #%d: inconsistent state: %v", i, err) } } } func (m *memLS) consistent() error { m.mu.Lock() defer m.mu.Unlock() // If m.byName is non-empty, then it must contain an entry for the root "/", // and its refCount should equal the number of locked nodes. if len(m.byName) > 0 { n := m.byName["/"] if n == nil { return fmt.Errorf(`non-empty m.byName does not contain the root "/"`) } if n.refCount != len(m.byToken) { return fmt.Errorf("root node refCount=%d, differs from len(m.byToken)=%d", n.refCount, len(m.byToken)) } } for name, n := range m.byName { // The map keys should be consistent with the node's copy of the key. if n.details.Root != name { return fmt.Errorf("node name %q != byName map key %q", n.details.Root, name) } // A name must be clean, and start with a "/". if len(name) == 0 || name[0] != '/' { return fmt.Errorf(`node name %q does not start with "/"`, name) } if name != path.Clean(name) { return fmt.Errorf(`node name %q is not clean`, name) } // A node's refCount should be positive. if n.refCount <= 0 { return fmt.Errorf("non-positive refCount for node at name %q", name) } // A node's refCount should be the number of self-or-descendents that // are locked (i.e. have a non-empty token). var list []string for name0, n0 := range m.byName { // All of lockTestNames' name fragments are one byte long: '_', 'i' or 'z', // so strings.HasPrefix is equivalent to self-or-descendent name match. // We don't have to worry about "/foo/bar" being a false positive match // for "/foo/b". if strings.HasPrefix(name0, name) && n0.token != "" { list = append(list, name0) } } if n.refCount != len(list) { sort.Strings(list) return fmt.Errorf("node at name %q has refCount %d but locked self-or-descendents are %q (len=%d)", name, n.refCount, list, len(list)) } // A node n is in m.byToken if it has a non-empty token. if n.token != "" { if _, ok := m.byToken[n.token]; !ok { return fmt.Errorf("node at name %q has token %q but not in m.byToken", name, n.token) } } } for token, n := range m.byToken { // The map keys should be consistent with the node's copy of the key. if n.token != token { return fmt.Errorf("node token %q != byToken map key %q", n.token, token) } // Every node in m.byToken is in m.byName. if _, ok := m.byName[n.details.Root]; !ok { return fmt.Errorf("node at name %q in m.byToken but not in m.byName", n.details.Root) } } return nil }