encode.go 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "bufio"
  6. "encoding"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "sort"
  11. "sync"
  12. )
  13. const defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  14. // AsSymbolFlag defines what should be encoded as symbols.
  15. type AsSymbolFlag uint8
  16. const (
  17. // AsSymbolDefault is default.
  18. // Currently, this means only encode struct field names as symbols.
  19. // The default is subject to change.
  20. AsSymbolDefault AsSymbolFlag = iota
  21. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  22. AsSymbolAll = 0xfe
  23. // AsSymbolNone means do not encode anything as a symbol.
  24. AsSymbolNone = 1 << iota
  25. // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
  26. AsSymbolMapStringKeysFlag
  27. // AsSymbolStructFieldName means encode struct field names as symbols.
  28. AsSymbolStructFieldNameFlag
  29. )
  30. // encWriter abstracts writing to a byte array or to an io.Writer.
  31. type encWriter interface {
  32. writeb([]byte)
  33. writestr(string)
  34. writen1(byte)
  35. writen2(byte, byte)
  36. writen4(byte, byte, byte, byte)
  37. writen5(byte, byte, byte, byte, byte)
  38. atEndOfEncode()
  39. }
  40. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  41. type encDriver interface {
  42. // IsBuiltinType(rt uintptr) bool
  43. EncodeBuiltin(rt uintptr, v interface{})
  44. EncodeNil()
  45. EncodeInt(i int64)
  46. EncodeUint(i uint64)
  47. EncodeBool(b bool)
  48. EncodeFloat32(f float32)
  49. EncodeFloat64(f float64)
  50. // encodeExtPreamble(xtag byte, length int)
  51. EncodeRawExt(re *RawExt, e *Encoder)
  52. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  53. WriteArrayStart(length int)
  54. WriteArrayElem()
  55. WriteArrayEnd()
  56. WriteMapStart(length int)
  57. WriteMapElemKey()
  58. WriteMapElemValue()
  59. WriteMapEnd()
  60. EncodeString(c charEncoding, v string)
  61. EncodeSymbol(v string)
  62. EncodeStringBytes(c charEncoding, v []byte)
  63. //TODO
  64. //encBignum(f *big.Int)
  65. //encStringRunes(c charEncoding, v []rune)
  66. reset()
  67. atEndOfEncode()
  68. }
  69. type ioEncStringWriter interface {
  70. WriteString(s string) (n int, err error)
  71. }
  72. type ioEncFlusher interface {
  73. Flush() error
  74. }
  75. type encDriverAsis interface {
  76. EncodeAsis(v []byte)
  77. }
  78. // type encNoSeparator struct{}
  79. // func (_ encNoSeparator) EncodeEnd() {}
  80. type encDriverNoopContainerWriter struct{}
  81. func (_ encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  82. func (_ encDriverNoopContainerWriter) WriteArrayElem() {}
  83. func (_ encDriverNoopContainerWriter) WriteArrayEnd() {}
  84. func (_ encDriverNoopContainerWriter) WriteMapStart(length int) {}
  85. func (_ encDriverNoopContainerWriter) WriteMapElemKey() {}
  86. func (_ encDriverNoopContainerWriter) WriteMapElemValue() {}
  87. func (_ encDriverNoopContainerWriter) WriteMapEnd() {}
  88. func (_ encDriverNoopContainerWriter) atEndOfEncode() {}
  89. // type ioEncWriterWriter interface {
  90. // WriteByte(c byte) error
  91. // WriteString(s string) (n int, err error)
  92. // Write(p []byte) (n int, err error)
  93. // }
  94. type EncodeOptions struct {
  95. // Encode a struct as an array, and not as a map
  96. StructToArray bool
  97. // Canonical representation means that encoding a value will always result in the same
  98. // sequence of bytes.
  99. //
  100. // This only affects maps, as the iteration order for maps is random.
  101. //
  102. // The implementation MAY use the natural sort order for the map keys if possible:
  103. //
  104. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  105. // then the map keys are first sorted in natural order and then written
  106. // with corresponding map values to the strema.
  107. // - If there is no natural sort order, then the map keys will first be
  108. // encoded into []byte, and then sorted,
  109. // before writing the sorted keys and the corresponding map values to the stream.
  110. //
  111. Canonical bool
  112. // CheckCircularRef controls whether we check for circular references
  113. // and error fast during an encode.
  114. //
  115. // If enabled, an error is received if a pointer to a struct
  116. // references itself either directly or through one of its fields (iteratively).
  117. //
  118. // This is opt-in, as there may be a performance hit to checking circular references.
  119. CheckCircularRef bool
  120. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  121. // when checking if a value is empty.
  122. //
  123. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  124. RecursiveEmptyCheck bool
  125. // Raw controls whether we encode Raw values.
  126. // This is a "dangerous" option and must be explicitly set.
  127. // If set, we blindly encode Raw values as-is, without checking
  128. // if they are a correct representation of a value in that format.
  129. // If unset, we error out.
  130. Raw bool
  131. // AsSymbols defines what should be encoded as symbols.
  132. //
  133. // Encoding as symbols can reduce the encoded size significantly.
  134. //
  135. // However, during decoding, each string to be encoded as a symbol must
  136. // be checked to see if it has been seen before. Consequently, encoding time
  137. // will increase if using symbols, because string comparisons has a clear cost.
  138. //
  139. // Sample values:
  140. // AsSymbolNone
  141. // AsSymbolAll
  142. // AsSymbolMapStringKeys
  143. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  144. AsSymbols AsSymbolFlag
  145. // WriterBufferSize is the size of the buffer used when writing.
  146. //
  147. // if > 0, we use a smart buffer internally for performance purposes.
  148. WriterBufferSize int
  149. }
  150. // ---------------------------------------------
  151. type simpleIoEncWriter struct {
  152. io.Writer
  153. }
  154. // type bufIoEncWriter struct {
  155. // w io.Writer
  156. // buf []byte
  157. // err error
  158. // }
  159. // func (x *bufIoEncWriter) Write(b []byte) (n int, err error) {
  160. // if x.err != nil {
  161. // return 0, x.err
  162. // }
  163. // if cap(x.buf)-len(x.buf) >= len(b) {
  164. // x.buf = append(x.buf, b)
  165. // return len(b), nil
  166. // }
  167. // n, err = x.w.Write(x.buf)
  168. // if err != nil {
  169. // x.err = err
  170. // return 0, x.err
  171. // }
  172. // n, err = x.w.Write(b)
  173. // x.err = err
  174. // return
  175. // }
  176. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  177. type ioEncWriter struct {
  178. w io.Writer
  179. ww io.Writer
  180. bw io.ByteWriter
  181. sw ioEncStringWriter
  182. fw ioEncFlusher
  183. b [8]byte
  184. }
  185. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  186. // x.bs[0] = b
  187. // _, err = x.ww.Write(x.bs[:])
  188. z.b[0] = b
  189. _, err = z.w.Write(z.b[:1])
  190. return
  191. }
  192. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  193. return z.w.Write(bytesView(s))
  194. }
  195. func (z *ioEncWriter) writeb(bs []byte) {
  196. // if len(bs) == 0 {
  197. // return
  198. // }
  199. if _, err := z.ww.Write(bs); err != nil {
  200. panic(err)
  201. }
  202. }
  203. func (z *ioEncWriter) writestr(s string) {
  204. // if len(s) == 0 {
  205. // return
  206. // }
  207. if _, err := z.sw.WriteString(s); err != nil {
  208. panic(err)
  209. }
  210. }
  211. func (z *ioEncWriter) writen1(b byte) {
  212. if err := z.bw.WriteByte(b); err != nil {
  213. panic(err)
  214. }
  215. }
  216. func (z *ioEncWriter) writen2(b1, b2 byte) {
  217. var err error
  218. if err = z.bw.WriteByte(b1); err == nil {
  219. if err = z.bw.WriteByte(b2); err == nil {
  220. return
  221. }
  222. }
  223. panic(err)
  224. }
  225. func (z *ioEncWriter) writen4(b1, b2, b3, b4 byte) {
  226. z.b[0], z.b[1], z.b[2], z.b[3] = b1, b2, b3, b4
  227. if _, err := z.ww.Write(z.b[:4]); err != nil {
  228. panic(err)
  229. }
  230. }
  231. func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  232. z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  233. if _, err := z.ww.Write(z.b[:5]); err != nil {
  234. panic(err)
  235. }
  236. }
  237. func (z *ioEncWriter) atEndOfEncode() {
  238. if z.fw != nil {
  239. z.fw.Flush()
  240. }
  241. }
  242. // ----------------------------------------
  243. // bytesEncWriter implements encWriter and can write to an byte slice.
  244. // It is used by Marshal function.
  245. type bytesEncWriter struct {
  246. b []byte
  247. c int // cursor
  248. out *[]byte // write out on atEndOfEncode
  249. }
  250. func (z *bytesEncWriter) writeb(s []byte) {
  251. oc, a := z.growNoAlloc(len(s))
  252. if a {
  253. z.growAlloc(len(s), oc)
  254. }
  255. copy(z.b[oc:], s)
  256. }
  257. func (z *bytesEncWriter) writestr(s string) {
  258. oc, a := z.growNoAlloc(len(s))
  259. if a {
  260. z.growAlloc(len(s), oc)
  261. }
  262. copy(z.b[oc:], s)
  263. }
  264. func (z *bytesEncWriter) writen1(b1 byte) {
  265. oc, a := z.growNoAlloc(1)
  266. if a {
  267. z.growAlloc(1, oc)
  268. }
  269. z.b[oc] = b1
  270. }
  271. func (z *bytesEncWriter) writen2(b1, b2 byte) {
  272. oc, a := z.growNoAlloc(2)
  273. if a {
  274. z.growAlloc(2, oc)
  275. }
  276. z.b[oc+1] = b2
  277. z.b[oc] = b1
  278. }
  279. func (z *bytesEncWriter) writen4(b1, b2, b3, b4 byte) {
  280. oc, a := z.growNoAlloc(4)
  281. if a {
  282. z.growAlloc(4, oc)
  283. }
  284. z.b[oc+3] = b4
  285. z.b[oc+2] = b3
  286. z.b[oc+1] = b2
  287. z.b[oc] = b1
  288. }
  289. func (z *bytesEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  290. oc, a := z.growNoAlloc(5)
  291. if a {
  292. z.growAlloc(5, oc)
  293. }
  294. z.b[oc+4] = b5
  295. z.b[oc+3] = b4
  296. z.b[oc+2] = b3
  297. z.b[oc+1] = b2
  298. z.b[oc] = b1
  299. }
  300. func (z *bytesEncWriter) atEndOfEncode() {
  301. *(z.out) = z.b[:z.c]
  302. }
  303. // have a growNoalloc(n int), which can be inlined.
  304. // if allocation is needed, then call growAlloc(n int)
  305. func (z *bytesEncWriter) growNoAlloc(n int) (oldcursor int, allocNeeded bool) {
  306. oldcursor = z.c
  307. z.c = z.c + n
  308. if z.c > len(z.b) {
  309. if z.c > cap(z.b) {
  310. allocNeeded = true
  311. } else {
  312. z.b = z.b[:cap(z.b)]
  313. }
  314. }
  315. return
  316. }
  317. func (z *bytesEncWriter) growAlloc(n int, oldcursor int) {
  318. // appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
  319. // bytes.Buffer model (2*cap + n): much better
  320. // bs := make([]byte, 2*cap(z.b)+n)
  321. bs := make([]byte, growCap(cap(z.b), 1, n))
  322. copy(bs, z.b[:oldcursor])
  323. z.b = bs
  324. }
  325. // ---------------------------------------------
  326. func (e *Encoder) builtin(f *codecFnInfo, rv reflect.Value) {
  327. e.e.EncodeBuiltin(f.ti.rtid, rv2i(rv))
  328. }
  329. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  330. e.rawBytes(rv2i(rv).(Raw))
  331. }
  332. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  333. // rev := rv2i(rv).(RawExt)
  334. // e.e.EncodeRawExt(&rev, e)
  335. var re *RawExt
  336. if rv.CanAddr() {
  337. re = rv2i(rv.Addr()).(*RawExt)
  338. } else {
  339. rev := rv2i(rv).(RawExt)
  340. re = &rev
  341. }
  342. e.e.EncodeRawExt(re, e)
  343. }
  344. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  345. // if this is a struct|array and it was addressable, then pass the address directly (not the value)
  346. if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
  347. rv = rv.Addr()
  348. }
  349. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  350. }
  351. func (e *Encoder) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
  352. if indir == 0 {
  353. v = rv2i(rv)
  354. } else if indir == -1 {
  355. // If a non-pointer was passed to Encode(), then that value is not addressable.
  356. // Take addr if addressable, else copy value to an addressable value.
  357. if rv.CanAddr() {
  358. v = rv2i(rv.Addr())
  359. } else {
  360. rv2 := reflect.New(rv.Type())
  361. rv2.Elem().Set(rv)
  362. v = rv2i(rv2)
  363. }
  364. } else {
  365. for j := int8(0); j < indir; j++ {
  366. if rv.IsNil() {
  367. e.e.EncodeNil()
  368. return
  369. }
  370. rv = rv.Elem()
  371. }
  372. v = rv2i(rv)
  373. }
  374. return v, true
  375. }
  376. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  377. if v, proceed := e.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
  378. v.(Selfer).CodecEncodeSelf(e)
  379. }
  380. }
  381. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  382. if v, proceed := e.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
  383. bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
  384. e.marshal(bs, fnerr, false, c_RAW)
  385. }
  386. }
  387. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  388. if v, proceed := e.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
  389. bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
  390. e.marshal(bs, fnerr, false, c_UTF8)
  391. }
  392. }
  393. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  394. if v, proceed := e.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
  395. bs, fnerr := v.(jsonMarshaler).MarshalJSON()
  396. e.marshal(bs, fnerr, true, c_UTF8)
  397. }
  398. }
  399. func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
  400. e.e.EncodeBool(rv.Bool())
  401. }
  402. func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
  403. e.e.EncodeString(c_UTF8, rv.String())
  404. }
  405. func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
  406. e.e.EncodeFloat64(rv.Float())
  407. }
  408. func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
  409. e.e.EncodeFloat32(float32(rv.Float()))
  410. }
  411. func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
  412. e.e.EncodeInt(rv.Int())
  413. }
  414. func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
  415. e.e.EncodeUint(rv.Uint())
  416. }
  417. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  418. e.e.EncodeNil()
  419. }
  420. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  421. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  422. }
  423. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  424. ti := f.ti
  425. ee := e.e
  426. // array may be non-addressable, so we have to manage with care
  427. // (don't call rv.Bytes, rv.Slice, etc).
  428. // E.g. type struct S{B [2]byte};
  429. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  430. if f.seq != seqTypeArray {
  431. if rv.IsNil() {
  432. ee.EncodeNil()
  433. return
  434. }
  435. // If in this method, then there was no extension function defined.
  436. // So it's okay to treat as []byte.
  437. if ti.rtid == uint8SliceTypId {
  438. ee.EncodeStringBytes(c_RAW, rv.Bytes())
  439. return
  440. }
  441. }
  442. elemsep := e.hh.hasElemSeparators()
  443. rtelem := ti.rt.Elem()
  444. l := rv.Len()
  445. if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
  446. switch f.seq {
  447. case seqTypeArray:
  448. if rv.CanAddr() {
  449. ee.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
  450. } else {
  451. var bs []byte
  452. if l <= cap(e.b) {
  453. bs = e.b[:l]
  454. } else {
  455. bs = make([]byte, l)
  456. }
  457. reflect.Copy(reflect.ValueOf(bs), rv)
  458. ee.EncodeStringBytes(c_RAW, bs)
  459. }
  460. return
  461. case seqTypeSlice:
  462. ee.EncodeStringBytes(c_RAW, rv.Bytes())
  463. return
  464. }
  465. }
  466. if ti.rtid == uint8SliceTypId && f.seq == seqTypeChan {
  467. bs := e.b[:0]
  468. // do not use range, so that the number of elements encoded
  469. // does not change, and encoding does not hang waiting on someone to close chan.
  470. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  471. ch := rv2i(rv).(<-chan byte)
  472. for i := 0; i < l; i++ {
  473. bs = append(bs, <-ch)
  474. }
  475. ee.EncodeStringBytes(c_RAW, bs)
  476. return
  477. }
  478. if ti.mbs {
  479. if l%2 == 1 {
  480. e.errorf("mapBySlice requires even slice length, but got %v", l)
  481. return
  482. }
  483. ee.WriteMapStart(l / 2)
  484. } else {
  485. ee.WriteArrayStart(l)
  486. }
  487. if l > 0 {
  488. var fn *codecFn
  489. var recognizedVtyp = useLookupRecognizedTypes && isRecognizedRtidOrPtr(rt2id(rtelem))
  490. if !recognizedVtyp {
  491. for rtelem.Kind() == reflect.Ptr {
  492. rtelem = rtelem.Elem()
  493. }
  494. // if kind is reflect.Interface, do not pre-determine the
  495. // encoding type, because preEncodeValue may break it down to
  496. // a concrete type and kInterface will bomb.
  497. if rtelem.Kind() != reflect.Interface {
  498. fn = e.cf.get(rtelem, true, true)
  499. }
  500. }
  501. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  502. for j := 0; j < l; j++ {
  503. if elemsep {
  504. if ti.mbs {
  505. if j%2 == 0 {
  506. ee.WriteMapElemKey()
  507. } else {
  508. ee.WriteMapElemValue()
  509. }
  510. } else {
  511. ee.WriteArrayElem()
  512. }
  513. }
  514. if f.seq == seqTypeChan {
  515. if rv2, ok2 := rv.Recv(); ok2 {
  516. if useLookupRecognizedTypes && recognizedVtyp {
  517. e.encode(rv2i(rv2))
  518. } else {
  519. e.encodeValue(rv2, fn, true)
  520. }
  521. } else {
  522. ee.EncodeNil() // WE HAVE TO DO SOMETHING, so nil if nothing received.
  523. }
  524. } else {
  525. if useLookupRecognizedTypes && recognizedVtyp {
  526. e.encode(rv2i(rv.Index(j)))
  527. } else {
  528. e.encodeValue(rv.Index(j), fn, true)
  529. }
  530. }
  531. }
  532. }
  533. if ti.mbs {
  534. ee.WriteMapEnd()
  535. } else {
  536. ee.WriteArrayEnd()
  537. }
  538. }
  539. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  540. fti := f.ti
  541. elemsep := e.hh.hasElemSeparators()
  542. tisfi := fti.sfip
  543. toMap := !(fti.toArray || e.h.StructToArray)
  544. if toMap {
  545. tisfi = fti.sfi
  546. }
  547. ee := e.e
  548. sfn := structFieldNode{v: rv, update: false}
  549. if toMap {
  550. ee.WriteMapStart(len(tisfi))
  551. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  552. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  553. if !elemsep {
  554. for _, si := range tisfi {
  555. if asSymbols {
  556. ee.EncodeSymbol(si.encName)
  557. } else {
  558. ee.EncodeString(c_UTF8, si.encName)
  559. }
  560. e.encodeValue(sfn.field(si), nil, true)
  561. }
  562. } else {
  563. for _, si := range tisfi {
  564. ee.WriteMapElemKey()
  565. if asSymbols {
  566. ee.EncodeSymbol(si.encName)
  567. } else {
  568. ee.EncodeString(c_UTF8, si.encName)
  569. }
  570. ee.WriteMapElemValue()
  571. e.encodeValue(sfn.field(si), nil, true)
  572. }
  573. }
  574. ee.WriteMapEnd()
  575. } else {
  576. ee.WriteArrayStart(len(tisfi))
  577. if !elemsep {
  578. for _, si := range tisfi {
  579. e.encodeValue(sfn.field(si), nil, true)
  580. }
  581. } else {
  582. for _, si := range tisfi {
  583. ee.WriteArrayElem()
  584. e.encodeValue(sfn.field(si), nil, true)
  585. }
  586. }
  587. ee.WriteArrayEnd()
  588. }
  589. }
  590. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  591. fti := f.ti
  592. elemsep := e.hh.hasElemSeparators()
  593. tisfi := fti.sfip
  594. toMap := !(fti.toArray || e.h.StructToArray)
  595. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  596. if toMap {
  597. tisfi = fti.sfi
  598. }
  599. newlen := len(fti.sfi)
  600. ee := e.e
  601. // Use sync.Pool to reduce allocating slices unnecessarily.
  602. // The cost of sync.Pool is less than the cost of new allocation.
  603. //
  604. // Each element of the array pools one of encStructPool(8|16|32|64).
  605. // It allows the re-use of slices up to 64 in length.
  606. // A performance cost of encoding structs was collecting
  607. // which values were empty and should be omitted.
  608. // We needed slices of reflect.Value and string to collect them.
  609. // This shared pool reduces the amount of unnecessary creation we do.
  610. // The cost is that of locking sometimes, but sync.Pool is efficient
  611. // enough to reduce thread contention.
  612. var spool *sync.Pool
  613. var poolv interface{}
  614. var fkvs []stringRv
  615. if newlen <= 8 {
  616. spool, poolv = pool.stringRv8()
  617. fkvs = poolv.(*[8]stringRv)[:newlen]
  618. } else if newlen <= 16 {
  619. spool, poolv = pool.stringRv16()
  620. fkvs = poolv.(*[16]stringRv)[:newlen]
  621. } else if newlen <= 32 {
  622. spool, poolv = pool.stringRv32()
  623. fkvs = poolv.(*[32]stringRv)[:newlen]
  624. } else if newlen <= 64 {
  625. spool, poolv = pool.stringRv64()
  626. fkvs = poolv.(*[64]stringRv)[:newlen]
  627. } else if newlen <= 128 {
  628. spool, poolv = pool.stringRv128()
  629. fkvs = poolv.(*[128]stringRv)[:newlen]
  630. } else {
  631. fkvs = make([]stringRv, newlen)
  632. }
  633. newlen = 0
  634. var kv stringRv
  635. recur := e.h.RecursiveEmptyCheck
  636. sfn := structFieldNode{v: rv, update: false}
  637. for _, si := range tisfi {
  638. // kv.r = si.field(rv, false)
  639. kv.r = sfn.field(si)
  640. if toMap {
  641. if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
  642. continue
  643. }
  644. kv.v = si.encName
  645. } else {
  646. // use the zero value.
  647. // if a reference or struct, set to nil (so you do not output too much)
  648. if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
  649. switch kv.r.Kind() {
  650. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  651. kv.r = reflect.Value{} //encode as nil
  652. }
  653. }
  654. }
  655. fkvs[newlen] = kv
  656. newlen++
  657. }
  658. if toMap {
  659. ee.WriteMapStart(newlen)
  660. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  661. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  662. if !elemsep {
  663. for j := 0; j < newlen; j++ {
  664. kv = fkvs[j]
  665. if asSymbols {
  666. ee.EncodeSymbol(kv.v)
  667. } else {
  668. ee.EncodeString(c_UTF8, kv.v)
  669. }
  670. e.encodeValue(kv.r, nil, true)
  671. }
  672. } else {
  673. for j := 0; j < newlen; j++ {
  674. kv = fkvs[j]
  675. ee.WriteMapElemKey()
  676. if asSymbols {
  677. ee.EncodeSymbol(kv.v)
  678. } else {
  679. ee.EncodeString(c_UTF8, kv.v)
  680. }
  681. ee.WriteMapElemValue()
  682. e.encodeValue(kv.r, nil, true)
  683. }
  684. }
  685. ee.WriteMapEnd()
  686. } else {
  687. ee.WriteArrayStart(newlen)
  688. if !elemsep {
  689. for j := 0; j < newlen; j++ {
  690. e.encodeValue(fkvs[j].r, nil, true)
  691. }
  692. } else {
  693. for j := 0; j < newlen; j++ {
  694. ee.WriteArrayElem()
  695. e.encodeValue(fkvs[j].r, nil, true)
  696. }
  697. }
  698. ee.WriteArrayEnd()
  699. }
  700. // do not use defer. Instead, use explicit pool return at end of function.
  701. // defer has a cost we are trying to avoid.
  702. // If there is a panic and these slices are not returned, it is ok.
  703. if spool != nil {
  704. spool.Put(poolv)
  705. }
  706. }
  707. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  708. ee := e.e
  709. if rv.IsNil() {
  710. ee.EncodeNil()
  711. return
  712. }
  713. l := rv.Len()
  714. ee.WriteMapStart(l)
  715. elemsep := e.hh.hasElemSeparators()
  716. if l == 0 {
  717. ee.WriteMapEnd()
  718. return
  719. }
  720. var asSymbols bool
  721. // determine the underlying key and val encFn's for the map.
  722. // This eliminates some work which is done for each loop iteration i.e.
  723. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  724. //
  725. // However, if kind is reflect.Interface, do not pre-determine the
  726. // encoding type, because preEncodeValue may break it down to
  727. // a concrete type and kInterface will bomb.
  728. var keyFn, valFn *codecFn
  729. ti := f.ti
  730. rtkey0 := ti.rt.Key()
  731. rtkey := rtkey0
  732. rtval0 := ti.rt.Elem()
  733. rtval := rtval0
  734. rtkeyid := rt2id(rtkey0)
  735. rtvalid := rt2id(rtval0)
  736. for rtval.Kind() == reflect.Ptr {
  737. rtval = rtval.Elem()
  738. }
  739. if rtval.Kind() != reflect.Interface {
  740. valFn = e.cf.get(rtval, true, true)
  741. }
  742. mks := rv.MapKeys()
  743. if e.h.Canonical {
  744. e.kMapCanonical(rtkey, rv, mks, valFn, asSymbols)
  745. ee.WriteMapEnd()
  746. return
  747. }
  748. var recognizedKtyp, recognizedVtyp bool
  749. var keyTypeIsString = rtkeyid == stringTypId
  750. if keyTypeIsString {
  751. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  752. } else {
  753. if useLookupRecognizedTypes {
  754. if recognizedKtyp = isRecognizedRtidOrPtr(rtkeyid); recognizedKtyp {
  755. goto LABEL1
  756. }
  757. }
  758. for rtkey.Kind() == reflect.Ptr {
  759. rtkey = rtkey.Elem()
  760. }
  761. if rtkey.Kind() != reflect.Interface {
  762. rtkeyid = rt2id(rtkey)
  763. keyFn = e.cf.get(rtkey, true, true)
  764. }
  765. }
  766. // for j, lmks := 0, len(mks); j < lmks; j++ {
  767. LABEL1:
  768. recognizedVtyp = useLookupRecognizedTypes && isRecognizedRtidOrPtr(rtvalid)
  769. for j := range mks {
  770. if elemsep {
  771. ee.WriteMapElemKey()
  772. }
  773. if keyTypeIsString {
  774. if asSymbols {
  775. ee.EncodeSymbol(mks[j].String())
  776. } else {
  777. ee.EncodeString(c_UTF8, mks[j].String())
  778. }
  779. } else if useLookupRecognizedTypes && recognizedKtyp {
  780. e.encode(rv2i(mks[j]))
  781. } else {
  782. e.encodeValue(mks[j], keyFn, true)
  783. }
  784. if elemsep {
  785. ee.WriteMapElemValue()
  786. }
  787. if useLookupRecognizedTypes && recognizedVtyp {
  788. e.encode(rv2i(rv.MapIndex(mks[j])))
  789. } else {
  790. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  791. }
  792. }
  793. ee.WriteMapEnd()
  794. }
  795. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn, asSymbols bool) {
  796. ee := e.e
  797. elemsep := e.hh.hasElemSeparators()
  798. // we previously did out-of-band if an extension was registered.
  799. // This is not necessary, as the natural kind is sufficient for ordering.
  800. // WHAT IS THIS? rtkeyid can never be a []uint8, per spec
  801. // if rtkeyid == uint8SliceTypId {
  802. // mksv := make([]bytesRv, len(mks))
  803. // for i, k := range mks {
  804. // v := &mksv[i]
  805. // v.r = k
  806. // v.v = k.Bytes()
  807. // }
  808. // sort.Sort(bytesRvSlice(mksv))
  809. // for i := range mksv {
  810. // if elemsep {
  811. // ee.WriteMapElemKey()
  812. // }
  813. // ee.EncodeStringBytes(c_RAW, mksv[i].v)
  814. // if elemsep {
  815. // ee.WriteMapElemValue()
  816. // }
  817. // e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  818. // }
  819. // return
  820. // }
  821. switch rtkey.Kind() {
  822. case reflect.Bool:
  823. mksv := make([]boolRv, len(mks))
  824. for i, k := range mks {
  825. v := &mksv[i]
  826. v.r = k
  827. v.v = k.Bool()
  828. }
  829. sort.Sort(boolRvSlice(mksv))
  830. for i := range mksv {
  831. if elemsep {
  832. ee.WriteMapElemKey()
  833. }
  834. ee.EncodeBool(mksv[i].v)
  835. if elemsep {
  836. ee.WriteMapElemValue()
  837. }
  838. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  839. }
  840. case reflect.String:
  841. mksv := make([]stringRv, len(mks))
  842. for i, k := range mks {
  843. v := &mksv[i]
  844. v.r = k
  845. v.v = k.String()
  846. }
  847. sort.Sort(stringRvSlice(mksv))
  848. for i := range mksv {
  849. if elemsep {
  850. ee.WriteMapElemKey()
  851. }
  852. if asSymbols {
  853. ee.EncodeSymbol(mksv[i].v)
  854. } else {
  855. ee.EncodeString(c_UTF8, mksv[i].v)
  856. }
  857. if elemsep {
  858. ee.WriteMapElemValue()
  859. }
  860. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  861. }
  862. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  863. mksv := make([]uintRv, len(mks))
  864. for i, k := range mks {
  865. v := &mksv[i]
  866. v.r = k
  867. v.v = k.Uint()
  868. }
  869. sort.Sort(uintRvSlice(mksv))
  870. for i := range mksv {
  871. if elemsep {
  872. ee.WriteMapElemKey()
  873. }
  874. ee.EncodeUint(mksv[i].v)
  875. if elemsep {
  876. ee.WriteMapElemValue()
  877. }
  878. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  879. }
  880. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  881. mksv := make([]intRv, len(mks))
  882. for i, k := range mks {
  883. v := &mksv[i]
  884. v.r = k
  885. v.v = k.Int()
  886. }
  887. sort.Sort(intRvSlice(mksv))
  888. for i := range mksv {
  889. if elemsep {
  890. ee.WriteMapElemKey()
  891. }
  892. ee.EncodeInt(mksv[i].v)
  893. if elemsep {
  894. ee.WriteMapElemValue()
  895. }
  896. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  897. }
  898. case reflect.Float32:
  899. mksv := make([]floatRv, len(mks))
  900. for i, k := range mks {
  901. v := &mksv[i]
  902. v.r = k
  903. v.v = k.Float()
  904. }
  905. sort.Sort(floatRvSlice(mksv))
  906. for i := range mksv {
  907. if elemsep {
  908. ee.WriteMapElemKey()
  909. }
  910. ee.EncodeFloat32(float32(mksv[i].v))
  911. if elemsep {
  912. ee.WriteMapElemValue()
  913. }
  914. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  915. }
  916. case reflect.Float64:
  917. mksv := make([]floatRv, len(mks))
  918. for i, k := range mks {
  919. v := &mksv[i]
  920. v.r = k
  921. v.v = k.Float()
  922. }
  923. sort.Sort(floatRvSlice(mksv))
  924. for i := range mksv {
  925. if elemsep {
  926. ee.WriteMapElemKey()
  927. }
  928. ee.EncodeFloat64(mksv[i].v)
  929. if elemsep {
  930. ee.WriteMapElemValue()
  931. }
  932. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  933. }
  934. default:
  935. // out-of-band
  936. // first encode each key to a []byte first, then sort them, then record
  937. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  938. e2 := NewEncoderBytes(&mksv, e.hh)
  939. mksbv := make([]bytesRv, len(mks))
  940. for i, k := range mks {
  941. v := &mksbv[i]
  942. l := len(mksv)
  943. e2.MustEncode(k)
  944. v.r = k
  945. v.v = mksv[l:]
  946. }
  947. sort.Sort(bytesRvSlice(mksbv))
  948. for j := range mksbv {
  949. if elemsep {
  950. ee.WriteMapElemKey()
  951. }
  952. e.asis(mksbv[j].v)
  953. if elemsep {
  954. ee.WriteMapElemValue()
  955. }
  956. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  957. }
  958. }
  959. }
  960. // // --------------------------------------------------
  961. // An Encoder writes an object to an output stream in the codec format.
  962. type Encoder struct {
  963. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  964. e encDriver
  965. // NOTE: Encoder shouldn't call it's write methods,
  966. // as the handler MAY need to do some coordination.
  967. w encWriter
  968. hh Handle
  969. h *BasicHandle
  970. // ---- cpu cache line boundary?
  971. wi ioEncWriter
  972. wb bytesEncWriter
  973. bw bufio.Writer
  974. // cr containerStateRecv
  975. as encDriverAsis
  976. // ---- cpu cache line boundary?
  977. ci set
  978. err error
  979. b [scratchByteArrayLen]byte
  980. cf codecFner
  981. }
  982. // NewEncoder returns an Encoder for encoding into an io.Writer.
  983. //
  984. // For efficiency, Users are encouraged to pass in a memory buffered writer
  985. // (eg bufio.Writer, bytes.Buffer).
  986. func NewEncoder(w io.Writer, h Handle) *Encoder {
  987. e := newEncoder(h)
  988. e.Reset(w)
  989. return e
  990. }
  991. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  992. // into a byte slice, using zero-copying to temporary slices.
  993. //
  994. // It will potentially replace the output byte slice pointed to.
  995. // After encoding, the out parameter contains the encoded contents.
  996. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  997. e := newEncoder(h)
  998. e.ResetBytes(out)
  999. return e
  1000. }
  1001. func newEncoder(h Handle) *Encoder {
  1002. e := &Encoder{hh: h, h: h.getBasicHandle()}
  1003. e.e = h.newEncDriver(e)
  1004. e.as, _ = e.e.(encDriverAsis)
  1005. // e.cr, _ = e.e.(containerStateRecv)
  1006. return e
  1007. }
  1008. // Reset the Encoder with a new output stream.
  1009. //
  1010. // This accommodates using the state of the Encoder,
  1011. // where it has "cached" information about sub-engines.
  1012. func (e *Encoder) Reset(w io.Writer) {
  1013. var ok bool
  1014. e.wi.w = w
  1015. if e.h.WriterBufferSize > 0 {
  1016. bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1017. e.bw = *bw
  1018. e.wi.bw = &e.bw
  1019. e.wi.sw = &e.bw
  1020. e.wi.fw = &e.bw
  1021. e.wi.ww = &e.bw
  1022. } else {
  1023. if e.wi.bw, ok = w.(io.ByteWriter); !ok {
  1024. e.wi.bw = &e.wi
  1025. }
  1026. if e.wi.sw, ok = w.(ioEncStringWriter); !ok {
  1027. e.wi.sw = &e.wi
  1028. }
  1029. e.wi.fw, _ = w.(ioEncFlusher)
  1030. e.wi.ww = w
  1031. }
  1032. e.w = &e.wi
  1033. e.e.reset()
  1034. e.cf.reset(e.hh)
  1035. e.err = nil
  1036. }
  1037. func (e *Encoder) ResetBytes(out *[]byte) {
  1038. in := *out
  1039. if in == nil {
  1040. in = make([]byte, defEncByteBufSize)
  1041. }
  1042. e.wb.b, e.wb.out, e.wb.c = in, out, 0
  1043. e.w = &e.wb
  1044. e.e.reset()
  1045. e.cf.reset(e.hh)
  1046. e.err = nil
  1047. }
  1048. // Encode writes an object into a stream.
  1049. //
  1050. // Encoding can be configured via the struct tag for the fields.
  1051. // The "codec" key in struct field's tag value is the key name,
  1052. // followed by an optional comma and options.
  1053. // Note that the "json" key is used in the absence of the "codec" key.
  1054. //
  1055. // To set an option on all fields (e.g. omitempty on all fields), you
  1056. // can create a field called _struct, and set flags on it.
  1057. //
  1058. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1059. // - the field's tag is "-", OR
  1060. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1061. //
  1062. // When encoding as a map, the first string in the tag (before the comma)
  1063. // is the map key string to use when encoding.
  1064. //
  1065. // However, struct values may encode as arrays. This happens when:
  1066. // - StructToArray Encode option is set, OR
  1067. // - the tag on the _struct field sets the "toarray" option
  1068. // Note that omitempty is ignored when encoding struct values as arrays,
  1069. // as an entry must be encoded for each field, to maintain its position.
  1070. //
  1071. // Values with types that implement MapBySlice are encoded as stream maps.
  1072. //
  1073. // The empty values (for omitempty option) are false, 0, any nil pointer
  1074. // or interface value, and any array, slice, map, or string of length zero.
  1075. //
  1076. // Anonymous fields are encoded inline except:
  1077. // - the struct tag specifies a replacement name (first value)
  1078. // - the field is of an interface type
  1079. //
  1080. // Examples:
  1081. //
  1082. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1083. // type MyStruct struct {
  1084. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1085. // Field1 string `codec:"-"` //skip this field
  1086. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1087. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1088. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1089. // io.Reader //use key "Reader".
  1090. // MyStruct `codec:"my1" //use key "my1".
  1091. // MyStruct //inline it
  1092. // ...
  1093. // }
  1094. //
  1095. // type MyStruct struct {
  1096. // _struct bool `codec:",toarray"` //encode struct as an array
  1097. // }
  1098. //
  1099. // The mode of encoding is based on the type of the value. When a value is seen:
  1100. // - If a Selfer, call its CodecEncodeSelf method
  1101. // - If an extension is registered for it, call that extension function
  1102. // - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
  1103. // - Else encode it based on its reflect.Kind
  1104. //
  1105. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1106. // Some formats support symbols (e.g. binc) and will properly encode the string
  1107. // only once in the stream, and use a tag to refer to it thereafter.
  1108. func (e *Encoder) Encode(v interface{}) (err error) {
  1109. defer panicToErrs2(&e.err, &err)
  1110. e.MustEncode(v)
  1111. return
  1112. }
  1113. // MustEncode is like Encode, but panics if unable to Encode.
  1114. // This provides insight to the code location that triggered the error.
  1115. func (e *Encoder) MustEncode(v interface{}) {
  1116. if e.err != nil {
  1117. panic(e.err)
  1118. }
  1119. e.encode(v)
  1120. e.e.atEndOfEncode()
  1121. e.w.atEndOfEncode()
  1122. }
  1123. func (e *Encoder) encode(iv interface{}) {
  1124. if iv == nil || definitelyNil(iv) {
  1125. e.e.EncodeNil()
  1126. return
  1127. }
  1128. if v, ok := iv.(Selfer); ok {
  1129. v.CodecEncodeSelf(e)
  1130. return
  1131. }
  1132. switch v := iv.(type) {
  1133. // case nil:
  1134. // e.e.EncodeNil()
  1135. // case Selfer:
  1136. // v.CodecEncodeSelf(e)
  1137. case Raw:
  1138. e.rawBytes(v)
  1139. case reflect.Value:
  1140. e.encodeValue(v, nil, true)
  1141. case string:
  1142. e.e.EncodeString(c_UTF8, v)
  1143. case bool:
  1144. e.e.EncodeBool(v)
  1145. case int:
  1146. e.e.EncodeInt(int64(v))
  1147. case int8:
  1148. e.e.EncodeInt(int64(v))
  1149. case int16:
  1150. e.e.EncodeInt(int64(v))
  1151. case int32:
  1152. e.e.EncodeInt(int64(v))
  1153. case int64:
  1154. e.e.EncodeInt(v)
  1155. case uint:
  1156. e.e.EncodeUint(uint64(v))
  1157. case uint8:
  1158. e.e.EncodeUint(uint64(v))
  1159. case uint16:
  1160. e.e.EncodeUint(uint64(v))
  1161. case uint32:
  1162. e.e.EncodeUint(uint64(v))
  1163. case uint64:
  1164. e.e.EncodeUint(v)
  1165. case uintptr:
  1166. e.e.EncodeUint(uint64(v))
  1167. case float32:
  1168. e.e.EncodeFloat32(v)
  1169. case float64:
  1170. e.e.EncodeFloat64(v)
  1171. case []uint8:
  1172. e.e.EncodeStringBytes(c_RAW, v)
  1173. case *string:
  1174. e.e.EncodeString(c_UTF8, *v)
  1175. case *bool:
  1176. e.e.EncodeBool(*v)
  1177. case *int:
  1178. e.e.EncodeInt(int64(*v))
  1179. case *int8:
  1180. e.e.EncodeInt(int64(*v))
  1181. case *int16:
  1182. e.e.EncodeInt(int64(*v))
  1183. case *int32:
  1184. e.e.EncodeInt(int64(*v))
  1185. case *int64:
  1186. e.e.EncodeInt(*v)
  1187. case *uint:
  1188. e.e.EncodeUint(uint64(*v))
  1189. case *uint8:
  1190. e.e.EncodeUint(uint64(*v))
  1191. case *uint16:
  1192. e.e.EncodeUint(uint64(*v))
  1193. case *uint32:
  1194. e.e.EncodeUint(uint64(*v))
  1195. case *uint64:
  1196. e.e.EncodeUint(*v)
  1197. case *uintptr:
  1198. e.e.EncodeUint(uint64(*v))
  1199. case *float32:
  1200. e.e.EncodeFloat32(*v)
  1201. case *float64:
  1202. e.e.EncodeFloat64(*v)
  1203. case *[]uint8:
  1204. e.e.EncodeStringBytes(c_RAW, *v)
  1205. default:
  1206. if !fastpathEncodeTypeSwitch(iv, e) {
  1207. e.encodeValue(reflect.ValueOf(iv), nil, false)
  1208. }
  1209. }
  1210. }
  1211. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1212. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1213. var sptr uintptr
  1214. TOP:
  1215. switch rv.Kind() {
  1216. case reflect.Ptr:
  1217. if rv.IsNil() {
  1218. e.e.EncodeNil()
  1219. return
  1220. }
  1221. rv = rv.Elem()
  1222. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1223. // TODO: Movable pointers will be an issue here. Future problem.
  1224. sptr = rv.UnsafeAddr()
  1225. break TOP
  1226. }
  1227. goto TOP
  1228. case reflect.Interface:
  1229. if rv.IsNil() {
  1230. e.e.EncodeNil()
  1231. return
  1232. }
  1233. rv = rv.Elem()
  1234. goto TOP
  1235. case reflect.Slice, reflect.Map:
  1236. if rv.IsNil() {
  1237. e.e.EncodeNil()
  1238. return
  1239. }
  1240. case reflect.Invalid, reflect.Func:
  1241. e.e.EncodeNil()
  1242. return
  1243. }
  1244. if sptr != 0 && (&e.ci).add(sptr) {
  1245. e.errorf("circular reference found: # %d", sptr)
  1246. }
  1247. if fn == nil {
  1248. rt := rv.Type()
  1249. // TODO: calling isRecognizedRtid here is a major slowdown
  1250. if false && useLookupRecognizedTypes && isRecognizedRtidOrPtr(rt2id(rt)) {
  1251. e.encode(rv2i(rv))
  1252. return
  1253. }
  1254. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1255. fn = e.cf.get(rt, checkFastpath, true)
  1256. }
  1257. fn.fe(e, &fn.i, rv)
  1258. if sptr != 0 {
  1259. (&e.ci).remove(sptr)
  1260. }
  1261. }
  1262. func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1263. if fnerr != nil {
  1264. panic(fnerr)
  1265. }
  1266. if bs == nil {
  1267. e.e.EncodeNil()
  1268. } else if asis {
  1269. e.asis(bs)
  1270. } else {
  1271. e.e.EncodeStringBytes(c, bs)
  1272. }
  1273. }
  1274. func (e *Encoder) asis(v []byte) {
  1275. if e.as == nil {
  1276. e.w.writeb(v)
  1277. } else {
  1278. e.as.EncodeAsis(v)
  1279. }
  1280. }
  1281. func (e *Encoder) rawBytes(vv Raw) {
  1282. v := []byte(vv)
  1283. if !e.h.Raw {
  1284. e.errorf("Raw values cannot be encoded: %v", v)
  1285. }
  1286. if e.as == nil {
  1287. e.w.writeb(v)
  1288. } else {
  1289. e.as.EncodeAsis(v)
  1290. }
  1291. }
  1292. func (e *Encoder) errorf(format string, params ...interface{}) {
  1293. err := fmt.Errorf(format, params...)
  1294. panic(err)
  1295. }