// Copyright 2016 The etcd Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package adt import ( "math" ) // Comparable is an interface for trichotomic comparisons. type Comparable interface { // Compare gives the result of a 3-way comparison // a.Compare(b) = 1 => a > b // a.Compare(b) = 0 => a == b // a.Compare(b) = -1 => a < b Compare(c Comparable) int } type rbcolor int const ( black rbcolor = iota red ) // Interval implements a Comparable interval [begin, end) // TODO: support different sorts of intervals: (a,b), [a,b], (a, b] type Interval struct { Begin Comparable End Comparable } // Compare on an interval gives == if the interval overlaps. func (ivl *Interval) Compare(c Comparable) int { ivl2 := c.(*Interval) ivbCmpBegin := ivl.Begin.Compare(ivl2.Begin) ivbCmpEnd := ivl.Begin.Compare(ivl2.End) iveCmpBegin := ivl.End.Compare(ivl2.Begin) // ivl is left of ivl2 if ivbCmpBegin < 0 && iveCmpBegin <= 0 { return -1 } // iv is right of iv2 if ivbCmpEnd >= 0 { return 1 } return 0 } type intervalNode struct { // iv is the interval-value pair entry. iv IntervalValue // max endpoint of all descendent nodes. max Comparable // left and right are sorted by low endpoint of key interval left, right *intervalNode // parent is the direct ancestor of the node parent *intervalNode c rbcolor } func (x *intervalNode) color() rbcolor { if x == nil { return black } return x.c } func (n *intervalNode) height() int { if n == nil { return 0 } ld := n.left.height() rd := n.right.height() if ld < rd { return rd + 1 } return ld + 1 } func (x *intervalNode) min() *intervalNode { for x.left != nil { x = x.left } return x } // successor is the next in-order node in the tree func (x *intervalNode) successor() *intervalNode { if x.right != nil { return x.right.min() } y := x.parent for y != nil && x == y.right { x = y y = y.parent } return y } // updateMax updates the maximum values for a node and its ancestors func (x *intervalNode) updateMax() { for x != nil { oldmax := x.max max := x.iv.Ivl.End if x.left != nil && x.left.max.Compare(max) > 0 { max = x.left.max } if x.right != nil && x.right.max.Compare(max) > 0 { max = x.right.max } if oldmax.Compare(max) == 0 { break } x.max = max x = x.parent } } type nodeVisitor func(n *intervalNode) bool // visit will call a node visitor on each node that overlaps the given interval func (x *intervalNode) visit(iv *Interval, nv nodeVisitor) { if x == nil { return } v := iv.Compare(&x.iv.Ivl) switch { case v < 0: x.left.visit(iv, nv) case v > 0: maxiv := Interval{x.iv.Ivl.Begin, x.max} if maxiv.Compare(iv) == 0 { x.left.visit(iv, nv) x.right.visit(iv, nv) } default: nv(x) x.left.visit(iv, nv) x.right.visit(iv, nv) } } type IntervalValue struct { Ivl Interval Val interface{} } // IntervalTree represents a (mostly) textbook implementation of the // "Introduction to Algorithms" (Cormen et al, 2nd ed.) chapter 13 red-black tree // and chapter 14.3 interval tree with search supporting "stabbing queries". type IntervalTree struct { root *intervalNode count int } // Delete removes the node with the given interval from the tree, returning // true if a node is in fact removed. func (ivt *IntervalTree) Delete(ivl Interval) bool { z := ivt.find(ivl) if z == nil { return false } y := z if z.left != nil && z.right != nil { y = z.successor() } x := y.left if x == nil { x = y.right } if x != nil { x.parent = y.parent } if y.parent == nil { ivt.root = x } else { if y == y.parent.left { y.parent.left = x } else { y.parent.right = x } y.parent.updateMax() } if y != z { z.iv = y.iv z.updateMax() } if y.color() == black && x != nil { ivt.deleteFixup(x) } ivt.count-- return true } func (ivt *IntervalTree) deleteFixup(x *intervalNode) { for x != ivt.root && x.color() == black && x.parent != nil { if x == x.parent.left { w := x.parent.right if w.color() == red { w.c = black x.parent.c = red ivt.rotateLeft(x.parent) w = x.parent.right } if w == nil { break } if w.left.color() == black && w.right.color() == black { w.c = red x = x.parent } else { if w.right.color() == black { w.left.c = black w.c = red ivt.rotateRight(w) w = x.parent.right } w.c = x.parent.color() x.parent.c = black w.right.c = black ivt.rotateLeft(x.parent) x = ivt.root } } else { // same as above but with left and right exchanged w := x.parent.left if w.color() == red { w.c = black x.parent.c = red ivt.rotateRight(x.parent) w = x.parent.left } if w == nil { break } if w.left.color() == black && w.right.color() == black { w.c = red x = x.parent } else { if w.left.color() == black { w.right.c = black w.c = red ivt.rotateLeft(w) w = x.parent.left } w.c = x.parent.color() x.parent.c = black w.left.c = black ivt.rotateRight(x.parent) x = ivt.root } } } if x != nil { x.c = black } } // Insert adds a node with the given interval into the tree. func (ivt *IntervalTree) Insert(ivl Interval, val interface{}) { var y *intervalNode z := &intervalNode{iv: IntervalValue{ivl, val}, max: ivl.End, c: red} x := ivt.root for x != nil { y = x if z.iv.Ivl.Begin.Compare(x.iv.Ivl.Begin) < 0 { x = x.left } else { x = x.right } } z.parent = y if y == nil { ivt.root = z } else { if z.iv.Ivl.Begin.Compare(y.iv.Ivl.Begin) < 0 { y.left = z } else { y.right = z } y.updateMax() } z.c = red ivt.insertFixup(z) ivt.count++ } func (ivt *IntervalTree) insertFixup(z *intervalNode) { for z.parent != nil && z.parent.parent != nil && z.parent.color() == red { if z.parent == z.parent.parent.left { y := z.parent.parent.right if y.color() == red { y.c = black z.parent.c = black z.parent.parent.c = red z = z.parent.parent } else { if z == z.parent.right { z = z.parent ivt.rotateLeft(z) } z.parent.c = black z.parent.parent.c = red ivt.rotateRight(z.parent.parent) } } else { // same as then with left/right exchanged y := z.parent.parent.left if y.color() == red { y.c = black z.parent.c = black z.parent.parent.c = red z = z.parent.parent } else { if z == z.parent.left { z = z.parent ivt.rotateRight(z) } z.parent.c = black z.parent.parent.c = red ivt.rotateLeft(z.parent.parent) } } } ivt.root.c = black } // rotateLeft moves x so it is left of its right child func (ivt *IntervalTree) rotateLeft(x *intervalNode) { y := x.right x.right = y.left if y.left != nil { y.left.parent = x } x.updateMax() ivt.replaceParent(x, y) y.left = x y.updateMax() } // rotateLeft moves x so it is right of its left child func (ivt *IntervalTree) rotateRight(x *intervalNode) { if x == nil { return } y := x.left x.left = y.right if y.right != nil { y.right.parent = x } x.updateMax() ivt.replaceParent(x, y) y.right = x y.updateMax() } // replaceParent replaces x's parent with y func (ivt *IntervalTree) replaceParent(x *intervalNode, y *intervalNode) { y.parent = x.parent if x.parent == nil { ivt.root = y } else { if x == x.parent.left { x.parent.left = y } else { x.parent.right = y } x.parent.updateMax() } x.parent = y } // Len gives the number of elements in the tree func (ivt *IntervalTree) Len() int { return ivt.count } // Height is the number of levels in the tree; one node has height 1. func (ivt *IntervalTree) Height() int { return ivt.root.height() } // MaxHeight is the expected maximum tree height given the number of nodes func (ivt *IntervalTree) MaxHeight() int { return int((2 * math.Log2(float64(ivt.Len()+1))) + 0.5) } // IntervalVisitor is used on tree searchs; return false to stop searching. type IntervalVisitor func(n *IntervalValue) bool // Visit calls a visitor function on every tree node intersecting the given interval. func (ivt *IntervalTree) Visit(ivl Interval, ivv IntervalVisitor) { ivt.root.visit(&ivl, func(n *intervalNode) bool { return ivv(&n.iv) }) } // find the exact node for a given interval func (ivt *IntervalTree) find(ivl Interval) (ret *intervalNode) { f := func(n *intervalNode) bool { if n.iv.Ivl != ivl { return true } ret = n return false } ivt.root.visit(&ivl, f) return ret } // Find gets the IntervalValue for the node matching the given interval func (ivt *IntervalTree) Find(ivl Interval) (ret *IntervalValue) { n := ivt.find(ivl) if n == nil { return nil } return &n.iv } // Contains returns true if there is some tree node intersecting the given interval. func (ivt *IntervalTree) Contains(iv Interval) bool { x := ivt.root for x != nil && iv.Compare(&x.iv.Ivl) != 0 { if x.left != nil && x.left.max.Compare(iv.Begin) > 0 { x = x.left } else { x = x.right } } return x != nil } // Stab returns a slice with all elements in the tree intersecting the interval. func (ivt *IntervalTree) Stab(iv Interval) (ivs []*IntervalValue) { f := func(n *IntervalValue) bool { ivs = append(ivs, n); return true } ivt.Visit(iv, f) return ivs } type StringComparable string func (s StringComparable) Compare(c Comparable) int { sc := c.(StringComparable) if s < sc { return -1 } if s > sc { return 1 } return 0 } func NewStringInterval(begin, end string) Interval { return Interval{StringComparable(begin), StringComparable(end)} } func NewStringPoint(s string) Interval { return Interval{StringComparable(s), StringComparable(s + "\x00")} } // StringAffineComparable treats "" as > all other strings type StringAffineComparable string func (s StringAffineComparable) Compare(c Comparable) int { sc := c.(StringAffineComparable) if len(s) == 0 { if len(sc) == 0 { return 0 } return 1 } if len(sc) == 0 { return -1 } if s < sc { return -1 } if s > sc { return 1 } return 0 } func NewStringAffineInterval(begin, end string) Interval { return Interval{StringAffineComparable(begin), StringAffineComparable(end)} } func NewStringAffinePoint(s string) Interval { return NewStringAffineInterval(s, s+"\x00") } func NewInt64Interval(a int64, b int64) Interval { return Interval{Int64Comparable(a), Int64Comparable(b)} } func NewInt64Point(a int64) Interval { return Interval{Int64Comparable(a), Int64Comparable(a + 1)} } type Int64Comparable int64 func (v Int64Comparable) Compare(c Comparable) int { vc := c.(Int64Comparable) cmp := v - vc if cmp < 0 { return -1 } if cmp > 0 { return 1 } return 0 }