node.go 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. // Copyright 2015 The etcd Authors
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. package raft
  15. import (
  16. "errors"
  17. pb "github.com/coreos/etcd/raft/raftpb"
  18. "golang.org/x/net/context"
  19. )
  20. type SnapshotStatus int
  21. const (
  22. SnapshotFinish SnapshotStatus = 1
  23. SnapshotFailure SnapshotStatus = 2
  24. )
  25. var (
  26. emptyState = pb.HardState{}
  27. // ErrStopped is returned by methods on Nodes that have been stopped.
  28. ErrStopped = errors.New("raft: stopped")
  29. )
  30. // SoftState provides state that is useful for logging and debugging.
  31. // The state is volatile and does not need to be persisted to the WAL.
  32. type SoftState struct {
  33. Lead uint64 // must use atomic operations to access; keep 64-bit aligned.
  34. RaftState StateType
  35. }
  36. func (a *SoftState) equal(b *SoftState) bool {
  37. return a.Lead == b.Lead && a.RaftState == b.RaftState
  38. }
  39. // Ready encapsulates the entries and messages that are ready to read,
  40. // be saved to stable storage, committed or sent to other peers.
  41. // All fields in Ready are read-only.
  42. type Ready struct {
  43. // The current volatile state of a Node.
  44. // SoftState will be nil if there is no update.
  45. // It is not required to consume or store SoftState.
  46. *SoftState
  47. // The current state of a Node to be saved to stable storage BEFORE
  48. // Messages are sent.
  49. // HardState will be equal to empty state if there is no update.
  50. pb.HardState
  51. // ReadState can be used for node to serve linearizable read requests locally
  52. // when its applied index is greater than the index in ReadState.
  53. // Note that the readState will be returned when raft receives msgReadIndex.
  54. // The returned is only valid for the request that requested to read.
  55. ReadState
  56. // Entries specifies entries to be saved to stable storage BEFORE
  57. // Messages are sent.
  58. Entries []pb.Entry
  59. // Snapshot specifies the snapshot to be saved to stable storage.
  60. Snapshot pb.Snapshot
  61. // CommittedEntries specifies entries to be committed to a
  62. // store/state-machine. These have previously been committed to stable
  63. // store.
  64. CommittedEntries []pb.Entry
  65. // Messages specifies outbound messages to be sent AFTER Entries are
  66. // committed to stable storage.
  67. // If it contains a MsgSnap message, the application MUST report back to raft
  68. // when the snapshot has been received or has failed by calling ReportSnapshot.
  69. Messages []pb.Message
  70. }
  71. func isHardStateEqual(a, b pb.HardState) bool {
  72. return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit
  73. }
  74. // IsEmptyHardState returns true if the given HardState is empty.
  75. func IsEmptyHardState(st pb.HardState) bool {
  76. return isHardStateEqual(st, emptyState)
  77. }
  78. // IsEmptySnap returns true if the given Snapshot is empty.
  79. func IsEmptySnap(sp pb.Snapshot) bool {
  80. return sp.Metadata.Index == 0
  81. }
  82. func (rd Ready) containsUpdates() bool {
  83. return rd.SoftState != nil || !IsEmptyHardState(rd.HardState) ||
  84. !IsEmptySnap(rd.Snapshot) || len(rd.Entries) > 0 ||
  85. len(rd.CommittedEntries) > 0 || len(rd.Messages) > 0 || rd.Index != None
  86. }
  87. // Node represents a node in a raft cluster.
  88. type Node interface {
  89. // Tick increments the internal logical clock for the Node by a single tick. Election
  90. // timeouts and heartbeat timeouts are in units of ticks.
  91. Tick()
  92. // Campaign causes the Node to transition to candidate state and start campaigning to become leader.
  93. Campaign(ctx context.Context) error
  94. // Propose proposes that data be appended to the log.
  95. Propose(ctx context.Context, data []byte) error
  96. // ProposeConfChange proposes config change.
  97. // At most one ConfChange can be in the process of going through consensus.
  98. // Application needs to call ApplyConfChange when applying EntryConfChange type entry.
  99. ProposeConfChange(ctx context.Context, cc pb.ConfChange) error
  100. // Step advances the state machine using the given message. ctx.Err() will be returned, if any.
  101. Step(ctx context.Context, msg pb.Message) error
  102. // Ready returns a channel that returns the current point-in-time state.
  103. // Users of the Node must call Advance after retrieving the state returned by Ready.
  104. //
  105. // NOTE: No committed entries from the next Ready may be applied until all committed entries
  106. // and snapshots from the previous one have finished.
  107. Ready() <-chan Ready
  108. // Advance notifies the Node that the application has saved progress up to the last Ready.
  109. // It prepares the node to return the next available Ready.
  110. //
  111. // The application should generally call Advance after it applies the entries in last Ready.
  112. //
  113. // However, as an optimization, the application may call Advance while it is applying the
  114. // commands. For example. when the last Ready contains a snapshot, the application might take
  115. // a long time to apply the snapshot data. To continue receiving Ready without blocking raft
  116. // progress, it can call Advance before finishing applying the last ready.
  117. Advance()
  118. // ApplyConfChange applies config change to the local node.
  119. // Returns an opaque ConfState protobuf which must be recorded
  120. // in snapshots. Will never return nil; it returns a pointer only
  121. // to match MemoryStorage.Compact.
  122. ApplyConfChange(cc pb.ConfChange) *pb.ConfState
  123. // TransferLeadership attempts to transfer leadership to the given transferee.
  124. TransferLeadership(ctx context.Context, lead, transferee uint64)
  125. // ReadIndex request a read state. The read state will be set in the ready.
  126. // Read state has a read index. Once the application advances further than the read
  127. // index, any linearizable read requests issued before the read request can be
  128. // processed safely. The read state will have the same rctx attached.
  129. //
  130. // Note: the current implementation depends on the leader lease. If the clock drift is unbounded,
  131. // leader might keep the lease longer than it should (clock can move backward/pause without any bound).
  132. // ReadIndex is not safe in that case.
  133. // TODO: add clock drift bound into raft configuration.
  134. ReadIndex(ctx context.Context, rctx []byte) error
  135. // Status returns the current status of the raft state machine.
  136. Status() Status
  137. // ReportUnreachable reports the given node is not reachable for the last send.
  138. ReportUnreachable(id uint64)
  139. // ReportSnapshot reports the status of the sent snapshot.
  140. ReportSnapshot(id uint64, status SnapshotStatus)
  141. // Stop performs any necessary termination of the Node.
  142. Stop()
  143. }
  144. type Peer struct {
  145. ID uint64
  146. Context []byte
  147. }
  148. // StartNode returns a new Node given configuration and a list of raft peers.
  149. // It appends a ConfChangeAddNode entry for each given peer to the initial log.
  150. func StartNode(c *Config, peers []Peer) Node {
  151. r := newRaft(c)
  152. // become the follower at term 1 and apply initial configuration
  153. // entries of term 1
  154. r.becomeFollower(1, None)
  155. for _, peer := range peers {
  156. cc := pb.ConfChange{Type: pb.ConfChangeAddNode, NodeID: peer.ID, Context: peer.Context}
  157. d, err := cc.Marshal()
  158. if err != nil {
  159. panic("unexpected marshal error")
  160. }
  161. e := pb.Entry{Type: pb.EntryConfChange, Term: 1, Index: r.raftLog.lastIndex() + 1, Data: d}
  162. r.raftLog.append(e)
  163. }
  164. // Mark these initial entries as committed.
  165. // TODO(bdarnell): These entries are still unstable; do we need to preserve
  166. // the invariant that committed < unstable?
  167. r.raftLog.committed = r.raftLog.lastIndex()
  168. // Now apply them, mainly so that the application can call Campaign
  169. // immediately after StartNode in tests. Note that these nodes will
  170. // be added to raft twice: here and when the application's Ready
  171. // loop calls ApplyConfChange. The calls to addNode must come after
  172. // all calls to raftLog.append so progress.next is set after these
  173. // bootstrapping entries (it is an error if we try to append these
  174. // entries since they have already been committed).
  175. // We do not set raftLog.applied so the application will be able
  176. // to observe all conf changes via Ready.CommittedEntries.
  177. for _, peer := range peers {
  178. r.addNode(peer.ID)
  179. }
  180. n := newNode()
  181. n.logger = c.Logger
  182. go n.run(r)
  183. return &n
  184. }
  185. // RestartNode is similar to StartNode but does not take a list of peers.
  186. // The current membership of the cluster will be restored from the Storage.
  187. // If the caller has an existing state machine, pass in the last log index that
  188. // has been applied to it; otherwise use zero.
  189. func RestartNode(c *Config) Node {
  190. r := newRaft(c)
  191. n := newNode()
  192. n.logger = c.Logger
  193. go n.run(r)
  194. return &n
  195. }
  196. // node is the canonical implementation of the Node interface
  197. type node struct {
  198. propc chan pb.Message
  199. recvc chan pb.Message
  200. confc chan pb.ConfChange
  201. confstatec chan pb.ConfState
  202. readyc chan Ready
  203. advancec chan struct{}
  204. tickc chan struct{}
  205. done chan struct{}
  206. stop chan struct{}
  207. status chan chan Status
  208. logger Logger
  209. }
  210. func newNode() node {
  211. return node{
  212. propc: make(chan pb.Message),
  213. recvc: make(chan pb.Message),
  214. confc: make(chan pb.ConfChange),
  215. confstatec: make(chan pb.ConfState),
  216. readyc: make(chan Ready),
  217. advancec: make(chan struct{}),
  218. // make tickc a buffered chan, so raft node can buffer some ticks when the node
  219. // is busy processing raft messages. Raft node will resume process buffered
  220. // ticks when it becomes idle.
  221. tickc: make(chan struct{}, 128),
  222. done: make(chan struct{}),
  223. stop: make(chan struct{}),
  224. status: make(chan chan Status),
  225. }
  226. }
  227. func (n *node) Stop() {
  228. select {
  229. case n.stop <- struct{}{}:
  230. // Not already stopped, so trigger it
  231. case <-n.done:
  232. // Node has already been stopped - no need to do anything
  233. return
  234. }
  235. // Block until the stop has been acknowledged by run()
  236. <-n.done
  237. }
  238. func (n *node) run(r *raft) {
  239. var propc chan pb.Message
  240. var readyc chan Ready
  241. var advancec chan struct{}
  242. var prevLastUnstablei, prevLastUnstablet uint64
  243. var havePrevLastUnstablei bool
  244. var prevSnapi uint64
  245. var rd Ready
  246. lead := None
  247. prevSoftSt := r.softState()
  248. prevHardSt := emptyState
  249. for {
  250. if advancec != nil {
  251. readyc = nil
  252. } else {
  253. rd = newReady(r, prevSoftSt, prevHardSt)
  254. if rd.containsUpdates() {
  255. readyc = n.readyc
  256. } else {
  257. readyc = nil
  258. }
  259. }
  260. if lead != r.lead {
  261. if r.hasLeader() {
  262. if lead == None {
  263. r.logger.Infof("raft.node: %x elected leader %x at term %d", r.id, r.lead, r.Term)
  264. } else {
  265. r.logger.Infof("raft.node: %x changed leader from %x to %x at term %d", r.id, lead, r.lead, r.Term)
  266. }
  267. propc = n.propc
  268. } else {
  269. r.logger.Infof("raft.node: %x lost leader %x at term %d", r.id, lead, r.Term)
  270. propc = nil
  271. }
  272. lead = r.lead
  273. }
  274. select {
  275. // TODO: maybe buffer the config propose if there exists one (the way
  276. // described in raft dissertation)
  277. // Currently it is dropped in Step silently.
  278. case m := <-propc:
  279. m.From = r.id
  280. r.Step(m)
  281. case m := <-n.recvc:
  282. // filter out response message from unknown From.
  283. if _, ok := r.prs[m.From]; ok || !IsResponseMsg(m.Type) {
  284. r.Step(m) // raft never returns an error
  285. }
  286. case cc := <-n.confc:
  287. if cc.NodeID == None {
  288. r.resetPendingConf()
  289. select {
  290. case n.confstatec <- pb.ConfState{Nodes: r.nodes()}:
  291. case <-n.done:
  292. }
  293. break
  294. }
  295. switch cc.Type {
  296. case pb.ConfChangeAddNode:
  297. r.addNode(cc.NodeID)
  298. case pb.ConfChangeRemoveNode:
  299. // block incoming proposal when local node is
  300. // removed
  301. if cc.NodeID == r.id {
  302. propc = nil
  303. }
  304. r.removeNode(cc.NodeID)
  305. case pb.ConfChangeUpdateNode:
  306. r.resetPendingConf()
  307. default:
  308. panic("unexpected conf type")
  309. }
  310. select {
  311. case n.confstatec <- pb.ConfState{Nodes: r.nodes()}:
  312. case <-n.done:
  313. }
  314. case <-n.tickc:
  315. r.tick()
  316. case readyc <- rd:
  317. if rd.SoftState != nil {
  318. prevSoftSt = rd.SoftState
  319. }
  320. if len(rd.Entries) > 0 {
  321. prevLastUnstablei = rd.Entries[len(rd.Entries)-1].Index
  322. prevLastUnstablet = rd.Entries[len(rd.Entries)-1].Term
  323. havePrevLastUnstablei = true
  324. }
  325. if !IsEmptyHardState(rd.HardState) {
  326. prevHardSt = rd.HardState
  327. }
  328. if !IsEmptySnap(rd.Snapshot) {
  329. prevSnapi = rd.Snapshot.Metadata.Index
  330. }
  331. r.msgs = nil
  332. r.readState.Index = None
  333. r.readState.RequestCtx = nil
  334. advancec = n.advancec
  335. case <-advancec:
  336. if prevHardSt.Commit != 0 {
  337. r.raftLog.appliedTo(prevHardSt.Commit)
  338. }
  339. if havePrevLastUnstablei {
  340. r.raftLog.stableTo(prevLastUnstablei, prevLastUnstablet)
  341. havePrevLastUnstablei = false
  342. }
  343. r.raftLog.stableSnapTo(prevSnapi)
  344. advancec = nil
  345. case c := <-n.status:
  346. c <- getStatus(r)
  347. case <-n.stop:
  348. close(n.done)
  349. return
  350. }
  351. }
  352. }
  353. // Tick increments the internal logical clock for this Node. Election timeouts
  354. // and heartbeat timeouts are in units of ticks.
  355. func (n *node) Tick() {
  356. select {
  357. case n.tickc <- struct{}{}:
  358. case <-n.done:
  359. default:
  360. n.logger.Warningf("A tick missed to fire. Node blocks too long!")
  361. }
  362. }
  363. func (n *node) Campaign(ctx context.Context) error { return n.step(ctx, pb.Message{Type: pb.MsgHup}) }
  364. func (n *node) Propose(ctx context.Context, data []byte) error {
  365. return n.step(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})
  366. }
  367. func (n *node) Step(ctx context.Context, m pb.Message) error {
  368. // ignore unexpected local messages receiving over network
  369. if IsLocalMsg(m.Type) {
  370. // TODO: return an error?
  371. return nil
  372. }
  373. return n.step(ctx, m)
  374. }
  375. func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error {
  376. data, err := cc.Marshal()
  377. if err != nil {
  378. return err
  379. }
  380. return n.Step(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange, Data: data}}})
  381. }
  382. // Step advances the state machine using msgs. The ctx.Err() will be returned,
  383. // if any.
  384. func (n *node) step(ctx context.Context, m pb.Message) error {
  385. ch := n.recvc
  386. if m.Type == pb.MsgProp {
  387. ch = n.propc
  388. }
  389. select {
  390. case ch <- m:
  391. return nil
  392. case <-ctx.Done():
  393. return ctx.Err()
  394. case <-n.done:
  395. return ErrStopped
  396. }
  397. }
  398. func (n *node) Ready() <-chan Ready { return n.readyc }
  399. func (n *node) Advance() {
  400. select {
  401. case n.advancec <- struct{}{}:
  402. case <-n.done:
  403. }
  404. }
  405. func (n *node) ApplyConfChange(cc pb.ConfChange) *pb.ConfState {
  406. var cs pb.ConfState
  407. select {
  408. case n.confc <- cc:
  409. case <-n.done:
  410. }
  411. select {
  412. case cs = <-n.confstatec:
  413. case <-n.done:
  414. }
  415. return &cs
  416. }
  417. func (n *node) Status() Status {
  418. c := make(chan Status)
  419. n.status <- c
  420. return <-c
  421. }
  422. func (n *node) ReportUnreachable(id uint64) {
  423. select {
  424. case n.recvc <- pb.Message{Type: pb.MsgUnreachable, From: id}:
  425. case <-n.done:
  426. }
  427. }
  428. func (n *node) ReportSnapshot(id uint64, status SnapshotStatus) {
  429. rej := status == SnapshotFailure
  430. select {
  431. case n.recvc <- pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej}:
  432. case <-n.done:
  433. }
  434. }
  435. func (n *node) TransferLeadership(ctx context.Context, lead, transferee uint64) {
  436. select {
  437. // manually set 'from' and 'to', so that leader can voluntarily transfers its leadership
  438. case n.recvc <- pb.Message{Type: pb.MsgTransferLeader, From: transferee, To: lead}:
  439. case <-n.done:
  440. case <-ctx.Done():
  441. }
  442. }
  443. func (n *node) ReadIndex(ctx context.Context, rctx []byte) error {
  444. return n.step(ctx, pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}})
  445. }
  446. func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready {
  447. rd := Ready{
  448. Entries: r.raftLog.unstableEntries(),
  449. CommittedEntries: r.raftLog.nextEnts(),
  450. Messages: r.msgs,
  451. }
  452. if softSt := r.softState(); !softSt.equal(prevSoftSt) {
  453. rd.SoftState = softSt
  454. }
  455. if hardSt := r.hardState(); !isHardStateEqual(hardSt, prevHardSt) {
  456. rd.HardState = hardSt
  457. }
  458. if r.raftLog.unstable.snapshot != nil {
  459. rd.Snapshot = *r.raftLog.unstable.snapshot
  460. }
  461. if r.readState.Index != None {
  462. c := make([]byte, len(r.readState.RequestCtx))
  463. copy(c, r.readState.RequestCtx)
  464. rd.Index = r.readState.Index
  465. rd.RequestCtx = c
  466. }
  467. return rd
  468. }