node.go 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. // Copyright 2015 The etcd Authors
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. package raft
  15. import (
  16. "context"
  17. "errors"
  18. pb "go.etcd.io/etcd/raft/raftpb"
  19. )
  20. type SnapshotStatus int
  21. const (
  22. SnapshotFinish SnapshotStatus = 1
  23. SnapshotFailure SnapshotStatus = 2
  24. )
  25. var (
  26. emptyState = pb.HardState{}
  27. // ErrStopped is returned by methods on Nodes that have been stopped.
  28. ErrStopped = errors.New("raft: stopped")
  29. )
  30. // SoftState provides state that is useful for logging and debugging.
  31. // The state is volatile and does not need to be persisted to the WAL.
  32. type SoftState struct {
  33. Lead uint64 // must use atomic operations to access; keep 64-bit aligned.
  34. RaftState StateType
  35. }
  36. func (a *SoftState) equal(b *SoftState) bool {
  37. return a.Lead == b.Lead && a.RaftState == b.RaftState
  38. }
  39. // Ready encapsulates the entries and messages that are ready to read,
  40. // be saved to stable storage, committed or sent to other peers.
  41. // All fields in Ready are read-only.
  42. type Ready struct {
  43. // The current volatile state of a Node.
  44. // SoftState will be nil if there is no update.
  45. // It is not required to consume or store SoftState.
  46. *SoftState
  47. // The current state of a Node to be saved to stable storage BEFORE
  48. // Messages are sent.
  49. // HardState will be equal to empty state if there is no update.
  50. pb.HardState
  51. // ReadStates can be used for node to serve linearizable read requests locally
  52. // when its applied index is greater than the index in ReadState.
  53. // Note that the readState will be returned when raft receives msgReadIndex.
  54. // The returned is only valid for the request that requested to read.
  55. ReadStates []ReadState
  56. // Entries specifies entries to be saved to stable storage BEFORE
  57. // Messages are sent.
  58. Entries []pb.Entry
  59. // Snapshot specifies the snapshot to be saved to stable storage.
  60. Snapshot pb.Snapshot
  61. // CommittedEntries specifies entries to be committed to a
  62. // store/state-machine. These have previously been committed to stable
  63. // store.
  64. CommittedEntries []pb.Entry
  65. // Messages specifies outbound messages to be sent AFTER Entries are
  66. // committed to stable storage.
  67. // If it contains a MsgSnap message, the application MUST report back to raft
  68. // when the snapshot has been received or has failed by calling ReportSnapshot.
  69. Messages []pb.Message
  70. // MustSync indicates whether the HardState and Entries must be synchronously
  71. // written to disk or if an asynchronous write is permissible.
  72. MustSync bool
  73. }
  74. func isHardStateEqual(a, b pb.HardState) bool {
  75. return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit
  76. }
  77. // IsEmptyHardState returns true if the given HardState is empty.
  78. func IsEmptyHardState(st pb.HardState) bool {
  79. return isHardStateEqual(st, emptyState)
  80. }
  81. // IsEmptySnap returns true if the given Snapshot is empty.
  82. func IsEmptySnap(sp pb.Snapshot) bool {
  83. return sp.Metadata.Index == 0
  84. }
  85. func (rd Ready) containsUpdates() bool {
  86. return rd.SoftState != nil || !IsEmptyHardState(rd.HardState) ||
  87. !IsEmptySnap(rd.Snapshot) || len(rd.Entries) > 0 ||
  88. len(rd.CommittedEntries) > 0 || len(rd.Messages) > 0 || len(rd.ReadStates) != 0
  89. }
  90. // Node represents a node in a raft cluster.
  91. type Node interface {
  92. // Tick increments the internal logical clock for the Node by a single tick. Election
  93. // timeouts and heartbeat timeouts are in units of ticks.
  94. Tick()
  95. // Campaign causes the Node to transition to candidate state and start campaigning to become leader.
  96. Campaign(ctx context.Context) error
  97. // Propose proposes that data be appended to the log.
  98. Propose(ctx context.Context, data []byte) error
  99. // ProposeConfChange proposes config change.
  100. // At most one ConfChange can be in the process of going through consensus.
  101. // Application needs to call ApplyConfChange when applying EntryConfChange type entry.
  102. ProposeConfChange(ctx context.Context, cc pb.ConfChange) error
  103. // Step advances the state machine using the given message. ctx.Err() will be returned, if any.
  104. Step(ctx context.Context, msg pb.Message) error
  105. // Ready returns a channel that returns the current point-in-time state.
  106. // Users of the Node must call Advance after retrieving the state returned by Ready.
  107. //
  108. // NOTE: No committed entries from the next Ready may be applied until all committed entries
  109. // and snapshots from the previous one have finished.
  110. Ready() <-chan Ready
  111. // Advance notifies the Node that the application has saved progress up to the last Ready.
  112. // It prepares the node to return the next available Ready.
  113. //
  114. // The application should generally call Advance after it applies the entries in last Ready.
  115. //
  116. // However, as an optimization, the application may call Advance while it is applying the
  117. // commands. For example. when the last Ready contains a snapshot, the application might take
  118. // a long time to apply the snapshot data. To continue receiving Ready without blocking raft
  119. // progress, it can call Advance before finishing applying the last ready.
  120. Advance()
  121. // ApplyConfChange applies config change to the local node.
  122. // Returns an opaque ConfState protobuf which must be recorded
  123. // in snapshots. Will never return nil; it returns a pointer only
  124. // to match MemoryStorage.Compact.
  125. ApplyConfChange(cc pb.ConfChange) *pb.ConfState
  126. // TransferLeadership attempts to transfer leadership to the given transferee.
  127. TransferLeadership(ctx context.Context, lead, transferee uint64)
  128. // ReadIndex request a read state. The read state will be set in the ready.
  129. // Read state has a read index. Once the application advances further than the read
  130. // index, any linearizable read requests issued before the read request can be
  131. // processed safely. The read state will have the same rctx attached.
  132. ReadIndex(ctx context.Context, rctx []byte) error
  133. // Status returns the current status of the raft state machine.
  134. Status() Status
  135. // ReportUnreachable reports the given node is not reachable for the last send.
  136. ReportUnreachable(id uint64)
  137. // ReportSnapshot reports the status of the sent snapshot.
  138. ReportSnapshot(id uint64, status SnapshotStatus)
  139. // Stop performs any necessary termination of the Node.
  140. Stop()
  141. }
  142. type Peer struct {
  143. ID uint64
  144. Context []byte
  145. }
  146. // StartNode returns a new Node given configuration and a list of raft peers.
  147. // It appends a ConfChangeAddNode entry for each given peer to the initial log.
  148. func StartNode(c *Config, peers []Peer) Node {
  149. r := newRaft(c)
  150. // become the follower at term 1 and apply initial configuration
  151. // entries of term 1
  152. r.becomeFollower(1, None)
  153. for _, peer := range peers {
  154. cc := pb.ConfChange{Type: pb.ConfChangeAddNode, NodeID: peer.ID, Context: peer.Context}
  155. d, err := cc.Marshal()
  156. if err != nil {
  157. panic("unexpected marshal error")
  158. }
  159. e := pb.Entry{Type: pb.EntryConfChange, Term: 1, Index: r.raftLog.lastIndex() + 1, Data: d}
  160. r.raftLog.append(e)
  161. }
  162. // Mark these initial entries as committed.
  163. // TODO(bdarnell): These entries are still unstable; do we need to preserve
  164. // the invariant that committed < unstable?
  165. r.raftLog.committed = r.raftLog.lastIndex()
  166. // Now apply them, mainly so that the application can call Campaign
  167. // immediately after StartNode in tests. Note that these nodes will
  168. // be added to raft twice: here and when the application's Ready
  169. // loop calls ApplyConfChange. The calls to addNode must come after
  170. // all calls to raftLog.append so progress.next is set after these
  171. // bootstrapping entries (it is an error if we try to append these
  172. // entries since they have already been committed).
  173. // We do not set raftLog.applied so the application will be able
  174. // to observe all conf changes via Ready.CommittedEntries.
  175. for _, peer := range peers {
  176. r.addNode(peer.ID)
  177. }
  178. n := newNode()
  179. n.logger = c.Logger
  180. go n.run(r)
  181. return &n
  182. }
  183. // RestartNode is similar to StartNode but does not take a list of peers.
  184. // The current membership of the cluster will be restored from the Storage.
  185. // If the caller has an existing state machine, pass in the last log index that
  186. // has been applied to it; otherwise use zero.
  187. func RestartNode(c *Config) Node {
  188. r := newRaft(c)
  189. n := newNode()
  190. n.logger = c.Logger
  191. go n.run(r)
  192. return &n
  193. }
  194. type msgWithResult struct {
  195. m pb.Message
  196. result chan error
  197. }
  198. // node is the canonical implementation of the Node interface
  199. type node struct {
  200. propc chan msgWithResult
  201. recvc chan pb.Message
  202. confc chan pb.ConfChange
  203. confstatec chan pb.ConfState
  204. readyc chan Ready
  205. advancec chan struct{}
  206. tickc chan struct{}
  207. done chan struct{}
  208. stop chan struct{}
  209. status chan chan Status
  210. logger Logger
  211. }
  212. func newNode() node {
  213. return node{
  214. propc: make(chan msgWithResult),
  215. recvc: make(chan pb.Message),
  216. confc: make(chan pb.ConfChange),
  217. confstatec: make(chan pb.ConfState),
  218. readyc: make(chan Ready),
  219. advancec: make(chan struct{}),
  220. // make tickc a buffered chan, so raft node can buffer some ticks when the node
  221. // is busy processing raft messages. Raft node will resume process buffered
  222. // ticks when it becomes idle.
  223. tickc: make(chan struct{}, 128),
  224. done: make(chan struct{}),
  225. stop: make(chan struct{}),
  226. status: make(chan chan Status),
  227. }
  228. }
  229. func (n *node) Stop() {
  230. select {
  231. case n.stop <- struct{}{}:
  232. // Not already stopped, so trigger it
  233. case <-n.done:
  234. // Node has already been stopped - no need to do anything
  235. return
  236. }
  237. // Block until the stop has been acknowledged by run()
  238. <-n.done
  239. }
  240. func (n *node) run(r *raft) {
  241. var propc chan msgWithResult
  242. var readyc chan Ready
  243. var advancec chan struct{}
  244. var prevLastUnstablei, prevLastUnstablet uint64
  245. var havePrevLastUnstablei bool
  246. var prevSnapi uint64
  247. var rd Ready
  248. lead := None
  249. prevSoftSt := r.softState()
  250. prevHardSt := emptyState
  251. for {
  252. if advancec != nil {
  253. readyc = nil
  254. } else {
  255. rd = newReady(r, prevSoftSt, prevHardSt)
  256. if rd.containsUpdates() {
  257. readyc = n.readyc
  258. } else {
  259. readyc = nil
  260. }
  261. }
  262. if lead != r.lead {
  263. if r.hasLeader() {
  264. if lead == None {
  265. r.logger.Infof("raft.node: %x elected leader %x at term %d", r.id, r.lead, r.Term)
  266. } else {
  267. r.logger.Infof("raft.node: %x changed leader from %x to %x at term %d", r.id, lead, r.lead, r.Term)
  268. }
  269. propc = n.propc
  270. } else {
  271. r.logger.Infof("raft.node: %x lost leader %x at term %d", r.id, lead, r.Term)
  272. propc = nil
  273. }
  274. lead = r.lead
  275. }
  276. select {
  277. // TODO: maybe buffer the config propose if there exists one (the way
  278. // described in raft dissertation)
  279. // Currently it is dropped in Step silently.
  280. case pm := <-propc:
  281. m := pm.m
  282. m.From = r.id
  283. err := r.Step(m)
  284. if pm.result != nil {
  285. pm.result <- err
  286. close(pm.result)
  287. }
  288. case m := <-n.recvc:
  289. // filter out response message from unknown From.
  290. if pr := r.getProgress(m.From); pr != nil || !IsResponseMsg(m.Type) {
  291. r.Step(m)
  292. }
  293. case cc := <-n.confc:
  294. if cc.NodeID == None {
  295. select {
  296. case n.confstatec <- pb.ConfState{
  297. Nodes: r.nodes(),
  298. Learners: r.learnerNodes()}:
  299. case <-n.done:
  300. }
  301. break
  302. }
  303. switch cc.Type {
  304. case pb.ConfChangeAddNode:
  305. r.addNode(cc.NodeID)
  306. case pb.ConfChangeAddLearnerNode:
  307. r.addLearner(cc.NodeID)
  308. case pb.ConfChangeRemoveNode:
  309. // block incoming proposal when local node is
  310. // removed
  311. if cc.NodeID == r.id {
  312. propc = nil
  313. }
  314. r.removeNode(cc.NodeID)
  315. case pb.ConfChangeUpdateNode:
  316. default:
  317. panic("unexpected conf type")
  318. }
  319. select {
  320. case n.confstatec <- pb.ConfState{
  321. Nodes: r.nodes(),
  322. Learners: r.learnerNodes()}:
  323. case <-n.done:
  324. }
  325. case <-n.tickc:
  326. r.tick()
  327. case readyc <- rd:
  328. if rd.SoftState != nil {
  329. prevSoftSt = rd.SoftState
  330. }
  331. if len(rd.Entries) > 0 {
  332. prevLastUnstablei = rd.Entries[len(rd.Entries)-1].Index
  333. prevLastUnstablet = rd.Entries[len(rd.Entries)-1].Term
  334. havePrevLastUnstablei = true
  335. }
  336. if !IsEmptyHardState(rd.HardState) {
  337. prevHardSt = rd.HardState
  338. }
  339. if !IsEmptySnap(rd.Snapshot) {
  340. prevSnapi = rd.Snapshot.Metadata.Index
  341. }
  342. r.msgs = nil
  343. r.readStates = nil
  344. advancec = n.advancec
  345. case <-advancec:
  346. if prevHardSt.Commit != 0 {
  347. r.raftLog.appliedTo(prevHardSt.Commit)
  348. }
  349. if havePrevLastUnstablei {
  350. r.raftLog.stableTo(prevLastUnstablei, prevLastUnstablet)
  351. havePrevLastUnstablei = false
  352. }
  353. r.raftLog.stableSnapTo(prevSnapi)
  354. advancec = nil
  355. case c := <-n.status:
  356. c <- getStatus(r)
  357. case <-n.stop:
  358. close(n.done)
  359. return
  360. }
  361. }
  362. }
  363. // Tick increments the internal logical clock for this Node. Election timeouts
  364. // and heartbeat timeouts are in units of ticks.
  365. func (n *node) Tick() {
  366. select {
  367. case n.tickc <- struct{}{}:
  368. case <-n.done:
  369. default:
  370. n.logger.Warningf("A tick missed to fire. Node blocks too long!")
  371. }
  372. }
  373. func (n *node) Campaign(ctx context.Context) error { return n.step(ctx, pb.Message{Type: pb.MsgHup}) }
  374. func (n *node) Propose(ctx context.Context, data []byte) error {
  375. return n.stepWait(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})
  376. }
  377. func (n *node) Step(ctx context.Context, m pb.Message) error {
  378. // ignore unexpected local messages receiving over network
  379. if IsLocalMsg(m.Type) {
  380. // TODO: return an error?
  381. return nil
  382. }
  383. return n.step(ctx, m)
  384. }
  385. func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error {
  386. data, err := cc.Marshal()
  387. if err != nil {
  388. return err
  389. }
  390. return n.Step(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange, Data: data}}})
  391. }
  392. func (n *node) step(ctx context.Context, m pb.Message) error {
  393. return n.stepWithWaitOption(ctx, m, false)
  394. }
  395. func (n *node) stepWait(ctx context.Context, m pb.Message) error {
  396. return n.stepWithWaitOption(ctx, m, true)
  397. }
  398. // Step advances the state machine using msgs. The ctx.Err() will be returned,
  399. // if any.
  400. func (n *node) stepWithWaitOption(ctx context.Context, m pb.Message, wait bool) error {
  401. if m.Type != pb.MsgProp {
  402. select {
  403. case n.recvc <- m:
  404. return nil
  405. case <-ctx.Done():
  406. return ctx.Err()
  407. case <-n.done:
  408. return ErrStopped
  409. }
  410. }
  411. ch := n.propc
  412. pm := msgWithResult{m: m}
  413. if wait {
  414. pm.result = make(chan error, 1)
  415. }
  416. select {
  417. case ch <- pm:
  418. if !wait {
  419. return nil
  420. }
  421. case <-ctx.Done():
  422. return ctx.Err()
  423. case <-n.done:
  424. return ErrStopped
  425. }
  426. select {
  427. case rsp := <-pm.result:
  428. if rsp != nil {
  429. return rsp
  430. }
  431. case <-ctx.Done():
  432. return ctx.Err()
  433. case <-n.done:
  434. return ErrStopped
  435. }
  436. return nil
  437. }
  438. func (n *node) Ready() <-chan Ready { return n.readyc }
  439. func (n *node) Advance() {
  440. select {
  441. case n.advancec <- struct{}{}:
  442. case <-n.done:
  443. }
  444. }
  445. func (n *node) ApplyConfChange(cc pb.ConfChange) *pb.ConfState {
  446. var cs pb.ConfState
  447. select {
  448. case n.confc <- cc:
  449. case <-n.done:
  450. }
  451. select {
  452. case cs = <-n.confstatec:
  453. case <-n.done:
  454. }
  455. return &cs
  456. }
  457. func (n *node) Status() Status {
  458. c := make(chan Status)
  459. select {
  460. case n.status <- c:
  461. return <-c
  462. case <-n.done:
  463. return Status{}
  464. }
  465. }
  466. func (n *node) ReportUnreachable(id uint64) {
  467. select {
  468. case n.recvc <- pb.Message{Type: pb.MsgUnreachable, From: id}:
  469. case <-n.done:
  470. }
  471. }
  472. func (n *node) ReportSnapshot(id uint64, status SnapshotStatus) {
  473. rej := status == SnapshotFailure
  474. select {
  475. case n.recvc <- pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej}:
  476. case <-n.done:
  477. }
  478. }
  479. func (n *node) TransferLeadership(ctx context.Context, lead, transferee uint64) {
  480. select {
  481. // manually set 'from' and 'to', so that leader can voluntarily transfers its leadership
  482. case n.recvc <- pb.Message{Type: pb.MsgTransferLeader, From: transferee, To: lead}:
  483. case <-n.done:
  484. case <-ctx.Done():
  485. }
  486. }
  487. func (n *node) ReadIndex(ctx context.Context, rctx []byte) error {
  488. return n.step(ctx, pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}})
  489. }
  490. func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready {
  491. rd := Ready{
  492. Entries: r.raftLog.unstableEntries(),
  493. CommittedEntries: r.raftLog.nextEnts(),
  494. Messages: r.msgs,
  495. }
  496. if softSt := r.softState(); !softSt.equal(prevSoftSt) {
  497. rd.SoftState = softSt
  498. }
  499. if hardSt := r.hardState(); !isHardStateEqual(hardSt, prevHardSt) {
  500. rd.HardState = hardSt
  501. // If we hit a size limit when loadaing CommittedEntries, clamp
  502. // our HardState.Commit to what we're actually returning. This is
  503. // also used as our cursor to resume for the next Ready batch.
  504. if len(rd.CommittedEntries) > 0 {
  505. lastCommit := rd.CommittedEntries[len(rd.CommittedEntries)-1]
  506. if rd.HardState.Commit > lastCommit.Index {
  507. rd.HardState.Commit = lastCommit.Index
  508. }
  509. }
  510. }
  511. if r.raftLog.unstable.snapshot != nil {
  512. rd.Snapshot = *r.raftLog.unstable.snapshot
  513. }
  514. if len(r.readStates) != 0 {
  515. rd.ReadStates = r.readStates
  516. }
  517. rd.MustSync = MustSync(rd.HardState, prevHardSt, len(rd.Entries))
  518. return rd
  519. }
  520. // MustSync returns true if the hard state and count of Raft entries indicate
  521. // that a synchronous write to persistent storage is required.
  522. func MustSync(st, prevst pb.HardState, entsnum int) bool {
  523. // Persistent state on all servers:
  524. // (Updated on stable storage before responding to RPCs)
  525. // currentTerm
  526. // votedFor
  527. // log entries[]
  528. return entsnum != 0 || st.Vote != prevst.Vote || st.Term != prevst.Term
  529. }