legacy_message.go 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297
  1. // Copyright 2018 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package impl
  5. import (
  6. "fmt"
  7. "reflect"
  8. "strings"
  9. "sync"
  10. "google.golang.org/protobuf/internal/descopts"
  11. ptag "google.golang.org/protobuf/internal/encoding/tag"
  12. "google.golang.org/protobuf/internal/filedesc"
  13. "google.golang.org/protobuf/internal/strs"
  14. "google.golang.org/protobuf/reflect/protoreflect"
  15. pref "google.golang.org/protobuf/reflect/protoreflect"
  16. )
  17. // legacyWrapMessage wraps v as a protoreflect.ProtoMessage,
  18. // where v must be a *struct kind and not implement the v2 API already.
  19. func legacyWrapMessage(v reflect.Value) pref.ProtoMessage {
  20. mt := legacyLoadMessageInfo(v.Type(), "")
  21. return mt.MessageOf(v.Interface()).Interface()
  22. }
  23. var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo
  24. // legacyLoadMessageInfo dynamically loads a *MessageInfo for t,
  25. // where t must be a *struct kind and not implement the v2 API already.
  26. // The provided name is used if it cannot be determined from the message.
  27. func legacyLoadMessageInfo(t reflect.Type, name pref.FullName) *MessageInfo {
  28. // Fast-path: check if a MessageInfo is cached for this concrete type.
  29. if mt, ok := legacyMessageTypeCache.Load(t); ok {
  30. return mt.(*MessageInfo)
  31. }
  32. // Slow-path: derive message descriptor and initialize MessageInfo.
  33. mi := &MessageInfo{
  34. Desc: legacyLoadMessageDesc(t, name),
  35. GoReflectType: t,
  36. }
  37. if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok {
  38. return mi.(*MessageInfo)
  39. }
  40. return mi
  41. }
  42. var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor
  43. // LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type,
  44. // which must be a *struct kind and not implement the v2 API already.
  45. //
  46. // This is exported for testing purposes.
  47. func LegacyLoadMessageDesc(t reflect.Type) pref.MessageDescriptor {
  48. return legacyLoadMessageDesc(t, "")
  49. }
  50. func legacyLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
  51. // Fast-path: check if a MessageDescriptor is cached for this concrete type.
  52. if mi, ok := legacyMessageDescCache.Load(t); ok {
  53. return mi.(pref.MessageDescriptor)
  54. }
  55. // Slow-path: initialize MessageDescriptor from the raw descriptor.
  56. mv := reflect.New(t.Elem()).Interface()
  57. if _, ok := mv.(pref.ProtoMessage); ok {
  58. panic(fmt.Sprintf("%v already implements proto.Message", t))
  59. }
  60. mdV1, ok := mv.(messageV1)
  61. if !ok {
  62. return aberrantLoadMessageDesc(t, name)
  63. }
  64. b, idxs := mdV1.Descriptor()
  65. md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
  66. for _, i := range idxs[1:] {
  67. md = md.Messages().Get(i)
  68. }
  69. if name != "" && md.FullName() != name {
  70. panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name))
  71. }
  72. if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok {
  73. return md.(protoreflect.MessageDescriptor)
  74. }
  75. return md
  76. }
  77. var (
  78. aberrantMessageDescLock sync.Mutex
  79. aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor
  80. )
  81. // aberrantLoadMessageDesc returns an EnumDescriptor derived from the Go type,
  82. // which must not implement protoreflect.ProtoMessage or messageV1.
  83. //
  84. // This is a best-effort derivation of the message descriptor using the protobuf
  85. // tags on the struct fields.
  86. func aberrantLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
  87. aberrantMessageDescLock.Lock()
  88. defer aberrantMessageDescLock.Unlock()
  89. if aberrantMessageDescCache == nil {
  90. aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor)
  91. }
  92. return aberrantLoadMessageDescReentrant(t, name)
  93. }
  94. func aberrantLoadMessageDescReentrant(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
  95. // Fast-path: check if an MessageDescriptor is cached for this concrete type.
  96. if md, ok := aberrantMessageDescCache[t]; ok {
  97. return md
  98. }
  99. // Slow-path: construct a descriptor from the Go struct type (best-effort).
  100. // Cache the MessageDescriptor early on so that we can resolve internal
  101. // cyclic references.
  102. md := &filedesc.Message{L2: new(filedesc.MessageL2)}
  103. md.L0.FullName = aberrantDeriveMessageName(t.Elem(), name)
  104. md.L0.ParentFile = filedesc.SurrogateProto2
  105. aberrantMessageDescCache[t] = md
  106. // Try to determine if the message is using proto3 by checking scalars.
  107. for i := 0; i < t.Elem().NumField(); i++ {
  108. f := t.Elem().Field(i)
  109. if tag := f.Tag.Get("protobuf"); tag != "" {
  110. switch f.Type.Kind() {
  111. case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
  112. md.L0.ParentFile = filedesc.SurrogateProto3
  113. }
  114. for _, s := range strings.Split(tag, ",") {
  115. if s == "proto3" {
  116. md.L0.ParentFile = filedesc.SurrogateProto3
  117. }
  118. }
  119. }
  120. }
  121. // Obtain a list of oneof wrapper types.
  122. var oneofWrappers []reflect.Type
  123. if fn, ok := t.MethodByName("XXX_OneofFuncs"); ok {
  124. vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[3]
  125. for _, v := range vs.Interface().([]interface{}) {
  126. oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
  127. }
  128. }
  129. if fn, ok := t.MethodByName("XXX_OneofWrappers"); ok {
  130. vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
  131. for _, v := range vs.Interface().([]interface{}) {
  132. oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
  133. }
  134. }
  135. // Obtain a list of the extension ranges.
  136. if fn, ok := t.MethodByName("ExtensionRangeArray"); ok {
  137. vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
  138. for i := 0; i < vs.Len(); i++ {
  139. v := vs.Index(i)
  140. md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]pref.FieldNumber{
  141. pref.FieldNumber(v.FieldByName("Start").Int()),
  142. pref.FieldNumber(v.FieldByName("End").Int() + 1),
  143. })
  144. md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil)
  145. }
  146. }
  147. // Derive the message fields by inspecting the struct fields.
  148. for i := 0; i < t.Elem().NumField(); i++ {
  149. f := t.Elem().Field(i)
  150. if tag := f.Tag.Get("protobuf"); tag != "" {
  151. tagKey := f.Tag.Get("protobuf_key")
  152. tagVal := f.Tag.Get("protobuf_val")
  153. aberrantAppendField(md, f.Type, tag, tagKey, tagVal)
  154. }
  155. if tag := f.Tag.Get("protobuf_oneof"); tag != "" {
  156. n := len(md.L2.Oneofs.List)
  157. md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{})
  158. od := &md.L2.Oneofs.List[n]
  159. od.L0.FullName = md.FullName().Append(pref.Name(tag))
  160. od.L0.ParentFile = md.L0.ParentFile
  161. od.L0.Parent = md
  162. od.L0.Index = n
  163. for _, t := range oneofWrappers {
  164. if t.Implements(f.Type) {
  165. f := t.Elem().Field(0)
  166. if tag := f.Tag.Get("protobuf"); tag != "" {
  167. aberrantAppendField(md, f.Type, tag, "", "")
  168. fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1]
  169. fd.L1.ContainingOneof = od
  170. od.L1.Fields.List = append(od.L1.Fields.List, fd)
  171. }
  172. }
  173. }
  174. }
  175. }
  176. // TODO: Use custom Marshal/Unmarshal methods for the fast-path?
  177. return md
  178. }
  179. func aberrantDeriveMessageName(t reflect.Type, name pref.FullName) pref.FullName {
  180. if name.IsValid() {
  181. return name
  182. }
  183. func() {
  184. defer func() { recover() }() // swallow possible nil panics
  185. if m, ok := reflect.New(t).Interface().(interface{ XXX_MessageName() string }); ok {
  186. name = pref.FullName(m.XXX_MessageName())
  187. }
  188. }()
  189. if name.IsValid() {
  190. return name
  191. }
  192. return aberrantDeriveFullName(t)
  193. }
  194. func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) {
  195. t := goType
  196. isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct
  197. isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
  198. if isOptional || isRepeated {
  199. t = t.Elem()
  200. }
  201. fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field)
  202. // Append field descriptor to the message.
  203. n := len(md.L2.Fields.List)
  204. md.L2.Fields.List = append(md.L2.Fields.List, *fd)
  205. fd = &md.L2.Fields.List[n]
  206. fd.L0.FullName = md.FullName().Append(fd.Name())
  207. fd.L0.ParentFile = md.L0.ParentFile
  208. fd.L0.Parent = md
  209. fd.L0.Index = n
  210. if fd.L1.IsWeak || fd.L1.HasPacked {
  211. fd.L1.Options = func() pref.ProtoMessage {
  212. opts := descopts.Field.ProtoReflect().New()
  213. if fd.L1.IsWeak {
  214. opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOf(true))
  215. }
  216. if fd.L1.HasPacked {
  217. opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOf(fd.L1.IsPacked))
  218. }
  219. return opts.Interface()
  220. }
  221. }
  222. // Populate Enum and Message.
  223. if fd.Enum() == nil && fd.Kind() == pref.EnumKind {
  224. switch v := reflect.Zero(t).Interface().(type) {
  225. case pref.Enum:
  226. fd.L1.Enum = v.Descriptor()
  227. default:
  228. fd.L1.Enum = LegacyLoadEnumDesc(t)
  229. }
  230. }
  231. if fd.Message() == nil && (fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind) {
  232. switch v := reflect.Zero(t).Interface().(type) {
  233. case pref.ProtoMessage:
  234. fd.L1.Message = v.ProtoReflect().Descriptor()
  235. case messageV1:
  236. fd.L1.Message = LegacyLoadMessageDesc(t)
  237. default:
  238. if t.Kind() == reflect.Map {
  239. n := len(md.L1.Messages.List)
  240. md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)})
  241. md2 := &md.L1.Messages.List[n]
  242. md2.L0.FullName = md.FullName().Append(pref.Name(strs.MapEntryName(string(fd.Name()))))
  243. md2.L0.ParentFile = md.L0.ParentFile
  244. md2.L0.Parent = md
  245. md2.L0.Index = n
  246. md2.L2.IsMapEntry = true
  247. md2.L2.Options = func() pref.ProtoMessage {
  248. opts := descopts.Message.ProtoReflect().New()
  249. opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOf(true))
  250. return opts.Interface()
  251. }
  252. aberrantAppendField(md2, t.Key(), tagKey, "", "")
  253. aberrantAppendField(md2, t.Elem(), tagVal, "", "")
  254. fd.L1.Message = md2
  255. break
  256. }
  257. fd.L1.Message = aberrantLoadMessageDescReentrant(t, "")
  258. }
  259. }
  260. }
  261. type placeholderEnumValues struct {
  262. protoreflect.EnumValueDescriptors
  263. }
  264. func (placeholderEnumValues) ByNumber(n pref.EnumNumber) pref.EnumValueDescriptor {
  265. return filedesc.PlaceholderEnumValue(pref.FullName(fmt.Sprintf("UNKNOWN_%d", n)))
  266. }