123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461 |
- // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
- // Use of this source code is governed by a MIT license found in the LICENSE file.
- package codec
- import (
- "encoding"
- "fmt"
- "io"
- "reflect"
- "sort"
- "sync"
- )
- const (
- defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
- )
- // AsSymbolFlag defines what should be encoded as symbols.
- type AsSymbolFlag uint8
- const (
- // AsSymbolDefault is default.
- // Currently, this means only encode struct field names as symbols.
- // The default is subject to change.
- AsSymbolDefault AsSymbolFlag = iota
- // AsSymbolAll means encode anything which could be a symbol as a symbol.
- AsSymbolAll = 0xfe
- // AsSymbolNone means do not encode anything as a symbol.
- AsSymbolNone = 1 << iota
- // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
- AsSymbolMapStringKeysFlag
- // AsSymbolStructFieldName means encode struct field names as symbols.
- AsSymbolStructFieldNameFlag
- )
- // encWriter abstracts writing to a byte array or to an io.Writer.
- type encWriter interface {
- writeb([]byte)
- writestr(string)
- writen1(byte)
- writen2(byte, byte)
- atEndOfEncode()
- }
- // encDriver abstracts the actual codec (binc vs msgpack, etc)
- type encDriver interface {
- IsBuiltinType(rt uintptr) bool
- EncodeBuiltin(rt uintptr, v interface{})
- EncodeNil()
- EncodeInt(i int64)
- EncodeUint(i uint64)
- EncodeBool(b bool)
- EncodeFloat32(f float32)
- EncodeFloat64(f float64)
- // encodeExtPreamble(xtag byte, length int)
- EncodeRawExt(re *RawExt, e *Encoder)
- EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
- EncodeArrayStart(length int)
- EncodeMapStart(length int)
- EncodeString(c charEncoding, v string)
- EncodeSymbol(v string)
- EncodeStringBytes(c charEncoding, v []byte)
- //TODO
- //encBignum(f *big.Int)
- //encStringRunes(c charEncoding, v []rune)
- reset()
- }
- type encDriverAsis interface {
- EncodeAsis(v []byte)
- }
- type encNoSeparator struct{}
- func (_ encNoSeparator) EncodeEnd() {}
- type ioEncWriterWriter interface {
- WriteByte(c byte) error
- WriteString(s string) (n int, err error)
- Write(p []byte) (n int, err error)
- }
- type ioEncStringWriter interface {
- WriteString(s string) (n int, err error)
- }
- type EncodeOptions struct {
- // Encode a struct as an array, and not as a map
- StructToArray bool
- // Canonical representation means that encoding a value will always result in the same
- // sequence of bytes.
- //
- // This only affects maps, as the iteration order for maps is random.
- //
- // The implementation MAY use the natural sort order for the map keys if possible:
- //
- // - If there is a natural sort order (ie for number, bool, string or []byte keys),
- // then the map keys are first sorted in natural order and then written
- // with corresponding map values to the strema.
- // - If there is no natural sort order, then the map keys will first be
- // encoded into []byte, and then sorted,
- // before writing the sorted keys and the corresponding map values to the stream.
- //
- Canonical bool
- // CheckCircularRef controls whether we check for circular references
- // and error fast during an encode.
- //
- // If enabled, an error is received if a pointer to a struct
- // references itself either directly or through one of its fields (iteratively).
- //
- // This is opt-in, as there may be a performance hit to checking circular references.
- CheckCircularRef bool
- // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
- // when checking if a value is empty.
- //
- // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
- RecursiveEmptyCheck bool
- // Raw controls whether we encode Raw values.
- // This is a "dangerous" option and must be explicitly set.
- // If set, we blindly encode Raw values as-is, without checking
- // if they are a correct representation of a value in that format.
- // If unset, we error out.
- Raw bool
- // AsSymbols defines what should be encoded as symbols.
- //
- // Encoding as symbols can reduce the encoded size significantly.
- //
- // However, during decoding, each string to be encoded as a symbol must
- // be checked to see if it has been seen before. Consequently, encoding time
- // will increase if using symbols, because string comparisons has a clear cost.
- //
- // Sample values:
- // AsSymbolNone
- // AsSymbolAll
- // AsSymbolMapStringKeys
- // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
- AsSymbols AsSymbolFlag
- }
- // ---------------------------------------------
- type simpleIoEncWriterWriter struct {
- w io.Writer
- bw io.ByteWriter
- sw ioEncStringWriter
- bs [1]byte
- }
- func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
- if o.bw != nil {
- return o.bw.WriteByte(c)
- }
- // _, err = o.w.Write([]byte{c})
- o.bs[0] = c
- _, err = o.w.Write(o.bs[:])
- return
- }
- func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
- if o.sw != nil {
- return o.sw.WriteString(s)
- }
- // return o.w.Write([]byte(s))
- return o.w.Write(bytesView(s))
- }
- func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
- return o.w.Write(p)
- }
- // ----------------------------------------
- // ioEncWriter implements encWriter and can write to an io.Writer implementation
- type ioEncWriter struct {
- w ioEncWriterWriter
- s simpleIoEncWriterWriter
- // x [8]byte // temp byte array re-used internally for efficiency
- }
- func (z *ioEncWriter) writeb(bs []byte) {
- if len(bs) == 0 {
- return
- }
- n, err := z.w.Write(bs)
- if err != nil {
- panic(err)
- }
- if n != len(bs) {
- panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n))
- }
- }
- func (z *ioEncWriter) writestr(s string) {
- n, err := z.w.WriteString(s)
- if err != nil {
- panic(err)
- }
- if n != len(s) {
- panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n))
- }
- }
- func (z *ioEncWriter) writen1(b byte) {
- if err := z.w.WriteByte(b); err != nil {
- panic(err)
- }
- }
- func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
- z.writen1(b1)
- z.writen1(b2)
- }
- func (z *ioEncWriter) atEndOfEncode() {}
- // ----------------------------------------
- // bytesEncWriter implements encWriter and can write to an byte slice.
- // It is used by Marshal function.
- type bytesEncWriter struct {
- b []byte
- c int // cursor
- out *[]byte // write out on atEndOfEncode
- }
- func (z *bytesEncWriter) writeb(s []byte) {
- if len(s) == 0 {
- return
- }
- oc, a := z.growNoAlloc(len(s))
- if a {
- z.growAlloc(len(s), oc)
- }
- copy(z.b[oc:], s)
- }
- func (z *bytesEncWriter) writestr(s string) {
- if len(s) == 0 {
- return
- }
- oc, a := z.growNoAlloc(len(s))
- if a {
- z.growAlloc(len(s), oc)
- }
- copy(z.b[oc:], s)
- }
- func (z *bytesEncWriter) writen1(b1 byte) {
- oc, a := z.growNoAlloc(1)
- if a {
- z.growAlloc(1, oc)
- }
- z.b[oc] = b1
- }
- func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
- oc, a := z.growNoAlloc(2)
- if a {
- z.growAlloc(2, oc)
- }
- z.b[oc+1] = b2
- z.b[oc] = b1
- }
- func (z *bytesEncWriter) atEndOfEncode() {
- *(z.out) = z.b[:z.c]
- }
- // have a growNoalloc(n int), which can be inlined.
- // if allocation is needed, then call growAlloc(n int)
- func (z *bytesEncWriter) growNoAlloc(n int) (oldcursor int, allocNeeded bool) {
- oldcursor = z.c
- z.c = z.c + n
- if z.c > len(z.b) {
- if z.c > cap(z.b) {
- allocNeeded = true
- } else {
- z.b = z.b[:cap(z.b)]
- }
- }
- return
- }
- func (z *bytesEncWriter) growAlloc(n int, oldcursor int) {
- // appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
- // bytes.Buffer model (2*cap + n): much better
- // bs := make([]byte, 2*cap(z.b)+n)
- bs := make([]byte, growCap(cap(z.b), 1, n))
- copy(bs, z.b[:oldcursor])
- z.b = bs
- }
- // ---------------------------------------------
- type encFnInfo struct {
- e *Encoder
- ti *typeInfo
- xfFn Ext
- xfTag uint64
- seq seqType
- }
- func (f *encFnInfo) builtin(rv reflect.Value) {
- f.e.e.EncodeBuiltin(f.ti.rtid, rv.Interface())
- }
- func (f *encFnInfo) raw(rv reflect.Value) {
- f.e.raw(rv.Interface().(Raw))
- }
- func (f *encFnInfo) rawExt(rv reflect.Value) {
- // rev := rv.Interface().(RawExt)
- // f.e.e.EncodeRawExt(&rev, f.e)
- var re *RawExt
- if rv.CanAddr() {
- re = rv.Addr().Interface().(*RawExt)
- } else {
- rev := rv.Interface().(RawExt)
- re = &rev
- }
- f.e.e.EncodeRawExt(re, f.e)
- }
- func (f *encFnInfo) ext(rv reflect.Value) {
- // if this is a struct|array and it was addressable, then pass the address directly (not the value)
- if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
- rv = rv.Addr()
- }
- f.e.e.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
- }
- func (f *encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
- if indir == 0 {
- v = rv.Interface()
- } else if indir == -1 {
- // If a non-pointer was passed to Encode(), then that value is not addressable.
- // Take addr if addressable, else copy value to an addressable value.
- if rv.CanAddr() {
- v = rv.Addr().Interface()
- } else {
- rv2 := reflect.New(rv.Type())
- rv2.Elem().Set(rv)
- v = rv2.Interface()
- // fmt.Printf("rv.Type: %v, rv2.Type: %v, v: %v\n", rv.Type(), rv2.Type(), v)
- }
- } else {
- for j := int8(0); j < indir; j++ {
- if rv.IsNil() {
- f.e.e.EncodeNil()
- return
- }
- rv = rv.Elem()
- }
- v = rv.Interface()
- }
- return v, true
- }
- func (f *encFnInfo) selferMarshal(rv reflect.Value) {
- if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
- v.(Selfer).CodecEncodeSelf(f.e)
- }
- }
- func (f *encFnInfo) binaryMarshal(rv reflect.Value) {
- if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
- bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
- f.e.marshal(bs, fnerr, false, c_RAW)
- }
- }
- func (f *encFnInfo) textMarshal(rv reflect.Value) {
- if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
- // debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
- bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
- f.e.marshal(bs, fnerr, false, c_UTF8)
- }
- }
- func (f *encFnInfo) jsonMarshal(rv reflect.Value) {
- if v, proceed := f.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
- bs, fnerr := v.(jsonMarshaler).MarshalJSON()
- f.e.marshal(bs, fnerr, true, c_UTF8)
- }
- }
- func (f *encFnInfo) kBool(rv reflect.Value) {
- f.e.e.EncodeBool(rv.Bool())
- }
- func (f *encFnInfo) kString(rv reflect.Value) {
- f.e.e.EncodeString(c_UTF8, rv.String())
- }
- func (f *encFnInfo) kFloat64(rv reflect.Value) {
- f.e.e.EncodeFloat64(rv.Float())
- }
- func (f *encFnInfo) kFloat32(rv reflect.Value) {
- f.e.e.EncodeFloat32(float32(rv.Float()))
- }
- func (f *encFnInfo) kInt(rv reflect.Value) {
- f.e.e.EncodeInt(rv.Int())
- }
- func (f *encFnInfo) kUint(rv reflect.Value) {
- f.e.e.EncodeUint(rv.Uint())
- }
- func (f *encFnInfo) kInvalid(rv reflect.Value) {
- f.e.e.EncodeNil()
- }
- func (f *encFnInfo) kErr(rv reflect.Value) {
- f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
- }
- func (f *encFnInfo) kSlice(rv reflect.Value) {
- ti := f.ti
- // array may be non-addressable, so we have to manage with care
- // (don't call rv.Bytes, rv.Slice, etc).
- // E.g. type struct S{B [2]byte};
- // Encode(S{}) will bomb on "panic: slice of unaddressable array".
- e := f.e
- if f.seq != seqTypeArray {
- if rv.IsNil() {
- e.e.EncodeNil()
- return
- }
- // If in this method, then there was no extension function defined.
- // So it's okay to treat as []byte.
- if ti.rtid == uint8SliceTypId {
- e.e.EncodeStringBytes(c_RAW, rv.Bytes())
- return
- }
- }
- cr := e.cr
- rtelem := ti.rt.Elem()
- l := rv.Len()
- if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
- switch f.seq {
- case seqTypeArray:
- // if l == 0 { e.e.encodeStringBytes(c_RAW, nil) } else
- if rv.CanAddr() {
- e.e.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
- } else {
- var bs []byte
- if l <= cap(e.b) {
- bs = e.b[:l]
- } else {
- bs = make([]byte, l)
- }
- reflect.Copy(reflect.ValueOf(bs), rv)
- // TODO: Test that reflect.Copy works instead of manual one-by-one
- // for i := 0; i < l; i++ {
- // bs[i] = byte(rv.Index(i).Uint())
- // }
- e.e.EncodeStringBytes(c_RAW, bs)
- }
- case seqTypeSlice:
- e.e.EncodeStringBytes(c_RAW, rv.Bytes())
- case seqTypeChan:
- bs := e.b[:0]
- // do not use range, so that the number of elements encoded
- // does not change, and encoding does not hang waiting on someone to close chan.
- // for b := range rv.Interface().(<-chan byte) {
- // bs = append(bs, b)
- // }
- ch := rv.Interface().(<-chan byte)
- for i := 0; i < l; i++ {
- bs = append(bs, <-ch)
- }
- e.e.EncodeStringBytes(c_RAW, bs)
- }
- return
- }
- if ti.mbs {
- if l%2 == 1 {
- e.errorf("mapBySlice requires even slice length, but got %v", l)
- return
- }
- e.e.EncodeMapStart(l / 2)
- } else {
- e.e.EncodeArrayStart(l)
- }
- if l > 0 {
- for rtelem.Kind() == reflect.Ptr {
- rtelem = rtelem.Elem()
- }
- // if kind is reflect.Interface, do not pre-determine the
- // encoding type, because preEncodeValue may break it down to
- // a concrete type and kInterface will bomb.
- var fn *encFn
- if rtelem.Kind() != reflect.Interface {
- rtelemid := reflect.ValueOf(rtelem).Pointer()
- fn = e.getEncFn(rtelemid, rtelem, true, true)
- }
- // TODO: Consider perf implication of encoding odd index values as symbols if type is string
- for j := 0; j < l; j++ {
- if cr != nil {
- if ti.mbs {
- if j%2 == 0 {
- cr.sendContainerState(containerMapKey)
- } else {
- cr.sendContainerState(containerMapValue)
- }
- } else {
- cr.sendContainerState(containerArrayElem)
- }
- }
- if f.seq == seqTypeChan {
- if rv2, ok2 := rv.Recv(); ok2 {
- e.encodeValue(rv2, fn)
- } else {
- e.encode(nil) // WE HAVE TO DO SOMETHING, so nil if nothing received.
- }
- } else {
- e.encodeValue(rv.Index(j), fn)
- }
- }
- }
- if cr != nil {
- if ti.mbs {
- cr.sendContainerState(containerMapEnd)
- } else {
- cr.sendContainerState(containerArrayEnd)
- }
- }
- }
- func (f *encFnInfo) kStruct(rv reflect.Value) {
- fti := f.ti
- e := f.e
- cr := e.cr
- tisfi := fti.sfip
- toMap := !(fti.toArray || e.h.StructToArray)
- newlen := len(fti.sfi)
- // Use sync.Pool to reduce allocating slices unnecessarily.
- // The cost of sync.Pool is less than the cost of new allocation.
- pool, poolv, fkvs := encStructPoolGet(newlen)
- // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
- if toMap {
- tisfi = fti.sfi
- }
- newlen = 0
- var kv stringRv
- recur := e.h.RecursiveEmptyCheck
- for _, si := range tisfi {
- kv.r = si.field(rv, false)
- if toMap {
- if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
- continue
- }
- kv.v = si.encName
- } else {
- // use the zero value.
- // if a reference or struct, set to nil (so you do not output too much)
- if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
- switch kv.r.Kind() {
- case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
- kv.r = reflect.Value{} //encode as nil
- }
- }
- }
- fkvs[newlen] = kv
- newlen++
- }
- // debugf(">>>> kStruct: newlen: %v", newlen)
- // sep := !e.be
- ee := e.e //don't dereference every time
- if toMap {
- ee.EncodeMapStart(newlen)
- // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
- asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
- for j := 0; j < newlen; j++ {
- kv = fkvs[j]
- if cr != nil {
- cr.sendContainerState(containerMapKey)
- }
- if asSymbols {
- ee.EncodeSymbol(kv.v)
- } else {
- ee.EncodeString(c_UTF8, kv.v)
- }
- if cr != nil {
- cr.sendContainerState(containerMapValue)
- }
- e.encodeValue(kv.r, nil)
- }
- if cr != nil {
- cr.sendContainerState(containerMapEnd)
- }
- } else {
- ee.EncodeArrayStart(newlen)
- for j := 0; j < newlen; j++ {
- kv = fkvs[j]
- if cr != nil {
- cr.sendContainerState(containerArrayElem)
- }
- e.encodeValue(kv.r, nil)
- }
- if cr != nil {
- cr.sendContainerState(containerArrayEnd)
- }
- }
- // do not use defer. Instead, use explicit pool return at end of function.
- // defer has a cost we are trying to avoid.
- // If there is a panic and these slices are not returned, it is ok.
- if pool != nil {
- pool.Put(poolv)
- }
- }
- // func (f *encFnInfo) kPtr(rv reflect.Value) {
- // debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
- // if rv.IsNil() {
- // f.e.e.encodeNil()
- // return
- // }
- // f.e.encodeValue(rv.Elem())
- // }
- // func (f *encFnInfo) kInterface(rv reflect.Value) {
- // println("kInterface called")
- // debug.PrintStack()
- // if rv.IsNil() {
- // f.e.e.EncodeNil()
- // return
- // }
- // f.e.encodeValue(rv.Elem(), nil)
- // }
- func (f *encFnInfo) kMap(rv reflect.Value) {
- ee := f.e.e
- if rv.IsNil() {
- ee.EncodeNil()
- return
- }
- l := rv.Len()
- ee.EncodeMapStart(l)
- e := f.e
- cr := e.cr
- if l == 0 {
- if cr != nil {
- cr.sendContainerState(containerMapEnd)
- }
- return
- }
- var asSymbols bool
- // determine the underlying key and val encFn's for the map.
- // This eliminates some work which is done for each loop iteration i.e.
- // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
- //
- // However, if kind is reflect.Interface, do not pre-determine the
- // encoding type, because preEncodeValue may break it down to
- // a concrete type and kInterface will bomb.
- var keyFn, valFn *encFn
- ti := f.ti
- rtkey := ti.rt.Key()
- rtval := ti.rt.Elem()
- rtkeyid := reflect.ValueOf(rtkey).Pointer()
- // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
- var keyTypeIsString = rtkeyid == stringTypId
- if keyTypeIsString {
- asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
- } else {
- for rtkey.Kind() == reflect.Ptr {
- rtkey = rtkey.Elem()
- }
- if rtkey.Kind() != reflect.Interface {
- rtkeyid = reflect.ValueOf(rtkey).Pointer()
- keyFn = e.getEncFn(rtkeyid, rtkey, true, true)
- }
- }
- for rtval.Kind() == reflect.Ptr {
- rtval = rtval.Elem()
- }
- if rtval.Kind() != reflect.Interface {
- rtvalid := reflect.ValueOf(rtval).Pointer()
- valFn = e.getEncFn(rtvalid, rtval, true, true)
- }
- mks := rv.MapKeys()
- // for j, lmks := 0, len(mks); j < lmks; j++ {
- if e.h.Canonical {
- e.kMapCanonical(rtkeyid, rtkey, rv, mks, valFn, asSymbols)
- } else {
- for j := range mks {
- if cr != nil {
- cr.sendContainerState(containerMapKey)
- }
- if keyTypeIsString {
- if asSymbols {
- ee.EncodeSymbol(mks[j].String())
- } else {
- ee.EncodeString(c_UTF8, mks[j].String())
- }
- } else {
- e.encodeValue(mks[j], keyFn)
- }
- if cr != nil {
- cr.sendContainerState(containerMapValue)
- }
- e.encodeValue(rv.MapIndex(mks[j]), valFn)
- }
- }
- if cr != nil {
- cr.sendContainerState(containerMapEnd)
- }
- }
- func (e *Encoder) kMapCanonical(rtkeyid uintptr, rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *encFn, asSymbols bool) {
- ee := e.e
- cr := e.cr
- // we previously did out-of-band if an extension was registered.
- // This is not necessary, as the natural kind is sufficient for ordering.
- if rtkeyid == uint8SliceTypId {
- mksv := make([]bytesRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.Bytes()
- }
- sort.Sort(bytesRvSlice(mksv))
- for i := range mksv {
- if cr != nil {
- cr.sendContainerState(containerMapKey)
- }
- ee.EncodeStringBytes(c_RAW, mksv[i].v)
- if cr != nil {
- cr.sendContainerState(containerMapValue)
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
- }
- } else {
- switch rtkey.Kind() {
- case reflect.Bool:
- mksv := make([]boolRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.Bool()
- }
- sort.Sort(boolRvSlice(mksv))
- for i := range mksv {
- if cr != nil {
- cr.sendContainerState(containerMapKey)
- }
- ee.EncodeBool(mksv[i].v)
- if cr != nil {
- cr.sendContainerState(containerMapValue)
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
- }
- case reflect.String:
- mksv := make([]stringRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.String()
- }
- sort.Sort(stringRvSlice(mksv))
- for i := range mksv {
- if cr != nil {
- cr.sendContainerState(containerMapKey)
- }
- if asSymbols {
- ee.EncodeSymbol(mksv[i].v)
- } else {
- ee.EncodeString(c_UTF8, mksv[i].v)
- }
- if cr != nil {
- cr.sendContainerState(containerMapValue)
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
- }
- case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
- mksv := make([]uintRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.Uint()
- }
- sort.Sort(uintRvSlice(mksv))
- for i := range mksv {
- if cr != nil {
- cr.sendContainerState(containerMapKey)
- }
- ee.EncodeUint(mksv[i].v)
- if cr != nil {
- cr.sendContainerState(containerMapValue)
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
- }
- case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
- mksv := make([]intRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.Int()
- }
- sort.Sort(intRvSlice(mksv))
- for i := range mksv {
- if cr != nil {
- cr.sendContainerState(containerMapKey)
- }
- ee.EncodeInt(mksv[i].v)
- if cr != nil {
- cr.sendContainerState(containerMapValue)
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
- }
- case reflect.Float32:
- mksv := make([]floatRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.Float()
- }
- sort.Sort(floatRvSlice(mksv))
- for i := range mksv {
- if cr != nil {
- cr.sendContainerState(containerMapKey)
- }
- ee.EncodeFloat32(float32(mksv[i].v))
- if cr != nil {
- cr.sendContainerState(containerMapValue)
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
- }
- case reflect.Float64:
- mksv := make([]floatRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.Float()
- }
- sort.Sort(floatRvSlice(mksv))
- for i := range mksv {
- if cr != nil {
- cr.sendContainerState(containerMapKey)
- }
- ee.EncodeFloat64(mksv[i].v)
- if cr != nil {
- cr.sendContainerState(containerMapValue)
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
- }
- default:
- // out-of-band
- // first encode each key to a []byte first, then sort them, then record
- var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
- e2 := NewEncoderBytes(&mksv, e.hh)
- mksbv := make([]bytesRv, len(mks))
- for i, k := range mks {
- v := &mksbv[i]
- l := len(mksv)
- e2.MustEncode(k)
- v.r = k
- v.v = mksv[l:]
- // fmt.Printf(">>>>> %s\n", mksv[l:])
- }
- sort.Sort(bytesRvSlice(mksbv))
- for j := range mksbv {
- if cr != nil {
- cr.sendContainerState(containerMapKey)
- }
- e.asis(mksbv[j].v)
- if cr != nil {
- cr.sendContainerState(containerMapValue)
- }
- e.encodeValue(rv.MapIndex(mksbv[j].r), valFn)
- }
- }
- }
- }
- // --------------------------------------------------
- // encFn encapsulates the captured variables and the encode function.
- // This way, we only do some calculations one times, and pass to the
- // code block that should be called (encapsulated in a function)
- // instead of executing the checks every time.
- type encFn struct {
- i encFnInfo
- f func(*encFnInfo, reflect.Value)
- }
- // --------------------------------------------------
- type encRtidFn struct {
- rtid uintptr
- fn encFn
- }
- // An Encoder writes an object to an output stream in the codec format.
- type Encoder struct {
- // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
- e encDriver
- // NOTE: Encoder shouldn't call it's write methods,
- // as the handler MAY need to do some coordination.
- w encWriter
- s []encRtidFn
- ci set
- be bool // is binary encoding
- js bool // is json handle
- wi ioEncWriter
- wb bytesEncWriter
- h *BasicHandle
- hh Handle
- cr containerStateRecv
- as encDriverAsis
- f map[uintptr]*encFn
- b [scratchByteArrayLen]byte
- }
- // NewEncoder returns an Encoder for encoding into an io.Writer.
- //
- // For efficiency, Users are encouraged to pass in a memory buffered writer
- // (eg bufio.Writer, bytes.Buffer).
- func NewEncoder(w io.Writer, h Handle) *Encoder {
- e := newEncoder(h)
- e.Reset(w)
- return e
- }
- // NewEncoderBytes returns an encoder for encoding directly and efficiently
- // into a byte slice, using zero-copying to temporary slices.
- //
- // It will potentially replace the output byte slice pointed to.
- // After encoding, the out parameter contains the encoded contents.
- func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
- e := newEncoder(h)
- e.ResetBytes(out)
- return e
- }
- func newEncoder(h Handle) *Encoder {
- e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
- _, e.js = h.(*JsonHandle)
- e.e = h.newEncDriver(e)
- e.as, _ = e.e.(encDriverAsis)
- e.cr, _ = e.e.(containerStateRecv)
- return e
- }
- // Reset the Encoder with a new output stream.
- //
- // This accommodates using the state of the Encoder,
- // where it has "cached" information about sub-engines.
- func (e *Encoder) Reset(w io.Writer) {
- ww, ok := w.(ioEncWriterWriter)
- if ok {
- e.wi.w = ww
- } else {
- sww := &e.wi.s
- sww.w = w
- sww.bw, _ = w.(io.ByteWriter)
- sww.sw, _ = w.(ioEncStringWriter)
- e.wi.w = sww
- //ww = bufio.NewWriterSize(w, defEncByteBufSize)
- }
- e.w = &e.wi
- e.e.reset()
- }
- func (e *Encoder) ResetBytes(out *[]byte) {
- in := *out
- if in == nil {
- in = make([]byte, defEncByteBufSize)
- }
- e.wb.b, e.wb.out, e.wb.c = in, out, 0
- e.w = &e.wb
- e.e.reset()
- }
- // func (e *Encoder) sendContainerState(c containerState) {
- // if e.cr != nil {
- // e.cr.sendContainerState(c)
- // }
- // }
- // Encode writes an object into a stream.
- //
- // Encoding can be configured via the struct tag for the fields.
- // The "codec" key in struct field's tag value is the key name,
- // followed by an optional comma and options.
- // Note that the "json" key is used in the absence of the "codec" key.
- //
- // To set an option on all fields (e.g. omitempty on all fields), you
- // can create a field called _struct, and set flags on it.
- //
- // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
- // - the field's tag is "-", OR
- // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
- //
- // When encoding as a map, the first string in the tag (before the comma)
- // is the map key string to use when encoding.
- //
- // However, struct values may encode as arrays. This happens when:
- // - StructToArray Encode option is set, OR
- // - the tag on the _struct field sets the "toarray" option
- //
- // Values with types that implement MapBySlice are encoded as stream maps.
- //
- // The empty values (for omitempty option) are false, 0, any nil pointer
- // or interface value, and any array, slice, map, or string of length zero.
- //
- // Anonymous fields are encoded inline except:
- // - the struct tag specifies a replacement name (first value)
- // - the field is of an interface type
- //
- // Examples:
- //
- // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
- // type MyStruct struct {
- // _struct bool `codec:",omitempty"` //set omitempty for every field
- // Field1 string `codec:"-"` //skip this field
- // Field2 int `codec:"myName"` //Use key "myName" in encode stream
- // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
- // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
- // io.Reader //use key "Reader".
- // MyStruct `codec:"my1" //use key "my1".
- // MyStruct //inline it
- // ...
- // }
- //
- // type MyStruct struct {
- // _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
- // //and encode struct as an array
- // }
- //
- // The mode of encoding is based on the type of the value. When a value is seen:
- // - If a Selfer, call its CodecEncodeSelf method
- // - If an extension is registered for it, call that extension function
- // - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
- // - Else encode it based on its reflect.Kind
- //
- // Note that struct field names and keys in map[string]XXX will be treated as symbols.
- // Some formats support symbols (e.g. binc) and will properly encode the string
- // only once in the stream, and use a tag to refer to it thereafter.
- func (e *Encoder) Encode(v interface{}) (err error) {
- defer panicToErr(&err)
- e.encode(v)
- e.w.atEndOfEncode()
- return
- }
- // MustEncode is like Encode, but panics if unable to Encode.
- // This provides insight to the code location that triggered the error.
- func (e *Encoder) MustEncode(v interface{}) {
- e.encode(v)
- e.w.atEndOfEncode()
- }
- func (e *Encoder) encode(iv interface{}) {
- // if ics, ok := iv.(Selfer); ok {
- // ics.CodecEncodeSelf(e)
- // return
- // }
- switch v := iv.(type) {
- case nil:
- e.e.EncodeNil()
- case Selfer:
- v.CodecEncodeSelf(e)
- case Raw:
- e.raw(v)
- case reflect.Value:
- e.encodeValue(v, nil)
- case string:
- e.e.EncodeString(c_UTF8, v)
- case bool:
- e.e.EncodeBool(v)
- case int:
- e.e.EncodeInt(int64(v))
- case int8:
- e.e.EncodeInt(int64(v))
- case int16:
- e.e.EncodeInt(int64(v))
- case int32:
- e.e.EncodeInt(int64(v))
- case int64:
- e.e.EncodeInt(v)
- case uint:
- e.e.EncodeUint(uint64(v))
- case uint8:
- e.e.EncodeUint(uint64(v))
- case uint16:
- e.e.EncodeUint(uint64(v))
- case uint32:
- e.e.EncodeUint(uint64(v))
- case uint64:
- e.e.EncodeUint(v)
- case float32:
- e.e.EncodeFloat32(v)
- case float64:
- e.e.EncodeFloat64(v)
- case []uint8:
- e.e.EncodeStringBytes(c_RAW, v)
- case *string:
- e.e.EncodeString(c_UTF8, *v)
- case *bool:
- e.e.EncodeBool(*v)
- case *int:
- e.e.EncodeInt(int64(*v))
- case *int8:
- e.e.EncodeInt(int64(*v))
- case *int16:
- e.e.EncodeInt(int64(*v))
- case *int32:
- e.e.EncodeInt(int64(*v))
- case *int64:
- e.e.EncodeInt(*v)
- case *uint:
- e.e.EncodeUint(uint64(*v))
- case *uint8:
- e.e.EncodeUint(uint64(*v))
- case *uint16:
- e.e.EncodeUint(uint64(*v))
- case *uint32:
- e.e.EncodeUint(uint64(*v))
- case *uint64:
- e.e.EncodeUint(*v)
- case *float32:
- e.e.EncodeFloat32(*v)
- case *float64:
- e.e.EncodeFloat64(*v)
- case *[]uint8:
- e.e.EncodeStringBytes(c_RAW, *v)
- default:
- const checkCodecSelfer1 = true // in case T is passed, where *T is a Selfer, still checkCodecSelfer
- if !fastpathEncodeTypeSwitch(iv, e) {
- e.encodeI(iv, false, checkCodecSelfer1)
- }
- }
- }
- func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, sptr uintptr, proceed bool) {
- // use a goto statement instead of a recursive function for ptr/interface.
- TOP:
- switch rv.Kind() {
- case reflect.Ptr:
- if rv.IsNil() {
- e.e.EncodeNil()
- return
- }
- rv = rv.Elem()
- if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
- // TODO: Movable pointers will be an issue here. Future problem.
- sptr = rv.UnsafeAddr()
- break TOP
- }
- goto TOP
- case reflect.Interface:
- if rv.IsNil() {
- e.e.EncodeNil()
- return
- }
- rv = rv.Elem()
- goto TOP
- case reflect.Slice, reflect.Map:
- if rv.IsNil() {
- e.e.EncodeNil()
- return
- }
- case reflect.Invalid, reflect.Func:
- e.e.EncodeNil()
- return
- }
- proceed = true
- rv2 = rv
- return
- }
- func (e *Encoder) doEncodeValue(rv reflect.Value, fn *encFn, sptr uintptr,
- checkFastpath, checkCodecSelfer bool) {
- if sptr != 0 {
- if (&e.ci).add(sptr) {
- e.errorf("circular reference found: # %d", sptr)
- }
- }
- if fn == nil {
- rt := rv.Type()
- rtid := reflect.ValueOf(rt).Pointer()
- // fn = e.getEncFn(rtid, rt, true, true)
- fn = e.getEncFn(rtid, rt, checkFastpath, checkCodecSelfer)
- }
- fn.f(&fn.i, rv)
- if sptr != 0 {
- (&e.ci).remove(sptr)
- }
- }
- func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer bool) {
- if rv, sptr, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
- e.doEncodeValue(rv, nil, sptr, checkFastpath, checkCodecSelfer)
- }
- }
- func (e *Encoder) encodeValue(rv reflect.Value, fn *encFn) {
- // if a valid fn is passed, it MUST BE for the dereferenced type of rv
- if rv, sptr, proceed := e.preEncodeValue(rv); proceed {
- e.doEncodeValue(rv, fn, sptr, true, true)
- }
- }
- func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *encFn) {
- // rtid := reflect.ValueOf(rt).Pointer()
- var ok bool
- if useMapForCodecCache {
- fn, ok = e.f[rtid]
- } else {
- for i := range e.s {
- v := &(e.s[i])
- if v.rtid == rtid {
- fn, ok = &(v.fn), true
- break
- }
- }
- }
- if ok {
- return
- }
- if useMapForCodecCache {
- if e.f == nil {
- e.f = make(map[uintptr]*encFn, initCollectionCap)
- }
- fn = new(encFn)
- e.f[rtid] = fn
- } else {
- if e.s == nil {
- e.s = make([]encRtidFn, 0, initCollectionCap)
- }
- e.s = append(e.s, encRtidFn{rtid: rtid})
- fn = &(e.s[len(e.s)-1]).fn
- }
- ti := e.h.getTypeInfo(rtid, rt)
- fi := &(fn.i)
- fi.e = e
- fi.ti = ti
- if checkCodecSelfer && ti.cs {
- fn.f = (*encFnInfo).selferMarshal
- } else if rtid == rawTypId {
- fn.f = (*encFnInfo).raw
- } else if rtid == rawExtTypId {
- fn.f = (*encFnInfo).rawExt
- } else if e.e.IsBuiltinType(rtid) {
- fn.f = (*encFnInfo).builtin
- } else if xfFn := e.h.getExt(rtid); xfFn != nil {
- fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
- fn.f = (*encFnInfo).ext
- } else if supportMarshalInterfaces && e.be && ti.bm {
- fn.f = (*encFnInfo).binaryMarshal
- } else if supportMarshalInterfaces && !e.be && e.js && ti.jm {
- //If JSON, we should check JSONMarshal before textMarshal
- fn.f = (*encFnInfo).jsonMarshal
- } else if supportMarshalInterfaces && !e.be && ti.tm {
- fn.f = (*encFnInfo).textMarshal
- } else {
- rk := rt.Kind()
- if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
- if rt.PkgPath() == "" { // un-named slice or map
- if idx := fastpathAV.index(rtid); idx != -1 {
- fn.f = fastpathAV[idx].encfn
- }
- } else {
- ok = false
- // use mapping for underlying type if there
- var rtu reflect.Type
- if rk == reflect.Map {
- rtu = reflect.MapOf(rt.Key(), rt.Elem())
- } else {
- rtu = reflect.SliceOf(rt.Elem())
- }
- rtuid := reflect.ValueOf(rtu).Pointer()
- if idx := fastpathAV.index(rtuid); idx != -1 {
- xfnf := fastpathAV[idx].encfn
- xrt := fastpathAV[idx].rt
- fn.f = func(xf *encFnInfo, xrv reflect.Value) {
- xfnf(xf, xrv.Convert(xrt))
- }
- }
- }
- }
- if fn.f == nil {
- switch rk {
- case reflect.Bool:
- fn.f = (*encFnInfo).kBool
- case reflect.String:
- fn.f = (*encFnInfo).kString
- case reflect.Float64:
- fn.f = (*encFnInfo).kFloat64
- case reflect.Float32:
- fn.f = (*encFnInfo).kFloat32
- case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
- fn.f = (*encFnInfo).kInt
- case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16, reflect.Uintptr:
- fn.f = (*encFnInfo).kUint
- case reflect.Invalid:
- fn.f = (*encFnInfo).kInvalid
- case reflect.Chan:
- fi.seq = seqTypeChan
- fn.f = (*encFnInfo).kSlice
- case reflect.Slice:
- fi.seq = seqTypeSlice
- fn.f = (*encFnInfo).kSlice
- case reflect.Array:
- fi.seq = seqTypeArray
- fn.f = (*encFnInfo).kSlice
- case reflect.Struct:
- fn.f = (*encFnInfo).kStruct
- // reflect.Ptr and reflect.Interface are handled already by preEncodeValue
- // case reflect.Ptr:
- // fn.f = (*encFnInfo).kPtr
- // case reflect.Interface:
- // fn.f = (*encFnInfo).kInterface
- case reflect.Map:
- fn.f = (*encFnInfo).kMap
- default:
- fn.f = (*encFnInfo).kErr
- }
- }
- }
- return
- }
- func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
- if fnerr != nil {
- panic(fnerr)
- }
- if bs == nil {
- e.e.EncodeNil()
- } else if asis {
- e.asis(bs)
- } else {
- e.e.EncodeStringBytes(c, bs)
- }
- }
- func (e *Encoder) asis(v []byte) {
- if e.as == nil {
- e.w.writeb(v)
- } else {
- e.as.EncodeAsis(v)
- }
- }
- func (e *Encoder) raw(vv Raw) {
- v := []byte(vv)
- if !e.h.Raw {
- e.errorf("Raw values cannot be encoded: %v", v)
- }
- if e.as == nil {
- e.w.writeb(v)
- } else {
- e.as.EncodeAsis(v)
- }
- }
- func (e *Encoder) errorf(format string, params ...interface{}) {
- err := fmt.Errorf(format, params...)
- panic(err)
- }
- // ----------------------------------------
- const encStructPoolLen = 5
- // encStructPool is an array of sync.Pool.
- // Each element of the array pools one of encStructPool(8|16|32|64).
- // It allows the re-use of slices up to 64 in length.
- // A performance cost of encoding structs was collecting
- // which values were empty and should be omitted.
- // We needed slices of reflect.Value and string to collect them.
- // This shared pool reduces the amount of unnecessary creation we do.
- // The cost is that of locking sometimes, but sync.Pool is efficient
- // enough to reduce thread contention.
- var encStructPool [encStructPoolLen]sync.Pool
- func init() {
- encStructPool[0].New = func() interface{} { return new([8]stringRv) }
- encStructPool[1].New = func() interface{} { return new([16]stringRv) }
- encStructPool[2].New = func() interface{} { return new([32]stringRv) }
- encStructPool[3].New = func() interface{} { return new([64]stringRv) }
- encStructPool[4].New = func() interface{} { return new([128]stringRv) }
- }
- func encStructPoolGet(newlen int) (p *sync.Pool, v interface{}, s []stringRv) {
- // if encStructPoolLen != 5 { // constant chec, so removed at build time.
- // panic(errors.New("encStructPoolLen must be equal to 4")) // defensive, in case it is changed
- // }
- // idxpool := newlen / 8
- if newlen <= 8 {
- p = &encStructPool[0]
- v = p.Get()
- s = v.(*[8]stringRv)[:newlen]
- } else if newlen <= 16 {
- p = &encStructPool[1]
- v = p.Get()
- s = v.(*[16]stringRv)[:newlen]
- } else if newlen <= 32 {
- p = &encStructPool[2]
- v = p.Get()
- s = v.(*[32]stringRv)[:newlen]
- } else if newlen <= 64 {
- p = &encStructPool[3]
- v = p.Get()
- s = v.(*[64]stringRv)[:newlen]
- } else if newlen <= 128 {
- p = &encStructPool[4]
- v = p.Get()
- s = v.(*[128]stringRv)[:newlen]
- } else {
- s = make([]stringRv, newlen)
- }
- return
- }
- // ----------------------------------------
- // func encErr(format string, params ...interface{}) {
- // doPanic(msgTagEnc, format, params...)
- // }
|