123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680 |
- // Copyright 2015 The etcd Authors
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- package lease
- import (
- "encoding/binary"
- "errors"
- "math"
- "sort"
- "sync"
- "time"
- "github.com/coreos/etcd/lease/leasepb"
- "github.com/coreos/etcd/mvcc/backend"
- )
- // NoLease is a special LeaseID representing the absence of a lease.
- const NoLease = LeaseID(0)
- // MaxLeaseTTL is the maximum lease TTL value
- const MaxLeaseTTL = 9000000000
- var (
- forever = time.Time{}
- leaseBucketName = []byte("lease")
- // maximum number of leases to revoke per second; configurable for tests
- leaseRevokeRate = 1000
- ErrNotPrimary = errors.New("not a primary lessor")
- ErrLeaseNotFound = errors.New("lease not found")
- ErrLeaseExists = errors.New("lease already exists")
- ErrLeaseTTLTooLarge = errors.New("too large lease TTL")
- )
- // TxnDelete is a TxnWrite that only permits deletes. Defined here
- // to avoid circular dependency with mvcc.
- type TxnDelete interface {
- DeleteRange(key, end []byte) (n, rev int64)
- End()
- }
- // RangeDeleter is a TxnDelete constructor.
- type RangeDeleter func() TxnDelete
- type LeaseID int64
- // Lessor owns leases. It can grant, revoke, renew and modify leases for lessee.
- type Lessor interface {
- // SetRangeDeleter lets the lessor create TxnDeletes to the store.
- // Lessor deletes the items in the revoked or expired lease by creating
- // new TxnDeletes.
- SetRangeDeleter(rd RangeDeleter)
- // Grant grants a lease that expires at least after TTL seconds.
- Grant(id LeaseID, ttl int64) (*Lease, error)
- // Revoke revokes a lease with given ID. The item attached to the
- // given lease will be removed. If the ID does not exist, an error
- // will be returned.
- Revoke(id LeaseID) error
- // Attach attaches given leaseItem to the lease with given LeaseID.
- // If the lease does not exist, an error will be returned.
- Attach(id LeaseID, items []LeaseItem) error
- // GetLease returns LeaseID for given item.
- // If no lease found, NoLease value will be returned.
- GetLease(item LeaseItem) LeaseID
- // Detach detaches given leaseItem from the lease with given LeaseID.
- // If the lease does not exist, an error will be returned.
- Detach(id LeaseID, items []LeaseItem) error
- // Promote promotes the lessor to be the primary lessor. Primary lessor manages
- // the expiration and renew of leases.
- // Newly promoted lessor renew the TTL of all lease to extend + previous TTL.
- Promote(extend time.Duration)
- // Demote demotes the lessor from being the primary lessor.
- Demote()
- // Renew renews a lease with given ID. It returns the renewed TTL. If the ID does not exist,
- // an error will be returned.
- Renew(id LeaseID) (int64, error)
- // Lookup gives the lease at a given lease id, if any
- Lookup(id LeaseID) *Lease
- // Leases lists all leases.
- Leases() []*Lease
- // ExpiredLeasesC returns a chan that is used to receive expired leases.
- ExpiredLeasesC() <-chan []*Lease
- // Recover recovers the lessor state from the given backend and RangeDeleter.
- Recover(b backend.Backend, rd RangeDeleter)
- // Stop stops the lessor for managing leases. The behavior of calling Stop multiple
- // times is undefined.
- Stop()
- }
- // lessor implements Lessor interface.
- // TODO: use clockwork for testability.
- type lessor struct {
- mu sync.Mutex
- // demotec is set when the lessor is the primary.
- // demotec will be closed if the lessor is demoted.
- demotec chan struct{}
- // TODO: probably this should be a heap with a secondary
- // id index.
- // Now it is O(N) to loop over the leases to find expired ones.
- // We want to make Grant, Revoke, and findExpiredLeases all O(logN) and
- // Renew O(1).
- // findExpiredLeases and Renew should be the most frequent operations.
- leaseMap map[LeaseID]*Lease
- itemMap map[LeaseItem]LeaseID
- // When a lease expires, the lessor will delete the
- // leased range (or key) by the RangeDeleter.
- rd RangeDeleter
- // backend to persist leases. We only persist lease ID and expiry for now.
- // The leased items can be recovered by iterating all the keys in kv.
- b backend.Backend
- // minLeaseTTL is the minimum lease TTL that can be granted for a lease. Any
- // requests for shorter TTLs are extended to the minimum TTL.
- minLeaseTTL int64
- expiredC chan []*Lease
- // stopC is a channel whose closure indicates that the lessor should be stopped.
- stopC chan struct{}
- // doneC is a channel whose closure indicates that the lessor is stopped.
- doneC chan struct{}
- }
- func NewLessor(b backend.Backend, minLeaseTTL int64) Lessor {
- return newLessor(b, minLeaseTTL)
- }
- func newLessor(b backend.Backend, minLeaseTTL int64) *lessor {
- l := &lessor{
- leaseMap: make(map[LeaseID]*Lease),
- itemMap: make(map[LeaseItem]LeaseID),
- b: b,
- minLeaseTTL: minLeaseTTL,
- // expiredC is a small buffered chan to avoid unnecessary blocking.
- expiredC: make(chan []*Lease, 16),
- stopC: make(chan struct{}),
- doneC: make(chan struct{}),
- }
- l.initAndRecover()
- go l.runLoop()
- return l
- }
- // isPrimary indicates if this lessor is the primary lessor. The primary
- // lessor manages lease expiration and renew.
- //
- // in etcd, raft leader is the primary. Thus there might be two primary
- // leaders at the same time (raft allows concurrent leader but with different term)
- // for at most a leader election timeout.
- // The old primary leader cannot affect the correctness since its proposal has a
- // smaller term and will not be committed.
- //
- // TODO: raft follower do not forward lease management proposals. There might be a
- // very small window (within second normally which depends on go scheduling) that
- // a raft follow is the primary between the raft leader demotion and lessor demotion.
- // Usually this should not be a problem. Lease should not be that sensitive to timing.
- func (le *lessor) isPrimary() bool {
- return le.demotec != nil
- }
- func (le *lessor) SetRangeDeleter(rd RangeDeleter) {
- le.mu.Lock()
- defer le.mu.Unlock()
- le.rd = rd
- }
- func (le *lessor) Grant(id LeaseID, ttl int64) (*Lease, error) {
- if id == NoLease {
- return nil, ErrLeaseNotFound
- }
- if ttl > MaxLeaseTTL {
- return nil, ErrLeaseTTLTooLarge
- }
- // TODO: when lessor is under high load, it should give out lease
- // with longer TTL to reduce renew load.
- l := &Lease{
- ID: id,
- ttl: ttl,
- itemSet: make(map[LeaseItem]struct{}),
- revokec: make(chan struct{}),
- }
- le.mu.Lock()
- defer le.mu.Unlock()
- if _, ok := le.leaseMap[id]; ok {
- return nil, ErrLeaseExists
- }
- if l.ttl < le.minLeaseTTL {
- l.ttl = le.minLeaseTTL
- }
- if le.isPrimary() {
- l.refresh(0)
- } else {
- l.forever()
- }
- le.leaseMap[id] = l
- l.persistTo(le.b)
- return l, nil
- }
- func (le *lessor) Revoke(id LeaseID) error {
- le.mu.Lock()
- l := le.leaseMap[id]
- if l == nil {
- le.mu.Unlock()
- return ErrLeaseNotFound
- }
- defer close(l.revokec)
- // unlock before doing external work
- le.mu.Unlock()
- if le.rd == nil {
- return nil
- }
- txn := le.rd()
- // sort keys so deletes are in same order among all members,
- // otherwise the backened hashes will be different
- keys := l.Keys()
- sort.StringSlice(keys).Sort()
- for _, key := range keys {
- txn.DeleteRange([]byte(key), nil)
- }
- le.mu.Lock()
- defer le.mu.Unlock()
- delete(le.leaseMap, l.ID)
- // lease deletion needs to be in the same backend transaction with the
- // kv deletion. Or we might end up with not executing the revoke or not
- // deleting the keys if etcdserver fails in between.
- le.b.BatchTx().UnsafeDelete(leaseBucketName, int64ToBytes(int64(l.ID)))
- txn.End()
- return nil
- }
- // Renew renews an existing lease. If the given lease does not exist or
- // has expired, an error will be returned.
- func (le *lessor) Renew(id LeaseID) (int64, error) {
- le.mu.Lock()
- unlock := func() { le.mu.Unlock() }
- defer func() { unlock() }()
- if !le.isPrimary() {
- // forward renew request to primary instead of returning error.
- return -1, ErrNotPrimary
- }
- demotec := le.demotec
- l := le.leaseMap[id]
- if l == nil {
- return -1, ErrLeaseNotFound
- }
- if l.expired() {
- le.mu.Unlock()
- unlock = func() {}
- select {
- // A expired lease might be pending for revoking or going through
- // quorum to be revoked. To be accurate, renew request must wait for the
- // deletion to complete.
- case <-l.revokec:
- return -1, ErrLeaseNotFound
- // The expired lease might fail to be revoked if the primary changes.
- // The caller will retry on ErrNotPrimary.
- case <-demotec:
- return -1, ErrNotPrimary
- case <-le.stopC:
- return -1, ErrNotPrimary
- }
- }
- l.refresh(0)
- return l.ttl, nil
- }
- func (le *lessor) Lookup(id LeaseID) *Lease {
- le.mu.Lock()
- defer le.mu.Unlock()
- return le.leaseMap[id]
- }
- func (le *lessor) unsafeLeases() []*Lease {
- leases := make([]*Lease, 0, len(le.leaseMap))
- for _, l := range le.leaseMap {
- leases = append(leases, l)
- }
- sort.Sort(leasesByExpiry(leases))
- return leases
- }
- func (le *lessor) Leases() []*Lease {
- le.mu.Lock()
- ls := le.unsafeLeases()
- le.mu.Unlock()
- return ls
- }
- func (le *lessor) Promote(extend time.Duration) {
- le.mu.Lock()
- defer le.mu.Unlock()
- le.demotec = make(chan struct{})
- // refresh the expiries of all leases.
- for _, l := range le.leaseMap {
- l.refresh(extend)
- }
- if len(le.leaseMap) < leaseRevokeRate {
- // no possibility of lease pile-up
- return
- }
- // adjust expiries in case of overlap
- leases := le.unsafeLeases()
- baseWindow := leases[0].Remaining()
- nextWindow := baseWindow + time.Second
- expires := 0
- // have fewer expires than the total revoke rate so piled up leases
- // don't consume the entire revoke limit
- targetExpiresPerSecond := (3 * leaseRevokeRate) / 4
- for _, l := range leases {
- remaining := l.Remaining()
- if remaining > nextWindow {
- baseWindow = remaining
- nextWindow = baseWindow + time.Second
- expires = 1
- continue
- }
- expires++
- if expires <= targetExpiresPerSecond {
- continue
- }
- rateDelay := float64(time.Second) * (float64(expires) / float64(targetExpiresPerSecond))
- // If leases are extended by n seconds, leases n seconds ahead of the
- // base window should be extended by only one second.
- rateDelay -= float64(remaining - baseWindow)
- delay := time.Duration(rateDelay)
- nextWindow = baseWindow + delay
- l.refresh(delay + extend)
- }
- }
- type leasesByExpiry []*Lease
- func (le leasesByExpiry) Len() int { return len(le) }
- func (le leasesByExpiry) Less(i, j int) bool { return le[i].Remaining() < le[j].Remaining() }
- func (le leasesByExpiry) Swap(i, j int) { le[i], le[j] = le[j], le[i] }
- func (le *lessor) Demote() {
- le.mu.Lock()
- defer le.mu.Unlock()
- // set the expiries of all leases to forever
- for _, l := range le.leaseMap {
- l.forever()
- }
- if le.demotec != nil {
- close(le.demotec)
- le.demotec = nil
- }
- }
- // Attach attaches items to the lease with given ID. When the lease
- // expires, the attached items will be automatically removed.
- // If the given lease does not exist, an error will be returned.
- func (le *lessor) Attach(id LeaseID, items []LeaseItem) error {
- le.mu.Lock()
- defer le.mu.Unlock()
- l := le.leaseMap[id]
- if l == nil {
- return ErrLeaseNotFound
- }
- l.mu.Lock()
- for _, it := range items {
- l.itemSet[it] = struct{}{}
- le.itemMap[it] = id
- }
- l.mu.Unlock()
- return nil
- }
- func (le *lessor) GetLease(item LeaseItem) LeaseID {
- le.mu.Lock()
- id := le.itemMap[item]
- le.mu.Unlock()
- return id
- }
- // Detach detaches items from the lease with given ID.
- // If the given lease does not exist, an error will be returned.
- func (le *lessor) Detach(id LeaseID, items []LeaseItem) error {
- le.mu.Lock()
- defer le.mu.Unlock()
- l := le.leaseMap[id]
- if l == nil {
- return ErrLeaseNotFound
- }
- l.mu.Lock()
- for _, it := range items {
- delete(l.itemSet, it)
- delete(le.itemMap, it)
- }
- l.mu.Unlock()
- return nil
- }
- func (le *lessor) Recover(b backend.Backend, rd RangeDeleter) {
- le.mu.Lock()
- defer le.mu.Unlock()
- le.b = b
- le.rd = rd
- le.leaseMap = make(map[LeaseID]*Lease)
- le.itemMap = make(map[LeaseItem]LeaseID)
- le.initAndRecover()
- }
- func (le *lessor) ExpiredLeasesC() <-chan []*Lease {
- return le.expiredC
- }
- func (le *lessor) Stop() {
- close(le.stopC)
- <-le.doneC
- }
- func (le *lessor) runLoop() {
- defer close(le.doneC)
- for {
- var ls []*Lease
- // rate limit
- revokeLimit := leaseRevokeRate / 2
- le.mu.Lock()
- if le.isPrimary() {
- ls = le.findExpiredLeases(revokeLimit)
- }
- le.mu.Unlock()
- if len(ls) != 0 {
- select {
- case <-le.stopC:
- return
- case le.expiredC <- ls:
- default:
- // the receiver of expiredC is probably busy handling
- // other stuff
- // let's try this next time after 500ms
- }
- }
- select {
- case <-time.After(500 * time.Millisecond):
- case <-le.stopC:
- return
- }
- }
- }
- // findExpiredLeases loops leases in the leaseMap until reaching expired limit
- // and returns the expired leases that needed to be revoked.
- func (le *lessor) findExpiredLeases(limit int) []*Lease {
- leases := make([]*Lease, 0, 16)
- for _, l := range le.leaseMap {
- // TODO: probably should change to <= 100-500 millisecond to
- // make up committing latency.
- if l.expired() {
- leases = append(leases, l)
- // reach expired limit
- if len(leases) == limit {
- break
- }
- }
- }
- return leases
- }
- func (le *lessor) initAndRecover() {
- tx := le.b.BatchTx()
- tx.Lock()
- tx.UnsafeCreateBucket(leaseBucketName)
- _, vs := tx.UnsafeRange(leaseBucketName, int64ToBytes(0), int64ToBytes(math.MaxInt64), 0)
- // TODO: copy vs and do decoding outside tx lock if lock contention becomes an issue.
- for i := range vs {
- var lpb leasepb.Lease
- err := lpb.Unmarshal(vs[i])
- if err != nil {
- tx.Unlock()
- panic("failed to unmarshal lease proto item")
- }
- ID := LeaseID(lpb.ID)
- if lpb.TTL < le.minLeaseTTL {
- lpb.TTL = le.minLeaseTTL
- }
- le.leaseMap[ID] = &Lease{
- ID: ID,
- ttl: lpb.TTL,
- // itemSet will be filled in when recover key-value pairs
- // set expiry to forever, refresh when promoted
- itemSet: make(map[LeaseItem]struct{}),
- expiry: forever,
- revokec: make(chan struct{}),
- }
- }
- tx.Unlock()
- le.b.ForceCommit()
- }
- type Lease struct {
- ID LeaseID
- ttl int64 // time to live in seconds
- // expiryMu protects concurrent accesses to expiry
- expiryMu sync.RWMutex
- // expiry is time when lease should expire. no expiration when expiry.IsZero() is true
- expiry time.Time
- // mu protects concurrent accesses to itemSet
- mu sync.RWMutex
- itemSet map[LeaseItem]struct{}
- revokec chan struct{}
- }
- func (l *Lease) expired() bool {
- return l.Remaining() <= 0
- }
- func (l *Lease) persistTo(b backend.Backend) {
- key := int64ToBytes(int64(l.ID))
- lpb := leasepb.Lease{ID: int64(l.ID), TTL: int64(l.ttl)}
- val, err := lpb.Marshal()
- if err != nil {
- panic("failed to marshal lease proto item")
- }
- b.BatchTx().Lock()
- b.BatchTx().UnsafePut(leaseBucketName, key, val)
- b.BatchTx().Unlock()
- }
- // TTL returns the TTL of the Lease.
- func (l *Lease) TTL() int64 {
- return l.ttl
- }
- // refresh refreshes the expiry of the lease.
- func (l *Lease) refresh(extend time.Duration) {
- newExpiry := time.Now().Add(extend + time.Duration(l.ttl)*time.Second)
- l.expiryMu.Lock()
- defer l.expiryMu.Unlock()
- l.expiry = newExpiry
- }
- // forever sets the expiry of lease to be forever.
- func (l *Lease) forever() {
- l.expiryMu.Lock()
- defer l.expiryMu.Unlock()
- l.expiry = forever
- }
- // Keys returns all the keys attached to the lease.
- func (l *Lease) Keys() []string {
- l.mu.RLock()
- keys := make([]string, 0, len(l.itemSet))
- for k := range l.itemSet {
- keys = append(keys, k.Key)
- }
- l.mu.RUnlock()
- return keys
- }
- // Remaining returns the remaining time of the lease.
- func (l *Lease) Remaining() time.Duration {
- l.expiryMu.RLock()
- defer l.expiryMu.RUnlock()
- if l.expiry.IsZero() {
- return time.Duration(math.MaxInt64)
- }
- return time.Until(l.expiry)
- }
- type LeaseItem struct {
- Key string
- }
- func int64ToBytes(n int64) []byte {
- bytes := make([]byte, 8)
- binary.BigEndian.PutUint64(bytes, uint64(n))
- return bytes
- }
- // FakeLessor is a fake implementation of Lessor interface.
- // Used for testing only.
- type FakeLessor struct{}
- func (fl *FakeLessor) SetRangeDeleter(dr RangeDeleter) {}
- func (fl *FakeLessor) Grant(id LeaseID, ttl int64) (*Lease, error) { return nil, nil }
- func (fl *FakeLessor) Revoke(id LeaseID) error { return nil }
- func (fl *FakeLessor) Attach(id LeaseID, items []LeaseItem) error { return nil }
- func (fl *FakeLessor) GetLease(item LeaseItem) LeaseID { return 0 }
- func (fl *FakeLessor) Detach(id LeaseID, items []LeaseItem) error { return nil }
- func (fl *FakeLessor) Promote(extend time.Duration) {}
- func (fl *FakeLessor) Demote() {}
- func (fl *FakeLessor) Renew(id LeaseID) (int64, error) { return 10, nil }
- func (fl *FakeLessor) Lookup(id LeaseID) *Lease { return nil }
- func (fl *FakeLessor) Leases() []*Lease { return nil }
- func (fl *FakeLessor) ExpiredLeasesC() <-chan []*Lease { return nil }
- func (fl *FakeLessor) Recover(b backend.Backend, rd RangeDeleter) {}
- func (fl *FakeLessor) Stop() {}
|