|
|
@@ -13,77 +13,70 @@ import (
|
|
|
"time"
|
|
|
)
|
|
|
|
|
|
-// runPayloadTransponder transmits IPv4 datagram payloads to the
|
|
|
+// writeThenReadPayload transmits IPv4 datagram payloads to the
|
|
|
// loopback address or interface and captures the loopback'd datagram
|
|
|
// payloads.
|
|
|
-func runPayloadTransponder(t *testing.T, c *ipv4.PacketConn, wb []byte, dst net.Addr) {
|
|
|
- cf := ipv4.FlagTTL | ipv4.FlagDst | ipv4.FlagInterface
|
|
|
+func writeThenReadPayload(t *testing.T, i int, c *ipv4.PacketConn, wb []byte, dst net.Addr) []byte {
|
|
|
rb := make([]byte, 1500)
|
|
|
- for i, toggle := range []bool{true, false, true} {
|
|
|
- if err := c.SetControlMessage(cf, toggle); err != nil {
|
|
|
- t.Fatalf("ipv4.PacketConn.SetControlMessage failed: %v", err)
|
|
|
- }
|
|
|
- c.SetTOS(i + 1)
|
|
|
- var ip net.IP
|
|
|
- switch v := dst.(type) {
|
|
|
- case *net.UDPAddr:
|
|
|
- ip = v.IP
|
|
|
- case *net.IPAddr:
|
|
|
- ip = v.IP
|
|
|
- }
|
|
|
- if ip.IsMulticast() {
|
|
|
- c.SetMulticastTTL(i + 1)
|
|
|
- } else {
|
|
|
- c.SetTTL(i + 1)
|
|
|
- }
|
|
|
- c.SetDeadline(time.Now().Add(100 * time.Millisecond))
|
|
|
- if _, err := c.WriteTo(wb, nil, dst); err != nil {
|
|
|
- t.Fatalf("ipv4.PacketConn.WriteTo failed: %v", err)
|
|
|
- }
|
|
|
- _, cm, _, err := c.ReadFrom(rb)
|
|
|
- if err != nil {
|
|
|
- t.Fatalf("ipv4.PacketConn.ReadFrom failed: %v", err)
|
|
|
- }
|
|
|
- t.Logf("rcvd cmsg: %v", cm)
|
|
|
+ c.SetTOS(i + 1)
|
|
|
+ var ip net.IP
|
|
|
+ switch v := dst.(type) {
|
|
|
+ case *net.UDPAddr:
|
|
|
+ ip = v.IP
|
|
|
+ case *net.IPAddr:
|
|
|
+ ip = v.IP
|
|
|
+ }
|
|
|
+ if ip.IsMulticast() {
|
|
|
+ c.SetMulticastTTL(i + 1)
|
|
|
+ } else {
|
|
|
+ c.SetTTL(i + 1)
|
|
|
+ }
|
|
|
+ c.SetDeadline(time.Now().Add(100 * time.Millisecond))
|
|
|
+ if _, err := c.WriteTo(wb, nil, dst); err != nil {
|
|
|
+ t.Fatalf("ipv4.PacketConn.WriteTo failed: %v", err)
|
|
|
+ }
|
|
|
+ n, cm, _, err := c.ReadFrom(rb)
|
|
|
+ if err != nil {
|
|
|
+ t.Fatalf("ipv4.PacketConn.ReadFrom failed: %v", err)
|
|
|
}
|
|
|
+ t.Logf("rcvd cmsg: %v", cm)
|
|
|
+ return rb[:n]
|
|
|
}
|
|
|
|
|
|
-// runDatagramTransponder transmits ICMP for IPv4 datagrams to the
|
|
|
+// writeThenReadDatagram transmits ICMP for IPv4 datagrams to the
|
|
|
// loopback address or interface and captures the response datagrams
|
|
|
// from the protocol stack within the kernel.
|
|
|
-func runDatagramTransponder(t *testing.T, c *ipv4.RawConn, wb []byte, src, dst net.Addr) {
|
|
|
- cf := ipv4.FlagTTL | ipv4.FlagDst | ipv4.FlagInterface
|
|
|
+func writeThenReadDatagram(t *testing.T, i int, c *ipv4.RawConn, wb []byte, src, dst net.Addr) []byte {
|
|
|
rb := make([]byte, ipv4.HeaderLen+len(wb))
|
|
|
- for i, toggle := range []bool{true, false, true} {
|
|
|
- if err := c.SetControlMessage(cf, toggle); err != nil {
|
|
|
- t.Fatalf("ipv4.RawConn.SetControlMessage failed: %v", err)
|
|
|
- }
|
|
|
- wh := &ipv4.Header{}
|
|
|
- wh.Version = ipv4.Version
|
|
|
- wh.Len = ipv4.HeaderLen
|
|
|
- wh.TOS = i + 1
|
|
|
- wh.TotalLen = ipv4.HeaderLen + len(wb)
|
|
|
- wh.TTL = i + 1
|
|
|
- wh.Protocol = 1
|
|
|
- if src != nil {
|
|
|
- wh.Src = src.(*net.IPAddr).IP
|
|
|
- }
|
|
|
- if dst != nil {
|
|
|
- wh.Dst = dst.(*net.IPAddr).IP
|
|
|
- }
|
|
|
- c.SetDeadline(time.Now().Add(100 * time.Millisecond))
|
|
|
- if err := c.WriteTo(wh, wb, nil); err != nil {
|
|
|
- t.Fatalf("ipv4.RawConn.WriteTo failed: %v", err)
|
|
|
- }
|
|
|
- rh, _, cm, err := c.ReadFrom(rb)
|
|
|
- if err != nil {
|
|
|
- t.Fatalf("ipv4.RawConn.ReadFrom failed: %v", err)
|
|
|
- }
|
|
|
- t.Logf("rcvd cmsg: %v", cm.String())
|
|
|
- t.Logf("rcvd hdr: %v", rh.String())
|
|
|
+ wh := &ipv4.Header{
|
|
|
+ Version: ipv4.Version,
|
|
|
+ Len: ipv4.HeaderLen,
|
|
|
+ TOS: i + 1,
|
|
|
+ TotalLen: ipv4.HeaderLen + len(wb),
|
|
|
+ TTL: i + 1,
|
|
|
+ Protocol: 1,
|
|
|
+ }
|
|
|
+ if src != nil {
|
|
|
+ wh.Src = src.(*net.IPAddr).IP
|
|
|
}
|
|
|
+ if dst != nil {
|
|
|
+ wh.Dst = dst.(*net.IPAddr).IP
|
|
|
+ }
|
|
|
+ c.SetDeadline(time.Now().Add(100 * time.Millisecond))
|
|
|
+ if err := c.WriteTo(wh, wb, nil); err != nil {
|
|
|
+ t.Fatalf("ipv4.RawConn.WriteTo failed: %v", err)
|
|
|
+ }
|
|
|
+ rh, b, cm, err := c.ReadFrom(rb)
|
|
|
+ if err != nil {
|
|
|
+ t.Fatalf("ipv4.RawConn.ReadFrom failed: %v", err)
|
|
|
+ }
|
|
|
+ t.Logf("rcvd cmsg: %v", cm.String())
|
|
|
+ t.Logf("rcvd hdr: %v", rh.String())
|
|
|
+ return b
|
|
|
}
|
|
|
|
|
|
+// LoopbackInterface returns a logical network interface for loopback
|
|
|
+// tests.
|
|
|
func loopbackInterface() *net.Interface {
|
|
|
ift, err := net.Interfaces()
|
|
|
if err != nil {
|
|
|
@@ -97,12 +90,13 @@ func loopbackInterface() *net.Interface {
|
|
|
return nil
|
|
|
}
|
|
|
|
|
|
-func isGoodForMulticast(ifi *net.Interface) (net.IP, bool) {
|
|
|
- if ifi.Flags&net.FlagUp == 0 {
|
|
|
+// isMulticastAvailable returns true if ifi is a multicast access
|
|
|
+// enabled network interface. It also returns a unicast IPv4 address
|
|
|
+// that can be used for listening on ifi.
|
|
|
+func isMulticastAvailable(ifi *net.Interface) (net.IP, bool) {
|
|
|
+ if ifi.Flags&net.FlagUp == 0 || ifi.Flags&net.FlagMulticast == 0 {
|
|
|
return nil, false
|
|
|
}
|
|
|
- // We need a unicast IPv4 address that can be used to specify
|
|
|
- // the IPv4 multicast interface.
|
|
|
ifat, err := ifi.Addrs()
|
|
|
if err != nil {
|
|
|
return nil, false
|
|
|
@@ -126,8 +120,5 @@ func isGoodForMulticast(ifi *net.Interface) (net.IP, bool) {
|
|
|
}
|
|
|
break
|
|
|
}
|
|
|
- if ip == nil {
|
|
|
- return nil, false
|
|
|
- }
|
|
|
return ip, true
|
|
|
}
|