// Copyright 2015 The etcd Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package mvcc import ( "encoding/binary" "errors" "math" "math/rand" "sync" "time" "github.com/coreos/etcd/lease" "github.com/coreos/etcd/mvcc/backend" "github.com/coreos/etcd/mvcc/mvccpb" "github.com/coreos/etcd/pkg/schedule" "github.com/coreos/pkg/capnslog" "golang.org/x/net/context" ) var ( keyBucketName = []byte("key") metaBucketName = []byte("meta") // markedRevBytesLen is the byte length of marked revision. // The first `revBytesLen` bytes represents a normal revision. The last // one byte is the mark. markedRevBytesLen = revBytesLen + 1 markBytePosition = markedRevBytesLen - 1 markTombstone byte = 't' consistentIndexKeyName = []byte("consistent_index") scheduledCompactKeyName = []byte("scheduledCompactRev") finishedCompactKeyName = []byte("finishedCompactRev") ErrTxnIDMismatch = errors.New("mvcc: txn id mismatch") ErrCompacted = errors.New("mvcc: required revision has been compacted") ErrFutureRev = errors.New("mvcc: required revision is a future revision") ErrCanceled = errors.New("mvcc: watcher is canceled") plog = capnslog.NewPackageLogger("github.com/coreos/etcd", "mvcc") ) // ConsistentIndexGetter is an interface that wraps the Get method. // Consistent index is the offset of an entry in a consistent replicated log. type ConsistentIndexGetter interface { // ConsistentIndex returns the consistent index of current executing entry. ConsistentIndex() uint64 } type store struct { mu sync.Mutex // guards the following ig ConsistentIndexGetter b backend.Backend kvindex index le lease.Lessor currentRev revision // the main revision of the last compaction compactMainRev int64 tx backend.BatchTx txnID int64 // tracks the current txnID to verify txn operations txnModify bool // bytesBuf8 is a byte slice of length 8 // to avoid a repetitive allocation in saveIndex. bytesBuf8 []byte changes []mvccpb.KeyValue fifoSched schedule.Scheduler stopc chan struct{} } // NewStore returns a new store. It is useful to create a store inside // mvcc pkg. It should only be used for testing externally. func NewStore(b backend.Backend, le lease.Lessor, ig ConsistentIndexGetter) *store { s := &store{ b: b, ig: ig, kvindex: newTreeIndex(), le: le, currentRev: revision{main: 1}, compactMainRev: -1, bytesBuf8: make([]byte, 8, 8), fifoSched: schedule.NewFIFOScheduler(), stopc: make(chan struct{}), } if s.le != nil { s.le.SetRangeDeleter(s) } tx := s.b.BatchTx() tx.Lock() tx.UnsafeCreateBucket(keyBucketName) tx.UnsafeCreateBucket(metaBucketName) tx.Unlock() s.b.ForceCommit() if err := s.restore(); err != nil { // TODO: return the error instead of panic here? panic("failed to recover store from backend") } return s } func (s *store) Rev() int64 { s.mu.Lock() defer s.mu.Unlock() return s.currentRev.main } func (s *store) FirstRev() int64 { s.mu.Lock() defer s.mu.Unlock() return s.compactMainRev } func (s *store) Put(key, value []byte, lease lease.LeaseID) int64 { id := s.TxnBegin() s.put(key, value, lease) s.txnEnd(id) putCounter.Inc() return int64(s.currentRev.main) } func (s *store) Range(key, end []byte, ro RangeOptions) (r *RangeResult, err error) { id := s.TxnBegin() kvs, count, rev, err := s.rangeKeys(key, end, ro.Limit, ro.Rev, ro.Count) s.txnEnd(id) rangeCounter.Inc() r = &RangeResult{ KVs: kvs, Count: count, Rev: rev, } return r, err } func (s *store) DeleteRange(key, end []byte) (n, rev int64) { id := s.TxnBegin() n = s.deleteRange(key, end) s.txnEnd(id) deleteCounter.Inc() return n, int64(s.currentRev.main) } func (s *store) TxnBegin() int64 { s.mu.Lock() s.currentRev.sub = 0 s.tx = s.b.BatchTx() s.tx.Lock() s.txnID = rand.Int63() return s.txnID } func (s *store) TxnEnd(txnID int64) error { err := s.txnEnd(txnID) if err != nil { return err } txnCounter.Inc() return nil } // txnEnd is used for unlocking an internal txn. It does // not increase the txnCounter. func (s *store) txnEnd(txnID int64) error { if txnID != s.txnID { return ErrTxnIDMismatch } // only update index if the txn modifies the mvcc state. // read only txn might execute with one write txn concurrently, // it should not write its index to mvcc. if s.txnModify { s.saveIndex() } s.txnModify = false s.tx.Unlock() if s.currentRev.sub != 0 { s.currentRev.main += 1 } s.currentRev.sub = 0 s.mu.Unlock() return nil } func (s *store) TxnRange(txnID int64, key, end []byte, ro RangeOptions) (r *RangeResult, err error) { if txnID != s.txnID { return nil, ErrTxnIDMismatch } kvs, count, rev, err := s.rangeKeys(key, end, ro.Limit, ro.Rev, ro.Count) r = &RangeResult{ KVs: kvs, Count: count, Rev: rev, } return r, err } func (s *store) TxnPut(txnID int64, key, value []byte, lease lease.LeaseID) (rev int64, err error) { if txnID != s.txnID { return 0, ErrTxnIDMismatch } s.put(key, value, lease) return int64(s.currentRev.main + 1), nil } func (s *store) TxnDeleteRange(txnID int64, key, end []byte) (n, rev int64, err error) { if txnID != s.txnID { return 0, 0, ErrTxnIDMismatch } n = s.deleteRange(key, end) if n != 0 || s.currentRev.sub != 0 { rev = int64(s.currentRev.main + 1) } else { rev = int64(s.currentRev.main) } return n, rev, nil } func (s *store) compactBarrier(ctx context.Context, ch chan struct{}) { if ctx == nil || ctx.Err() != nil { s.mu.Lock() select { case <-s.stopc: default: f := func(ctx context.Context) { s.compactBarrier(ctx, ch) } s.fifoSched.Schedule(f) } s.mu.Unlock() return } close(ch) } func (s *store) Compact(rev int64) (<-chan struct{}, error) { s.mu.Lock() defer s.mu.Unlock() if rev <= s.compactMainRev { ch := make(chan struct{}) f := func(ctx context.Context) { s.compactBarrier(ctx, ch) } s.fifoSched.Schedule(f) return ch, ErrCompacted } if rev > s.currentRev.main { return nil, ErrFutureRev } start := time.Now() s.compactMainRev = rev rbytes := newRevBytes() revToBytes(revision{main: rev}, rbytes) tx := s.b.BatchTx() tx.Lock() tx.UnsafePut(metaBucketName, scheduledCompactKeyName, rbytes) tx.Unlock() // ensure that desired compaction is persisted s.b.ForceCommit() keep := s.kvindex.Compact(rev) ch := make(chan struct{}) var j = func(ctx context.Context) { if ctx.Err() != nil { s.compactBarrier(ctx, ch) return } if !s.scheduleCompaction(rev, keep) { s.compactBarrier(nil, ch) return } close(ch) } s.fifoSched.Schedule(j) indexCompactionPauseDurations.Observe(float64(time.Since(start) / time.Millisecond)) return ch, nil } // DefaultIgnores is a map of keys to ignore in hash checking. var DefaultIgnores map[backend.IgnoreKey]struct{} func init() { DefaultIgnores = map[backend.IgnoreKey]struct{}{ // consistent index might be changed due to v2 internal sync, which // is not controllable by the user. {Bucket: string(metaBucketName), Key: string(consistentIndexKeyName)}: {}, } } func (s *store) Hash() (uint32, int64, error) { s.mu.Lock() defer s.mu.Unlock() start := time.Now() s.b.ForceCommit() h, err := s.b.Hash(DefaultIgnores) hashDurations.Observe(time.Since(start).Seconds()) rev := s.currentRev.main return h, rev, err } func (s *store) Commit() { s.mu.Lock() defer s.mu.Unlock() s.tx = s.b.BatchTx() s.tx.Lock() s.saveIndex() s.tx.Unlock() s.b.ForceCommit() } func (s *store) Restore(b backend.Backend) error { s.mu.Lock() defer s.mu.Unlock() close(s.stopc) s.fifoSched.Stop() s.b = b s.kvindex = newTreeIndex() s.currentRev = revision{main: 1} s.compactMainRev = -1 s.tx = b.BatchTx() s.txnID = -1 s.fifoSched = schedule.NewFIFOScheduler() s.stopc = make(chan struct{}) return s.restore() } func (s *store) restore() error { reportDbTotalSizeInBytesMu.Lock() reportDbTotalSizeInBytes = func() float64 { return float64(s.b.Size()) } reportDbTotalSizeInBytesMu.Unlock() reportDbTotalSizeInUseInBytesMu.Lock() reportDbTotalSizeInUseInBytes = func() float64 { return float64(s.b.SizeInUse()) } reportDbTotalSizeInUseInBytesMu.Unlock() min, max := newRevBytes(), newRevBytes() revToBytes(revision{main: 1}, min) revToBytes(revision{main: math.MaxInt64, sub: math.MaxInt64}, max) keyToLease := make(map[string]lease.LeaseID) // use an unordered map to hold the temp index data to speed up // the initial key index recovery. // we will convert this unordered map into the tree index later. unordered := make(map[string]*keyIndex, 100000) // restore index tx := s.b.BatchTx() tx.Lock() _, finishedCompactBytes := tx.UnsafeRange(metaBucketName, finishedCompactKeyName, nil, 0) if len(finishedCompactBytes) != 0 { s.compactMainRev = bytesToRev(finishedCompactBytes[0]).main plog.Printf("restore compact to %d", s.compactMainRev) } // TODO: limit N to reduce max memory usage keys, vals := tx.UnsafeRange(keyBucketName, min, max, 0) for i, key := range keys { var kv mvccpb.KeyValue if err := kv.Unmarshal(vals[i]); err != nil { plog.Fatalf("cannot unmarshal event: %v", err) } rev := bytesToRev(key[:revBytesLen]) // restore index switch { case isTombstone(key): if ki, ok := unordered[string(kv.Key)]; ok { ki.tombstone(rev.main, rev.sub) } delete(keyToLease, string(kv.Key)) default: ki, ok := unordered[string(kv.Key)] if ok { ki.put(rev.main, rev.sub) } else { ki = &keyIndex{key: kv.Key} ki.restore(revision{kv.CreateRevision, 0}, rev, kv.Version) unordered[string(kv.Key)] = ki } if lid := lease.LeaseID(kv.Lease); lid != lease.NoLease { keyToLease[string(kv.Key)] = lid } else { delete(keyToLease, string(kv.Key)) } } // update revision s.currentRev = rev } // restore the tree index from the unordered index. for _, v := range unordered { s.kvindex.Insert(v) } // keys in the range [compacted revision -N, compaction] might all be deleted due to compaction. // the correct revision should be set to compaction revision in the case, not the largest revision // we have seen. if s.currentRev.main < s.compactMainRev { s.currentRev.main = s.compactMainRev } for key, lid := range keyToLease { if s.le == nil { panic("no lessor to attach lease") } err := s.le.Attach(lid, []lease.LeaseItem{{Key: key}}) if err != nil { plog.Errorf("unexpected Attach error: %v", err) } } _, scheduledCompactBytes := tx.UnsafeRange(metaBucketName, scheduledCompactKeyName, nil, 0) scheduledCompact := int64(0) if len(scheduledCompactBytes) != 0 { scheduledCompact = bytesToRev(scheduledCompactBytes[0]).main if scheduledCompact <= s.compactMainRev { scheduledCompact = 0 } } tx.Unlock() if scheduledCompact != 0 { s.Compact(scheduledCompact) plog.Printf("resume scheduled compaction at %d", scheduledCompact) } return nil } func (s *store) Close() error { close(s.stopc) s.fifoSched.Stop() return nil } func (a *store) Equal(b *store) bool { if a.currentRev != b.currentRev { return false } if a.compactMainRev != b.compactMainRev { return false } return a.kvindex.Equal(b.kvindex) } // range is a keyword in Go, add Keys suffix. func (s *store) rangeKeys(key, end []byte, limit, rangeRev int64, countOnly bool) (kvs []mvccpb.KeyValue, count int, curRev int64, err error) { curRev = int64(s.currentRev.main) if s.currentRev.sub > 0 { curRev += 1 } if rangeRev > curRev { return nil, -1, s.currentRev.main, ErrFutureRev } var rev int64 if rangeRev <= 0 { rev = curRev } else { rev = rangeRev } if rev < s.compactMainRev { return nil, -1, 0, ErrCompacted } _, revpairs := s.kvindex.Range(key, end, int64(rev)) if len(revpairs) == 0 { return nil, 0, curRev, nil } if countOnly { return nil, len(revpairs), curRev, nil } for _, revpair := range revpairs { start, end := revBytesRange(revpair) _, vs := s.tx.UnsafeRange(keyBucketName, start, end, 0) if len(vs) != 1 { plog.Fatalf("range cannot find rev (%d,%d)", revpair.main, revpair.sub) } var kv mvccpb.KeyValue if err := kv.Unmarshal(vs[0]); err != nil { plog.Fatalf("cannot unmarshal event: %v", err) } kvs = append(kvs, kv) if limit > 0 && len(kvs) >= int(limit) { break } } return kvs, len(revpairs), curRev, nil } func (s *store) put(key, value []byte, leaseID lease.LeaseID) { s.txnModify = true rev := s.currentRev.main + 1 c := rev oldLease := lease.NoLease // if the key exists before, use its previous created and // get its previous leaseID _, created, ver, err := s.kvindex.Get(key, rev) if err == nil { c = created.main oldLease = s.le.GetLease(lease.LeaseItem{Key: string(key)}) } ibytes := newRevBytes() revToBytes(revision{main: rev, sub: s.currentRev.sub}, ibytes) ver = ver + 1 kv := mvccpb.KeyValue{ Key: key, Value: value, CreateRevision: c, ModRevision: rev, Version: ver, Lease: int64(leaseID), } d, err := kv.Marshal() if err != nil { plog.Fatalf("cannot marshal event: %v", err) } s.tx.UnsafeSeqPut(keyBucketName, ibytes, d) s.kvindex.Put(key, revision{main: rev, sub: s.currentRev.sub}) s.changes = append(s.changes, kv) s.currentRev.sub += 1 if oldLease != lease.NoLease { if s.le == nil { panic("no lessor to detach lease") } err = s.le.Detach(oldLease, []lease.LeaseItem{{Key: string(key)}}) if err != nil { plog.Errorf("unexpected error from lease detach: %v", err) } } if leaseID != lease.NoLease { if s.le == nil { panic("no lessor to attach lease") } err = s.le.Attach(leaseID, []lease.LeaseItem{{Key: string(key)}}) if err != nil { panic("unexpected error from lease Attach") } } } func (s *store) deleteRange(key, end []byte) int64 { s.txnModify = true rrev := s.currentRev.main if s.currentRev.sub > 0 { rrev += 1 } keys, revs := s.kvindex.Range(key, end, rrev) if len(keys) == 0 { return 0 } for i, key := range keys { s.delete(key, revs[i]) } return int64(len(keys)) } func (s *store) delete(key []byte, rev revision) { mainrev := s.currentRev.main + 1 ibytes := newRevBytes() revToBytes(revision{main: mainrev, sub: s.currentRev.sub}, ibytes) ibytes = appendMarkTombstone(ibytes) kv := mvccpb.KeyValue{ Key: key, } d, err := kv.Marshal() if err != nil { plog.Fatalf("cannot marshal event: %v", err) } s.tx.UnsafeSeqPut(keyBucketName, ibytes, d) err = s.kvindex.Tombstone(key, revision{main: mainrev, sub: s.currentRev.sub}) if err != nil { plog.Fatalf("cannot tombstone an existing key (%s): %v", string(key), err) } s.changes = append(s.changes, kv) s.currentRev.sub += 1 item := lease.LeaseItem{Key: string(key)} leaseID := s.le.GetLease(item) if leaseID != lease.NoLease { err = s.le.Detach(leaseID, []lease.LeaseItem{item}) if err != nil { plog.Errorf("cannot detach %v", err) } } } func (s *store) getChanges() []mvccpb.KeyValue { changes := s.changes s.changes = make([]mvccpb.KeyValue, 0, 4) return changes } func (s *store) saveIndex() { if s.ig == nil { return } tx := s.tx bs := s.bytesBuf8 binary.BigEndian.PutUint64(bs, s.ig.ConsistentIndex()) // put the index into the underlying backend // tx has been locked in TxnBegin, so there is no need to lock it again tx.UnsafePut(metaBucketName, consistentIndexKeyName, bs) } func (s *store) ConsistentIndex() uint64 { // TODO: cache index in a uint64 field? tx := s.b.BatchTx() tx.Lock() defer tx.Unlock() _, vs := tx.UnsafeRange(metaBucketName, consistentIndexKeyName, nil, 0) if len(vs) == 0 { return 0 } return binary.BigEndian.Uint64(vs[0]) } // appendMarkTombstone appends tombstone mark to normal revision bytes. func appendMarkTombstone(b []byte) []byte { if len(b) != revBytesLen { plog.Panicf("cannot append mark to non normal revision bytes") } return append(b, markTombstone) } // isTombstone checks whether the revision bytes is a tombstone. func isTombstone(b []byte) bool { return len(b) == markedRevBytesLen && b[markBytePosition] == markTombstone } // revBytesRange returns the range of revision bytes at // the given revision. func revBytesRange(rev revision) (start, end []byte) { start = newRevBytes() revToBytes(rev, start) end = newRevBytes() endRev := revision{main: rev.main, sub: rev.sub + 1} revToBytes(endRev, end) return start, end }