// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package impl import ( "fmt" "reflect" "strings" "sync" "google.golang.org/protobuf/internal/descopts" ptag "google.golang.org/protobuf/internal/encoding/tag" "google.golang.org/protobuf/internal/errors" "google.golang.org/protobuf/internal/filedesc" "google.golang.org/protobuf/internal/strs" "google.golang.org/protobuf/reflect/protoreflect" pref "google.golang.org/protobuf/reflect/protoreflect" piface "google.golang.org/protobuf/runtime/protoiface" ) // legacyWrapMessage wraps v as a protoreflect.ProtoMessage, // where v must be a *struct kind and not implement the v2 API already. func legacyWrapMessage(v reflect.Value) pref.ProtoMessage { typ := v.Type() if typ.Kind() != reflect.Ptr || typ.Elem().Kind() != reflect.Struct { return aberrantMessage{v: v} } mt := legacyLoadMessageInfo(typ, "") return mt.MessageOf(v.Interface()).Interface() } var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo // legacyLoadMessageInfo dynamically loads a *MessageInfo for t, // where t must be a *struct kind and not implement the v2 API already. // The provided name is used if it cannot be determined from the message. func legacyLoadMessageInfo(t reflect.Type, name pref.FullName) *MessageInfo { // Fast-path: check if a MessageInfo is cached for this concrete type. if mt, ok := legacyMessageTypeCache.Load(t); ok { return mt.(*MessageInfo) } // Slow-path: derive message descriptor and initialize MessageInfo. mi := &MessageInfo{ Desc: legacyLoadMessageDesc(t, name), GoReflectType: t, } v := reflect.Zero(t).Interface() if _, ok := v.(legacyMarshaler); ok { mi.methods.MarshalAppend = legacyMarshalAppend mi.methods.Size = legacySize } if _, ok := v.(legacyUnmarshaler); ok { mi.methods.Unmarshal = legacyUnmarshal } if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok { return mi.(*MessageInfo) } return mi } var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor // LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type, // which must be a *struct kind and not implement the v2 API already. // // This is exported for testing purposes. func LegacyLoadMessageDesc(t reflect.Type) pref.MessageDescriptor { return legacyLoadMessageDesc(t, "") } func legacyLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor { // Fast-path: check if a MessageDescriptor is cached for this concrete type. if mi, ok := legacyMessageDescCache.Load(t); ok { return mi.(pref.MessageDescriptor) } // Slow-path: initialize MessageDescriptor from the raw descriptor. mv := reflect.Zero(t).Interface() if _, ok := mv.(pref.ProtoMessage); ok { panic(fmt.Sprintf("%v already implements proto.Message", t)) } mdV1, ok := mv.(messageV1) if !ok { return aberrantLoadMessageDesc(t, name) } b, idxs := mdV1.Descriptor() md := legacyLoadFileDesc(b).Messages().Get(idxs[0]) for _, i := range idxs[1:] { md = md.Messages().Get(i) } if name != "" && md.FullName() != name { panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name)) } if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok { return md.(protoreflect.MessageDescriptor) } return md } var ( aberrantMessageDescLock sync.Mutex aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor ) // aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type, // which must not implement protoreflect.ProtoMessage or messageV1. // // This is a best-effort derivation of the message descriptor using the protobuf // tags on the struct fields. func aberrantLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor { aberrantMessageDescLock.Lock() defer aberrantMessageDescLock.Unlock() if aberrantMessageDescCache == nil { aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor) } return aberrantLoadMessageDescReentrant(t, name) } func aberrantLoadMessageDescReentrant(t reflect.Type, name pref.FullName) pref.MessageDescriptor { // Fast-path: check if an MessageDescriptor is cached for this concrete type. if md, ok := aberrantMessageDescCache[t]; ok { return md } // Slow-path: construct a descriptor from the Go struct type (best-effort). // Cache the MessageDescriptor early on so that we can resolve internal // cyclic references. md := &filedesc.Message{L2: new(filedesc.MessageL2)} md.L0.FullName = aberrantDeriveMessageName(t, name) md.L0.ParentFile = filedesc.SurrogateProto2 aberrantMessageDescCache[t] = md if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct { return md } // Try to determine if the message is using proto3 by checking scalars. for i := 0; i < t.Elem().NumField(); i++ { f := t.Elem().Field(i) if tag := f.Tag.Get("protobuf"); tag != "" { switch f.Type.Kind() { case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String: md.L0.ParentFile = filedesc.SurrogateProto3 } for _, s := range strings.Split(tag, ",") { if s == "proto3" { md.L0.ParentFile = filedesc.SurrogateProto3 } } } } // Obtain a list of oneof wrapper types. var oneofWrappers []reflect.Type if fn, ok := t.MethodByName("XXX_OneofFuncs"); ok { vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[3] for _, v := range vs.Interface().([]interface{}) { oneofWrappers = append(oneofWrappers, reflect.TypeOf(v)) } } if fn, ok := t.MethodByName("XXX_OneofWrappers"); ok { vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0] for _, v := range vs.Interface().([]interface{}) { oneofWrappers = append(oneofWrappers, reflect.TypeOf(v)) } } // Obtain a list of the extension ranges. if fn, ok := t.MethodByName("ExtensionRangeArray"); ok { vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0] for i := 0; i < vs.Len(); i++ { v := vs.Index(i) md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]pref.FieldNumber{ pref.FieldNumber(v.FieldByName("Start").Int()), pref.FieldNumber(v.FieldByName("End").Int() + 1), }) md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil) } } // Derive the message fields by inspecting the struct fields. for i := 0; i < t.Elem().NumField(); i++ { f := t.Elem().Field(i) if tag := f.Tag.Get("protobuf"); tag != "" { tagKey := f.Tag.Get("protobuf_key") tagVal := f.Tag.Get("protobuf_val") aberrantAppendField(md, f.Type, tag, tagKey, tagVal) } if tag := f.Tag.Get("protobuf_oneof"); tag != "" { n := len(md.L2.Oneofs.List) md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{}) od := &md.L2.Oneofs.List[n] od.L0.FullName = md.FullName().Append(pref.Name(tag)) od.L0.ParentFile = md.L0.ParentFile od.L0.Parent = md od.L0.Index = n for _, t := range oneofWrappers { if t.Implements(f.Type) { f := t.Elem().Field(0) if tag := f.Tag.Get("protobuf"); tag != "" { aberrantAppendField(md, f.Type, tag, "", "") fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1] fd.L1.ContainingOneof = od od.L1.Fields.List = append(od.L1.Fields.List, fd) } } } } } return md } func aberrantDeriveMessageName(t reflect.Type, name pref.FullName) pref.FullName { if name.IsValid() { return name } func() { defer func() { recover() }() // swallow possible nil panics if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok { name = pref.FullName(m.XXX_MessageName()) } }() if name.IsValid() { return name } if t.Kind() == reflect.Ptr { t = t.Elem() } return aberrantDeriveFullName(t) } func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) { t := goType isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8 if isOptional || isRepeated { t = t.Elem() } fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field) // Append field descriptor to the message. n := len(md.L2.Fields.List) md.L2.Fields.List = append(md.L2.Fields.List, *fd) fd = &md.L2.Fields.List[n] fd.L0.FullName = md.FullName().Append(fd.Name()) fd.L0.ParentFile = md.L0.ParentFile fd.L0.Parent = md fd.L0.Index = n if fd.L1.IsWeak || fd.L1.HasPacked { fd.L1.Options = func() pref.ProtoMessage { opts := descopts.Field.ProtoReflect().New() if fd.L1.IsWeak { opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true)) } if fd.L1.HasPacked { opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked)) } return opts.Interface() } } // Populate Enum and Message. if fd.Enum() == nil && fd.Kind() == pref.EnumKind { switch v := reflect.Zero(t).Interface().(type) { case pref.Enum: fd.L1.Enum = v.Descriptor() default: fd.L1.Enum = LegacyLoadEnumDesc(t) } } if fd.Message() == nil && (fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind) { switch v := reflect.Zero(t).Interface().(type) { case pref.ProtoMessage: fd.L1.Message = v.ProtoReflect().Descriptor() case messageV1: fd.L1.Message = LegacyLoadMessageDesc(t) default: if t.Kind() == reflect.Map { n := len(md.L1.Messages.List) md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)}) md2 := &md.L1.Messages.List[n] md2.L0.FullName = md.FullName().Append(pref.Name(strs.MapEntryName(string(fd.Name())))) md2.L0.ParentFile = md.L0.ParentFile md2.L0.Parent = md md2.L0.Index = n md2.L2.IsMapEntry = true md2.L2.Options = func() pref.ProtoMessage { opts := descopts.Message.ProtoReflect().New() opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true)) return opts.Interface() } aberrantAppendField(md2, t.Key(), tagKey, "", "") aberrantAppendField(md2, t.Elem(), tagVal, "", "") fd.L1.Message = md2 break } fd.L1.Message = aberrantLoadMessageDescReentrant(t, "") } } } type placeholderEnumValues struct { protoreflect.EnumValueDescriptors } func (placeholderEnumValues) ByNumber(n pref.EnumNumber) pref.EnumValueDescriptor { return filedesc.PlaceholderEnumValue(pref.FullName(fmt.Sprintf("UNKNOWN_%d", n))) } // legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder. type legacyMarshaler interface { Marshal() ([]byte, error) } // legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder. type legacyUnmarshaler interface { Unmarshal([]byte) error } var legacyProtoMethods = &piface.Methods{ Size: legacySize, MarshalAppend: legacyMarshalAppend, Unmarshal: legacyUnmarshal, } func legacySize(m protoreflect.Message, opts piface.MarshalOptions) int { b, _ := legacyMarshalAppend(nil, m, opts) return len(b) } func legacyMarshalAppend(b []byte, m protoreflect.Message, opts piface.MarshalOptions) ([]byte, error) { v := m.(unwrapper).protoUnwrap() marshaler, ok := v.(legacyMarshaler) if !ok { return nil, errors.New("%T does not implement Marshal", v) } out, err := marshaler.Marshal() if b != nil { out = append(b, out...) } return out, err } func legacyUnmarshal(b []byte, m protoreflect.Message, opts piface.UnmarshalOptions) error { v := m.(unwrapper).protoUnwrap() unmarshaler, ok := v.(legacyUnmarshaler) if !ok { return errors.New("%T does not implement Marshal", v) } return unmarshaler.Unmarshal(b) } // aberrantMessageType implements MessageType for all types other than pointer-to-struct. type aberrantMessageType struct { t reflect.Type } func (mt aberrantMessageType) New() pref.Message { return aberrantMessage{reflect.Zero(mt.t)} } func (mt aberrantMessageType) Zero() pref.Message { return aberrantMessage{reflect.Zero(mt.t)} } func (mt aberrantMessageType) GoType() reflect.Type { return mt.t } func (mt aberrantMessageType) Descriptor() pref.MessageDescriptor { return LegacyLoadMessageDesc(mt.t) } // aberrantMessage implements Message for all types other than pointer-to-struct. // // When the underlying type implements legacyMarshaler or legacyUnmarshaler, // the aberrant Message can be marshaled or unmarshaled. Otherwise, there is // not much that can be done with values of this type. type aberrantMessage struct { v reflect.Value } func (m aberrantMessage) ProtoReflect() pref.Message { return m } func (m aberrantMessage) Descriptor() pref.MessageDescriptor { return LegacyLoadMessageDesc(m.v.Type()) } func (m aberrantMessage) Type() pref.MessageType { return aberrantMessageType{m.v.Type()} } func (m aberrantMessage) New() pref.Message { return aberrantMessage{reflect.Zero(m.v.Type())} } func (m aberrantMessage) Interface() pref.ProtoMessage { return m } func (m aberrantMessage) Range(f func(pref.FieldDescriptor, pref.Value) bool) { } func (m aberrantMessage) Has(pref.FieldDescriptor) bool { panic("invalid field descriptor") } func (m aberrantMessage) Clear(pref.FieldDescriptor) { panic("invalid field descriptor") } func (m aberrantMessage) Get(pref.FieldDescriptor) pref.Value { panic("invalid field descriptor") } func (m aberrantMessage) Set(pref.FieldDescriptor, pref.Value) { panic("invalid field descriptor") } func (m aberrantMessage) Mutable(pref.FieldDescriptor) pref.Value { panic("invalid field descriptor") } func (m aberrantMessage) NewField(pref.FieldDescriptor) pref.Value { panic("invalid field descriptor") } func (m aberrantMessage) WhichOneof(pref.OneofDescriptor) pref.FieldDescriptor { panic("invalid oneof descriptor") } func (m aberrantMessage) GetUnknown() pref.RawFields { return nil } func (m aberrantMessage) SetUnknown(pref.RawFields) { // SetUnknown discards its input on messages which don't support unknown field storage. } func (m aberrantMessage) ProtoMethods() *piface.Methods { return legacyProtoMethods } func (m aberrantMessage) protoUnwrap() interface{} { return m.v.Interface() }