// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package impl import ( "fmt" "reflect" "google.golang.org/protobuf/internal/pragma" pref "google.golang.org/protobuf/reflect/protoreflect" ) type reflectMessageInfo struct { fields map[pref.FieldNumber]*fieldInfo oneofs map[pref.Name]*oneofInfo // denseFields is a subset of fields where: // 0 < fieldDesc.Number() < len(denseFields) // It provides faster access to the fieldInfo, but may be incomplete. denseFields []*fieldInfo // rangeInfos is a list of all fields (not belonging to a oneof) and oneofs. rangeInfos []interface{} // either *fieldInfo or *oneofInfo getUnknown func(pointer) pref.RawFields setUnknown func(pointer, pref.RawFields) extensionMap func(pointer) *extensionMap nilMessage atomicNilMessage } // makeReflectFuncs generates the set of functions to support reflection. func (mi *MessageInfo) makeReflectFuncs(t reflect.Type, si structInfo) { mi.makeKnownFieldsFunc(si) mi.makeUnknownFieldsFunc(t, si) mi.makeExtensionFieldsFunc(t, si) } // makeKnownFieldsFunc generates functions for operations that can be performed // on each protobuf message field. It takes in a reflect.Type representing the // Go struct and matches message fields with struct fields. // // This code assumes that the struct is well-formed and panics if there are // any discrepancies. func (mi *MessageInfo) makeKnownFieldsFunc(si structInfo) { mi.fields = map[pref.FieldNumber]*fieldInfo{} md := mi.Desc fds := md.Fields() for i := 0; i < fds.Len(); i++ { fd := fds.Get(i) fs := si.fieldsByNumber[fd.Number()] var fi fieldInfo switch { case fd.ContainingOneof() != nil: fi = fieldInfoForOneof(fd, si.oneofsByName[fd.ContainingOneof().Name()], mi.Exporter, si.oneofWrappersByNumber[fd.Number()]) case fd.IsMap(): fi = fieldInfoForMap(fd, fs, mi.Exporter) case fd.IsList(): fi = fieldInfoForList(fd, fs, mi.Exporter) case fd.IsWeak(): fi = fieldInfoForWeakMessage(fd, si.weakOffset) case fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind: fi = fieldInfoForMessage(fd, fs, mi.Exporter) default: fi = fieldInfoForScalar(fd, fs, mi.Exporter) } mi.fields[fd.Number()] = &fi } mi.oneofs = map[pref.Name]*oneofInfo{} for i := 0; i < md.Oneofs().Len(); i++ { od := md.Oneofs().Get(i) mi.oneofs[od.Name()] = makeOneofInfo(od, si.oneofsByName[od.Name()], mi.Exporter, si.oneofWrappersByType) } mi.denseFields = make([]*fieldInfo, fds.Len()*2) for i := 0; i < fds.Len(); i++ { if fd := fds.Get(i); int(fd.Number()) < len(mi.denseFields) { mi.denseFields[fd.Number()] = mi.fields[fd.Number()] } } for i := 0; i < fds.Len(); { fd := fds.Get(i) if od := fd.ContainingOneof(); od != nil { mi.rangeInfos = append(mi.rangeInfos, mi.oneofs[od.Name()]) i += od.Fields().Len() } else { mi.rangeInfos = append(mi.rangeInfos, mi.fields[fd.Number()]) i++ } } } func (mi *MessageInfo) makeUnknownFieldsFunc(t reflect.Type, si structInfo) { mi.getUnknown = func(pointer) pref.RawFields { return nil } mi.setUnknown = func(pointer, pref.RawFields) { return } if si.unknownOffset.IsValid() { mi.getUnknown = func(p pointer) pref.RawFields { if p.IsNil() { return nil } rv := p.Apply(si.unknownOffset).AsValueOf(unknownFieldsType) return pref.RawFields(*rv.Interface().(*[]byte)) } mi.setUnknown = func(p pointer, b pref.RawFields) { if p.IsNil() { panic("invalid SetUnknown on nil Message") } rv := p.Apply(si.unknownOffset).AsValueOf(unknownFieldsType) *rv.Interface().(*[]byte) = []byte(b) } } else { mi.getUnknown = func(pointer) pref.RawFields { return nil } mi.setUnknown = func(p pointer, _ pref.RawFields) { if p.IsNil() { panic("invalid SetUnknown on nil Message") } } } } func (mi *MessageInfo) makeExtensionFieldsFunc(t reflect.Type, si structInfo) { if si.extensionOffset.IsValid() { mi.extensionMap = func(p pointer) *extensionMap { if p.IsNil() { return (*extensionMap)(nil) } v := p.Apply(si.extensionOffset).AsValueOf(extensionFieldsType) return (*extensionMap)(v.Interface().(*map[int32]ExtensionField)) } } else { mi.extensionMap = func(pointer) *extensionMap { return (*extensionMap)(nil) } } } type extensionMap map[int32]ExtensionField func (m *extensionMap) Range(f func(pref.FieldDescriptor, pref.Value) bool) { if m != nil { for _, x := range *m { xt := x.GetType() if !f(xt.TypeDescriptor(), x.Value()) { return } } } } func (m *extensionMap) Has(xt pref.ExtensionType) (ok bool) { if m != nil { _, ok = (*m)[int32(xt.TypeDescriptor().Number())] } return ok } func (m *extensionMap) Clear(xt pref.ExtensionType) { delete(*m, int32(xt.TypeDescriptor().Number())) } func (m *extensionMap) Get(xt pref.ExtensionType) pref.Value { xd := xt.TypeDescriptor() if m != nil { if x, ok := (*m)[int32(xd.Number())]; ok { return x.Value() } } return xt.Zero() } func (m *extensionMap) Set(xt pref.ExtensionType, v pref.Value) { if !xt.IsValidValue(v) { panic(fmt.Sprintf("%v: assigning invalid value", xt.TypeDescriptor().FullName())) } if *m == nil { *m = make(map[int32]ExtensionField) } var x ExtensionField x.Set(xt, v) (*m)[int32(xt.TypeDescriptor().Number())] = x } func (m *extensionMap) Mutable(xt pref.ExtensionType) pref.Value { xd := xt.TypeDescriptor() if xd.Kind() != pref.MessageKind && xd.Kind() != pref.GroupKind && !xd.IsList() && !xd.IsMap() { panic("invalid Mutable on field with non-composite type") } if x, ok := (*m)[int32(xd.Number())]; ok { return x.Value() } v := xt.New() m.Set(xt, v) return v } // MessageState is a data structure that is nested as the first field in a // concrete message. It provides a way to implement the ProtoReflect method // in an allocation-free way without needing to have a shadow Go type generated // for every message type. This technique only works using unsafe. // // // Example generated code: // // type M struct { // state protoimpl.MessageState // // Field1 int32 // Field2 string // Field3 *BarMessage // ... // } // // func (m *M) ProtoReflect() protoreflect.Message { // mi := &file_fizz_buzz_proto_msgInfos[5] // if protoimpl.UnsafeEnabled && m != nil { // ms := protoimpl.X.MessageStateOf(Pointer(m)) // if ms.LoadMessageInfo() == nil { // ms.StoreMessageInfo(mi) // } // return ms // } // return mi.MessageOf(m) // } // // The MessageState type holds a *MessageInfo, which must be atomically set to // the message info associated with a given message instance. // By unsafely converting a *M into a *MessageState, the MessageState object // has access to all the information needed to implement protobuf reflection. // It has access to the message info as its first field, and a pointer to the // MessageState is identical to a pointer to the concrete message value. // // // Requirements: // • The type M must implement protoreflect.ProtoMessage. // • The address of m must not be nil. // • The address of m and the address of m.state must be equal, // even though they are different Go types. type MessageState struct { pragma.NoUnkeyedLiterals pragma.DoNotCompare pragma.DoNotCopy mi *MessageInfo } type messageState MessageState var ( _ pref.Message = (*messageState)(nil) _ unwrapper = (*messageState)(nil) ) // messageDataType is a tuple of a pointer to the message data and // a pointer to the message type. It is a generalized way of providing a // reflective view over a message instance. The disadvantage of this approach // is the need to allocate this tuple of 16B. type messageDataType struct { p pointer mi *MessageInfo } type ( messageReflectWrapper messageDataType messageIfaceWrapper messageDataType ) var ( _ pref.Message = (*messageReflectWrapper)(nil) _ unwrapper = (*messageReflectWrapper)(nil) _ pref.ProtoMessage = (*messageIfaceWrapper)(nil) _ unwrapper = (*messageIfaceWrapper)(nil) ) // MessageOf returns a reflective view over a message. The input must be a // pointer to a named Go struct. If the provided type has a ProtoReflect method, // it must be implemented by calling this method. func (mi *MessageInfo) MessageOf(m interface{}) pref.Message { // TODO: Switch the input to be an opaque Pointer. if reflect.TypeOf(m) != mi.GoReflectType { panic(fmt.Sprintf("type mismatch: got %T, want %v", m, mi.GoReflectType)) } p := pointerOfIface(m) if p.IsNil() { return mi.nilMessage.Init(mi) } return &messageReflectWrapper{p, mi} } func (m *messageReflectWrapper) pointer() pointer { return m.p } func (m *messageReflectWrapper) messageInfo() *MessageInfo { return m.mi } func (m *messageIfaceWrapper) ProtoReflect() pref.Message { return (*messageReflectWrapper)(m) } func (m *messageIfaceWrapper) protoUnwrap() interface{} { return m.p.AsIfaceOf(m.mi.GoReflectType.Elem()) } // checkField verifies that the provided field descriptor is valid. // Exactly one of the returned values is populated. func (mi *MessageInfo) checkField(fd pref.FieldDescriptor) (*fieldInfo, pref.ExtensionType) { var fi *fieldInfo if n := fd.Number(); 0 < n && int(n) < len(mi.denseFields) { fi = mi.denseFields[n] } else { fi = mi.fields[n] } if fi != nil { if fi.fieldDesc != fd { panic("mismatching field descriptor") } return fi, nil } if fd.IsExtension() { if fd.ContainingMessage().FullName() != mi.Desc.FullName() { // TODO: Should this be exact containing message descriptor match? panic("mismatching containing message") } if !mi.Desc.ExtensionRanges().Has(fd.Number()) { panic("invalid extension field") } xtd, ok := fd.(pref.ExtensionTypeDescriptor) if !ok { panic("extension descriptor does not implement ExtensionTypeDescriptor") } return nil, xtd.Type() } panic("invalid field descriptor") }