lessor.go 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651
  1. // Copyright 2015 The etcd Authors
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. package lease
  15. import (
  16. "encoding/binary"
  17. "errors"
  18. "math"
  19. "sort"
  20. "sync"
  21. "sync/atomic"
  22. "time"
  23. "github.com/coreos/etcd/lease/leasepb"
  24. "github.com/coreos/etcd/mvcc/backend"
  25. "github.com/coreos/etcd/pkg/monotime"
  26. )
  27. const (
  28. // NoLease is a special LeaseID representing the absence of a lease.
  29. NoLease = LeaseID(0)
  30. forever = monotime.Time(math.MaxInt64)
  31. )
  32. // MaxLeaseTTL is the maximum lease TTL value
  33. const MaxLeaseTTL = 9000000000
  34. var (
  35. leaseBucketName = []byte("lease")
  36. // maximum number of leases to revoke per second; configurable for tests
  37. leaseRevokeRate = 1000
  38. ErrNotPrimary = errors.New("not a primary lessor")
  39. ErrLeaseNotFound = errors.New("lease not found")
  40. ErrLeaseExists = errors.New("lease already exists")
  41. ErrLeaseTTLTooLarge = errors.New("too large lease TTL")
  42. )
  43. // TxnDelete is a TxnWrite that only permits deletes. Defined here
  44. // to avoid circular dependency with mvcc.
  45. type TxnDelete interface {
  46. DeleteRange(key, end []byte) (n, rev int64)
  47. End()
  48. }
  49. // RangeDeleter is a TxnDelete constructor.
  50. type RangeDeleter func() TxnDelete
  51. type LeaseID int64
  52. // Lessor owns leases. It can grant, revoke, renew and modify leases for lessee.
  53. type Lessor interface {
  54. // SetRangeDeleter lets the lessor create TxnDeletes to the store.
  55. // Lessor deletes the items in the revoked or expired lease by creating
  56. // new TxnDeletes.
  57. SetRangeDeleter(rd RangeDeleter)
  58. // Grant grants a lease that expires at least after TTL seconds.
  59. Grant(id LeaseID, ttl int64) (*Lease, error)
  60. // Revoke revokes a lease with given ID. The item attached to the
  61. // given lease will be removed. If the ID does not exist, an error
  62. // will be returned.
  63. Revoke(id LeaseID) error
  64. // Attach attaches given leaseItem to the lease with given LeaseID.
  65. // If the lease does not exist, an error will be returned.
  66. Attach(id LeaseID, items []LeaseItem) error
  67. // GetLease returns LeaseID for given item.
  68. // If no lease found, NoLease value will be returned.
  69. GetLease(item LeaseItem) LeaseID
  70. // Detach detaches given leaseItem from the lease with given LeaseID.
  71. // If the lease does not exist, an error will be returned.
  72. Detach(id LeaseID, items []LeaseItem) error
  73. // Promote promotes the lessor to be the primary lessor. Primary lessor manages
  74. // the expiration and renew of leases.
  75. // Newly promoted lessor renew the TTL of all lease to extend + previous TTL.
  76. Promote(extend time.Duration)
  77. // Demote demotes the lessor from being the primary lessor.
  78. Demote()
  79. // Renew renews a lease with given ID. It returns the renewed TTL. If the ID does not exist,
  80. // an error will be returned.
  81. Renew(id LeaseID) (int64, error)
  82. // Lookup gives the lease at a given lease id, if any
  83. Lookup(id LeaseID) *Lease
  84. // ExpiredLeasesC returns a chan that is used to receive expired leases.
  85. ExpiredLeasesC() <-chan []*Lease
  86. // Recover recovers the lessor state from the given backend and RangeDeleter.
  87. Recover(b backend.Backend, rd RangeDeleter)
  88. // Stop stops the lessor for managing leases. The behavior of calling Stop multiple
  89. // times is undefined.
  90. Stop()
  91. }
  92. // lessor implements Lessor interface.
  93. // TODO: use clockwork for testability.
  94. type lessor struct {
  95. mu sync.Mutex
  96. // demotec is set when the lessor is the primary.
  97. // demotec will be closed if the lessor is demoted.
  98. demotec chan struct{}
  99. // TODO: probably this should be a heap with a secondary
  100. // id index.
  101. // Now it is O(N) to loop over the leases to find expired ones.
  102. // We want to make Grant, Revoke, and findExpiredLeases all O(logN) and
  103. // Renew O(1).
  104. // findExpiredLeases and Renew should be the most frequent operations.
  105. leaseMap map[LeaseID]*Lease
  106. itemMap map[LeaseItem]LeaseID
  107. // When a lease expires, the lessor will delete the
  108. // leased range (or key) by the RangeDeleter.
  109. rd RangeDeleter
  110. // backend to persist leases. We only persist lease ID and expiry for now.
  111. // The leased items can be recovered by iterating all the keys in kv.
  112. b backend.Backend
  113. // minLeaseTTL is the minimum lease TTL that can be granted for a lease. Any
  114. // requests for shorter TTLs are extended to the minimum TTL.
  115. minLeaseTTL int64
  116. expiredC chan []*Lease
  117. // stopC is a channel whose closure indicates that the lessor should be stopped.
  118. stopC chan struct{}
  119. // doneC is a channel whose closure indicates that the lessor is stopped.
  120. doneC chan struct{}
  121. }
  122. func NewLessor(b backend.Backend, minLeaseTTL int64) Lessor {
  123. return newLessor(b, minLeaseTTL)
  124. }
  125. func newLessor(b backend.Backend, minLeaseTTL int64) *lessor {
  126. l := &lessor{
  127. leaseMap: make(map[LeaseID]*Lease),
  128. itemMap: make(map[LeaseItem]LeaseID),
  129. b: b,
  130. minLeaseTTL: minLeaseTTL,
  131. // expiredC is a small buffered chan to avoid unnecessary blocking.
  132. expiredC: make(chan []*Lease, 16),
  133. stopC: make(chan struct{}),
  134. doneC: make(chan struct{}),
  135. }
  136. l.initAndRecover()
  137. go l.runLoop()
  138. return l
  139. }
  140. // isPrimary indicates if this lessor is the primary lessor. The primary
  141. // lessor manages lease expiration and renew.
  142. //
  143. // in etcd, raft leader is the primary. Thus there might be two primary
  144. // leaders at the same time (raft allows concurrent leader but with different term)
  145. // for at most a leader election timeout.
  146. // The old primary leader cannot affect the correctness since its proposal has a
  147. // smaller term and will not be committed.
  148. //
  149. // TODO: raft follower do not forward lease management proposals. There might be a
  150. // very small window (within second normally which depends on go scheduling) that
  151. // a raft follow is the primary between the raft leader demotion and lessor demotion.
  152. // Usually this should not be a problem. Lease should not be that sensitive to timing.
  153. func (le *lessor) isPrimary() bool {
  154. return le.demotec != nil
  155. }
  156. func (le *lessor) SetRangeDeleter(rd RangeDeleter) {
  157. le.mu.Lock()
  158. defer le.mu.Unlock()
  159. le.rd = rd
  160. }
  161. func (le *lessor) Grant(id LeaseID, ttl int64) (*Lease, error) {
  162. if id == NoLease {
  163. return nil, ErrLeaseNotFound
  164. }
  165. if ttl > MaxLeaseTTL {
  166. return nil, ErrLeaseTTLTooLarge
  167. }
  168. // TODO: when lessor is under high load, it should give out lease
  169. // with longer TTL to reduce renew load.
  170. l := &Lease{
  171. ID: id,
  172. ttl: ttl,
  173. itemSet: make(map[LeaseItem]struct{}),
  174. revokec: make(chan struct{}),
  175. }
  176. le.mu.Lock()
  177. defer le.mu.Unlock()
  178. if _, ok := le.leaseMap[id]; ok {
  179. return nil, ErrLeaseExists
  180. }
  181. if l.ttl < le.minLeaseTTL {
  182. l.ttl = le.minLeaseTTL
  183. }
  184. if le.isPrimary() {
  185. l.refresh(0)
  186. } else {
  187. l.forever()
  188. }
  189. le.leaseMap[id] = l
  190. l.persistTo(le.b)
  191. return l, nil
  192. }
  193. func (le *lessor) Revoke(id LeaseID) error {
  194. le.mu.Lock()
  195. l := le.leaseMap[id]
  196. if l == nil {
  197. le.mu.Unlock()
  198. return ErrLeaseNotFound
  199. }
  200. defer close(l.revokec)
  201. // unlock before doing external work
  202. le.mu.Unlock()
  203. if le.rd == nil {
  204. return nil
  205. }
  206. txn := le.rd()
  207. // sort keys so deletes are in same order among all members,
  208. // otherwise the backened hashes will be different
  209. keys := l.Keys()
  210. sort.StringSlice(keys).Sort()
  211. for _, key := range keys {
  212. txn.DeleteRange([]byte(key), nil)
  213. }
  214. le.mu.Lock()
  215. defer le.mu.Unlock()
  216. delete(le.leaseMap, l.ID)
  217. // lease deletion needs to be in the same backend transaction with the
  218. // kv deletion. Or we might end up with not executing the revoke or not
  219. // deleting the keys if etcdserver fails in between.
  220. le.b.BatchTx().UnsafeDelete(leaseBucketName, int64ToBytes(int64(l.ID)))
  221. txn.End()
  222. return nil
  223. }
  224. // Renew renews an existing lease. If the given lease does not exist or
  225. // has expired, an error will be returned.
  226. func (le *lessor) Renew(id LeaseID) (int64, error) {
  227. le.mu.Lock()
  228. unlock := func() { le.mu.Unlock() }
  229. defer func() { unlock() }()
  230. if !le.isPrimary() {
  231. // forward renew request to primary instead of returning error.
  232. return -1, ErrNotPrimary
  233. }
  234. demotec := le.demotec
  235. l := le.leaseMap[id]
  236. if l == nil {
  237. return -1, ErrLeaseNotFound
  238. }
  239. if l.expired() {
  240. le.mu.Unlock()
  241. unlock = func() {}
  242. select {
  243. // A expired lease might be pending for revoking or going through
  244. // quorum to be revoked. To be accurate, renew request must wait for the
  245. // deletion to complete.
  246. case <-l.revokec:
  247. return -1, ErrLeaseNotFound
  248. // The expired lease might fail to be revoked if the primary changes.
  249. // The caller will retry on ErrNotPrimary.
  250. case <-demotec:
  251. return -1, ErrNotPrimary
  252. case <-le.stopC:
  253. return -1, ErrNotPrimary
  254. }
  255. }
  256. l.refresh(0)
  257. return l.ttl, nil
  258. }
  259. func (le *lessor) Lookup(id LeaseID) *Lease {
  260. le.mu.Lock()
  261. defer le.mu.Unlock()
  262. return le.leaseMap[id]
  263. }
  264. func (le *lessor) Promote(extend time.Duration) {
  265. le.mu.Lock()
  266. defer le.mu.Unlock()
  267. le.demotec = make(chan struct{})
  268. // refresh the expiries of all leases.
  269. for _, l := range le.leaseMap {
  270. l.refresh(extend)
  271. }
  272. if len(le.leaseMap) < leaseRevokeRate {
  273. // no possibility of lease pile-up
  274. return
  275. }
  276. // adjust expiries in case of overlap
  277. leases := make([]*Lease, 0, len(le.leaseMap))
  278. for _, l := range le.leaseMap {
  279. leases = append(leases, l)
  280. }
  281. sort.Sort(leasesByExpiry(leases))
  282. baseWindow := leases[0].Remaining()
  283. nextWindow := baseWindow + time.Second
  284. expires := 0
  285. // have fewer expires than the total revoke rate so piled up leases
  286. // don't consume the entire revoke limit
  287. targetExpiresPerSecond := (3 * leaseRevokeRate) / 4
  288. for _, l := range leases {
  289. remaining := l.Remaining()
  290. if remaining > nextWindow {
  291. baseWindow = remaining
  292. nextWindow = baseWindow + time.Second
  293. expires = 1
  294. continue
  295. }
  296. expires++
  297. if expires <= targetExpiresPerSecond {
  298. continue
  299. }
  300. rateDelay := float64(time.Second) * (float64(expires) / float64(targetExpiresPerSecond))
  301. // If leases are extended by n seconds, leases n seconds ahead of the
  302. // base window should be extended by only one second.
  303. rateDelay -= float64(remaining - baseWindow)
  304. delay := time.Duration(rateDelay)
  305. nextWindow = baseWindow + delay
  306. l.refresh(delay + extend)
  307. }
  308. }
  309. type leasesByExpiry []*Lease
  310. func (le leasesByExpiry) Len() int { return len(le) }
  311. func (le leasesByExpiry) Less(i, j int) bool { return le[i].Remaining() < le[j].Remaining() }
  312. func (le leasesByExpiry) Swap(i, j int) { le[i], le[j] = le[j], le[i] }
  313. func (le *lessor) Demote() {
  314. le.mu.Lock()
  315. defer le.mu.Unlock()
  316. // set the expiries of all leases to forever
  317. for _, l := range le.leaseMap {
  318. l.forever()
  319. }
  320. if le.demotec != nil {
  321. close(le.demotec)
  322. le.demotec = nil
  323. }
  324. }
  325. // Attach attaches items to the lease with given ID. When the lease
  326. // expires, the attached items will be automatically removed.
  327. // If the given lease does not exist, an error will be returned.
  328. func (le *lessor) Attach(id LeaseID, items []LeaseItem) error {
  329. le.mu.Lock()
  330. defer le.mu.Unlock()
  331. l := le.leaseMap[id]
  332. if l == nil {
  333. return ErrLeaseNotFound
  334. }
  335. l.mu.Lock()
  336. for _, it := range items {
  337. l.itemSet[it] = struct{}{}
  338. le.itemMap[it] = id
  339. }
  340. l.mu.Unlock()
  341. return nil
  342. }
  343. func (le *lessor) GetLease(item LeaseItem) LeaseID {
  344. le.mu.Lock()
  345. id := le.itemMap[item]
  346. le.mu.Unlock()
  347. return id
  348. }
  349. // Detach detaches items from the lease with given ID.
  350. // If the given lease does not exist, an error will be returned.
  351. func (le *lessor) Detach(id LeaseID, items []LeaseItem) error {
  352. le.mu.Lock()
  353. defer le.mu.Unlock()
  354. l := le.leaseMap[id]
  355. if l == nil {
  356. return ErrLeaseNotFound
  357. }
  358. l.mu.Lock()
  359. for _, it := range items {
  360. delete(l.itemSet, it)
  361. delete(le.itemMap, it)
  362. }
  363. l.mu.Unlock()
  364. return nil
  365. }
  366. func (le *lessor) Recover(b backend.Backend, rd RangeDeleter) {
  367. le.mu.Lock()
  368. defer le.mu.Unlock()
  369. le.b = b
  370. le.rd = rd
  371. le.leaseMap = make(map[LeaseID]*Lease)
  372. le.itemMap = make(map[LeaseItem]LeaseID)
  373. le.initAndRecover()
  374. }
  375. func (le *lessor) ExpiredLeasesC() <-chan []*Lease {
  376. return le.expiredC
  377. }
  378. func (le *lessor) Stop() {
  379. close(le.stopC)
  380. <-le.doneC
  381. }
  382. func (le *lessor) runLoop() {
  383. defer close(le.doneC)
  384. for {
  385. var ls []*Lease
  386. le.mu.Lock()
  387. if le.isPrimary() {
  388. ls = le.findExpiredLeases()
  389. }
  390. le.mu.Unlock()
  391. if len(ls) != 0 {
  392. // rate limit
  393. if len(ls) > leaseRevokeRate/2 {
  394. ls = ls[:leaseRevokeRate/2]
  395. }
  396. select {
  397. case <-le.stopC:
  398. return
  399. case le.expiredC <- ls:
  400. default:
  401. // the receiver of expiredC is probably busy handling
  402. // other stuff
  403. // let's try this next time after 500ms
  404. }
  405. }
  406. select {
  407. case <-time.After(500 * time.Millisecond):
  408. case <-le.stopC:
  409. return
  410. }
  411. }
  412. }
  413. // findExpiredLeases loops all the leases in the leaseMap and returns the expired
  414. // leases that needed to be revoked.
  415. func (le *lessor) findExpiredLeases() []*Lease {
  416. leases := make([]*Lease, 0, 16)
  417. for _, l := range le.leaseMap {
  418. // TODO: probably should change to <= 100-500 millisecond to
  419. // make up committing latency.
  420. if l.expired() {
  421. leases = append(leases, l)
  422. }
  423. }
  424. return leases
  425. }
  426. func (le *lessor) initAndRecover() {
  427. tx := le.b.BatchTx()
  428. tx.Lock()
  429. tx.UnsafeCreateBucket(leaseBucketName)
  430. _, vs := tx.UnsafeRange(leaseBucketName, int64ToBytes(0), int64ToBytes(math.MaxInt64), 0)
  431. // TODO: copy vs and do decoding outside tx lock if lock contention becomes an issue.
  432. for i := range vs {
  433. var lpb leasepb.Lease
  434. err := lpb.Unmarshal(vs[i])
  435. if err != nil {
  436. tx.Unlock()
  437. panic("failed to unmarshal lease proto item")
  438. }
  439. ID := LeaseID(lpb.ID)
  440. if lpb.TTL < le.minLeaseTTL {
  441. lpb.TTL = le.minLeaseTTL
  442. }
  443. le.leaseMap[ID] = &Lease{
  444. ID: ID,
  445. ttl: lpb.TTL,
  446. // itemSet will be filled in when recover key-value pairs
  447. // set expiry to forever, refresh when promoted
  448. itemSet: make(map[LeaseItem]struct{}),
  449. expiry: forever,
  450. revokec: make(chan struct{}),
  451. }
  452. }
  453. tx.Unlock()
  454. le.b.ForceCommit()
  455. }
  456. type Lease struct {
  457. ID LeaseID
  458. ttl int64 // time to live in seconds
  459. // expiry is time when lease should expire; must be 64-bit aligned.
  460. expiry monotime.Time
  461. // mu protects concurrent accesses to itemSet
  462. mu sync.RWMutex
  463. itemSet map[LeaseItem]struct{}
  464. revokec chan struct{}
  465. }
  466. func (l *Lease) expired() bool {
  467. return l.Remaining() <= 0
  468. }
  469. func (l *Lease) persistTo(b backend.Backend) {
  470. key := int64ToBytes(int64(l.ID))
  471. lpb := leasepb.Lease{ID: int64(l.ID), TTL: int64(l.ttl)}
  472. val, err := lpb.Marshal()
  473. if err != nil {
  474. panic("failed to marshal lease proto item")
  475. }
  476. b.BatchTx().Lock()
  477. b.BatchTx().UnsafePut(leaseBucketName, key, val)
  478. b.BatchTx().Unlock()
  479. }
  480. // TTL returns the TTL of the Lease.
  481. func (l *Lease) TTL() int64 {
  482. return l.ttl
  483. }
  484. // refresh refreshes the expiry of the lease.
  485. func (l *Lease) refresh(extend time.Duration) {
  486. t := monotime.Now().Add(extend + time.Duration(l.ttl)*time.Second)
  487. atomic.StoreUint64((*uint64)(&l.expiry), uint64(t))
  488. }
  489. // forever sets the expiry of lease to be forever.
  490. func (l *Lease) forever() { atomic.StoreUint64((*uint64)(&l.expiry), uint64(forever)) }
  491. // Keys returns all the keys attached to the lease.
  492. func (l *Lease) Keys() []string {
  493. l.mu.RLock()
  494. keys := make([]string, 0, len(l.itemSet))
  495. for k := range l.itemSet {
  496. keys = append(keys, k.Key)
  497. }
  498. l.mu.RUnlock()
  499. return keys
  500. }
  501. // Remaining returns the remaining time of the lease.
  502. func (l *Lease) Remaining() time.Duration {
  503. t := monotime.Time(atomic.LoadUint64((*uint64)(&l.expiry)))
  504. return time.Duration(t - monotime.Now())
  505. }
  506. type LeaseItem struct {
  507. Key string
  508. }
  509. func int64ToBytes(n int64) []byte {
  510. bytes := make([]byte, 8)
  511. binary.BigEndian.PutUint64(bytes, uint64(n))
  512. return bytes
  513. }
  514. // FakeLessor is a fake implementation of Lessor interface.
  515. // Used for testing only.
  516. type FakeLessor struct{}
  517. func (fl *FakeLessor) SetRangeDeleter(dr RangeDeleter) {}
  518. func (fl *FakeLessor) Grant(id LeaseID, ttl int64) (*Lease, error) { return nil, nil }
  519. func (fl *FakeLessor) Revoke(id LeaseID) error { return nil }
  520. func (fl *FakeLessor) Attach(id LeaseID, items []LeaseItem) error { return nil }
  521. func (fl *FakeLessor) GetLease(item LeaseItem) LeaseID { return 0 }
  522. func (fl *FakeLessor) Detach(id LeaseID, items []LeaseItem) error { return nil }
  523. func (fl *FakeLessor) Promote(extend time.Duration) {}
  524. func (fl *FakeLessor) Demote() {}
  525. func (fl *FakeLessor) Renew(id LeaseID) (int64, error) { return 10, nil }
  526. func (le *FakeLessor) Lookup(id LeaseID) *Lease { return nil }
  527. func (fl *FakeLessor) ExpiredLeasesC() <-chan []*Lease { return nil }
  528. func (fl *FakeLessor) Recover(b backend.Backend, rd RangeDeleter) {}
  529. func (fl *FakeLessor) Stop() {}