// Copyright 2015 The etcd Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package etcdserver import ( "encoding/json" "expvar" "sort" "sync" "sync/atomic" "time" pb "github.com/coreos/etcd/etcdserver/etcdserverpb" "github.com/coreos/etcd/etcdserver/membership" "github.com/coreos/etcd/pkg/contention" "github.com/coreos/etcd/pkg/pbutil" "github.com/coreos/etcd/pkg/types" "github.com/coreos/etcd/raft" "github.com/coreos/etcd/raft/raftpb" "github.com/coreos/etcd/rafthttp" "github.com/coreos/etcd/wal" "github.com/coreos/etcd/wal/walpb" "github.com/coreos/pkg/capnslog" ) const ( // Number of entries for slow follower to catch-up after compacting // the raft storage entries. // We expect the follower has a millisecond level latency with the leader. // The max throughput is around 10K. Keep a 5K entries is enough for helping // follower to catch up. numberOfCatchUpEntries = 5000 // The max throughput of etcd will not exceed 100MB/s (100K * 1KB value). // Assuming the RTT is around 10ms, 1MB max size is large enough. maxSizePerMsg = 1 * 1024 * 1024 // Never overflow the rafthttp buffer, which is 4096. // TODO: a better const? maxInflightMsgs = 4096 / 8 ) var ( // protects raftStatus raftStatusMu sync.Mutex // indirection for expvar func interface // expvar panics when publishing duplicate name // expvar does not support remove a registered name // so only register a func that calls raftStatus // and change raftStatus as we need. raftStatus func() raft.Status ) func init() { raft.SetLogger(capnslog.NewPackageLogger("github.com/coreos/etcd", "raft")) expvar.Publish("raft.status", expvar.Func(func() interface{} { raftStatusMu.Lock() defer raftStatusMu.Unlock() return raftStatus() })) } type RaftTimer interface { Index() uint64 Term() uint64 } // apply contains entries, snapshot to be applied. Once // an apply is consumed, the entries will be persisted to // to raft storage concurrently; the application must read // raftDone before assuming the raft messages are stable. type apply struct { entries []raftpb.Entry snapshot raftpb.Snapshot // notifyc synchronizes etcd server applies with the raft node notifyc chan struct{} } type raftNode struct { // Cache of the latest raft index and raft term the server has seen. // These three unit64 fields must be the first elements to keep 64-bit // alignment for atomic access to the fields. index uint64 term uint64 lead uint64 tickMu *sync.Mutex raftNodeConfig // a chan to send/receive snapshot msgSnapC chan raftpb.Message // a chan to send out apply applyc chan apply // a chan to send out readState readStateC chan raft.ReadState // utility ticker *time.Ticker // contention detectors for raft heartbeat message td *contention.TimeoutDetector stopped chan struct{} done chan struct{} } type raftNodeConfig struct { // to check if msg receiver is removed from cluster isIDRemoved func(id uint64) bool raft.Node raftStorage *raft.MemoryStorage storage Storage heartbeat time.Duration // for logging // transport specifies the transport to send and receive msgs to members. // Sending messages MUST NOT block. It is okay to drop messages, since // clients should timeout and reissue their messages. // If transport is nil, server will panic. transport rafthttp.Transporter } func newRaftNode(cfg raftNodeConfig) *raftNode { r := &raftNode{ tickMu: new(sync.Mutex), raftNodeConfig: cfg, // set up contention detectors for raft heartbeat message. // expect to send a heartbeat within 2 heartbeat intervals. td: contention.NewTimeoutDetector(2 * cfg.heartbeat), readStateC: make(chan raft.ReadState, 1), msgSnapC: make(chan raftpb.Message, maxInFlightMsgSnap), applyc: make(chan apply), stopped: make(chan struct{}), done: make(chan struct{}), } if r.heartbeat == 0 { r.ticker = &time.Ticker{} } else { r.ticker = time.NewTicker(r.heartbeat) } return r } // raft.Node does not have locks in Raft package func (r *raftNode) tick() { r.tickMu.Lock() r.Tick() r.tickMu.Unlock() } // start prepares and starts raftNode in a new goroutine. It is no longer safe // to modify the fields after it has been started. func (r *raftNode) start(rh *raftReadyHandler) { internalTimeout := time.Second go func() { defer r.onStop() islead := false for { select { case <-r.ticker.C: r.tick() case rd := <-r.Ready(): if rd.SoftState != nil { newLeader := rd.SoftState.Lead != raft.None && atomic.LoadUint64(&r.lead) != rd.SoftState.Lead if newLeader { leaderChanges.Inc() } if rd.SoftState.Lead == raft.None { hasLeader.Set(0) } else { hasLeader.Set(1) } atomic.StoreUint64(&r.lead, rd.SoftState.Lead) islead = rd.RaftState == raft.StateLeader if islead { isLeader.Set(1) } else { isLeader.Set(0) } rh.updateLeadership(newLeader) r.td.Reset() } if len(rd.ReadStates) != 0 { select { case r.readStateC <- rd.ReadStates[len(rd.ReadStates)-1]: case <-time.After(internalTimeout): plog.Warningf("timed out sending read state") case <-r.stopped: return } } notifyc := make(chan struct{}, 1) ap := apply{ entries: rd.CommittedEntries, snapshot: rd.Snapshot, notifyc: notifyc, } updateCommittedIndex(&ap, rh) select { case r.applyc <- ap: case <-r.stopped: return } // the leader can write to its disk in parallel with replicating to the followers and them // writing to their disks. // For more details, check raft thesis 10.2.1 if islead { // gofail: var raftBeforeLeaderSend struct{} r.transport.Send(r.processMessages(rd.Messages)) } // gofail: var raftBeforeSave struct{} if err := r.storage.Save(rd.HardState, rd.Entries); err != nil { plog.Fatalf("raft save state and entries error: %v", err) } if !raft.IsEmptyHardState(rd.HardState) { proposalsCommitted.Set(float64(rd.HardState.Commit)) } // gofail: var raftAfterSave struct{} if !raft.IsEmptySnap(rd.Snapshot) { // gofail: var raftBeforeSaveSnap struct{} if err := r.storage.SaveSnap(rd.Snapshot); err != nil { plog.Fatalf("raft save snapshot error: %v", err) } // etcdserver now claim the snapshot has been persisted onto the disk notifyc <- struct{}{} // gofail: var raftAfterSaveSnap struct{} r.raftStorage.ApplySnapshot(rd.Snapshot) plog.Infof("raft applied incoming snapshot at index %d", rd.Snapshot.Metadata.Index) // gofail: var raftAfterApplySnap struct{} } r.raftStorage.Append(rd.Entries) if !islead { // finish processing incoming messages before we signal raftdone chan msgs := r.processMessages(rd.Messages) // now unblocks 'applyAll' that waits on Raft log disk writes before triggering snapshots notifyc <- struct{}{} // Candidate or follower needs to wait for all pending configuration // changes to be applied before sending messages. // Otherwise we might incorrectly count votes (e.g. votes from removed members). // Also slow machine's follower raft-layer could proceed to become the leader // on its own single-node cluster, before apply-layer applies the config change. // We simply wait for ALL pending entries to be applied for now. // We might improve this later on if it causes unnecessary long blocking issues. waitApply := false for _, ent := range rd.CommittedEntries { if ent.Type == raftpb.EntryConfChange { waitApply = true break } } if waitApply { // blocks until 'applyAll' calls 'applyWait.Trigger' // to be in sync with scheduled config-change job // (assume notifyc has cap of 1) select { case notifyc <- struct{}{}: case <-r.stopped: return } } // gofail: var raftBeforeFollowerSend struct{} r.transport.Send(msgs) } else { // leader already processed 'MsgSnap' and signaled notifyc <- struct{}{} } r.Advance() case <-r.stopped: return } } }() } func updateCommittedIndex(ap *apply, rh *raftReadyHandler) { var ci uint64 if len(ap.entries) != 0 { ci = ap.entries[len(ap.entries)-1].Index } if ap.snapshot.Metadata.Index > ci { ci = ap.snapshot.Metadata.Index } if ci != 0 { rh.updateCommittedIndex(ci) } } func (r *raftNode) processMessages(ms []raftpb.Message) []raftpb.Message { sentAppResp := false for i := len(ms) - 1; i >= 0; i-- { if r.isIDRemoved(ms[i].To) { ms[i].To = 0 } if ms[i].Type == raftpb.MsgAppResp { if sentAppResp { ms[i].To = 0 } else { sentAppResp = true } } if ms[i].Type == raftpb.MsgSnap { // There are two separate data store: the store for v2, and the KV for v3. // The msgSnap only contains the most recent snapshot of store without KV. // So we need to redirect the msgSnap to etcd server main loop for merging in the // current store snapshot and KV snapshot. select { case r.msgSnapC <- ms[i]: default: // drop msgSnap if the inflight chan if full. } ms[i].To = 0 } if ms[i].Type == raftpb.MsgHeartbeat { ok, exceed := r.td.Observe(ms[i].To) if !ok { // TODO: limit request rate. plog.Warningf("failed to send out heartbeat on time (exceeded the %v timeout for %v)", r.heartbeat, exceed) plog.Warningf("server is likely overloaded") heartbeatSendFailures.Inc() } } } return ms } func (r *raftNode) apply() chan apply { return r.applyc } func (r *raftNode) stop() { r.stopped <- struct{}{} <-r.done } func (r *raftNode) onStop() { r.Stop() r.ticker.Stop() r.transport.Stop() if err := r.storage.Close(); err != nil { plog.Panicf("raft close storage error: %v", err) } close(r.done) } // for testing func (r *raftNode) pauseSending() { p := r.transport.(rafthttp.Pausable) p.Pause() } func (r *raftNode) resumeSending() { p := r.transport.(rafthttp.Pausable) p.Resume() } // advanceTicks advances ticks of Raft node. // This can be used for fast-forwarding election // ticks in multi data-center deployments, thus // speeding up election process. func (r *raftNode) advanceTicks(ticks int) { for i := 0; i < ticks; i++ { r.tick() } } func startNode(cfg *ServerConfig, cl *membership.RaftCluster, ids []types.ID) (id types.ID, n raft.Node, s *raft.MemoryStorage, w *wal.WAL) { var err error member := cl.MemberByName(cfg.Name) metadata := pbutil.MustMarshal( &pb.Metadata{ NodeID: uint64(member.ID), ClusterID: uint64(cl.ID()), }, ) if w, err = wal.Create(cfg.WALDir(), metadata); err != nil { plog.Fatalf("create wal error: %v", err) } peers := make([]raft.Peer, len(ids)) for i, id := range ids { ctx, err := json.Marshal((*cl).Member(id)) if err != nil { plog.Panicf("marshal member should never fail: %v", err) } peers[i] = raft.Peer{ID: uint64(id), Context: ctx} } id = member.ID plog.Infof("starting member %s in cluster %s", id, cl.ID()) s = raft.NewMemoryStorage() c := &raft.Config{ ID: uint64(id), ElectionTick: cfg.ElectionTicks, HeartbeatTick: 1, Storage: s, MaxSizePerMsg: maxSizePerMsg, MaxInflightMsgs: maxInflightMsgs, CheckQuorum: true, } n = raft.StartNode(c, peers) raftStatusMu.Lock() raftStatus = n.Status raftStatusMu.Unlock() return id, n, s, w } func restartNode(cfg *ServerConfig, snapshot *raftpb.Snapshot) (types.ID, *membership.RaftCluster, raft.Node, *raft.MemoryStorage, *wal.WAL) { var walsnap walpb.Snapshot if snapshot != nil { walsnap.Index, walsnap.Term = snapshot.Metadata.Index, snapshot.Metadata.Term } w, id, cid, st, ents := readWAL(cfg.WALDir(), walsnap) plog.Infof("restarting member %s in cluster %s at commit index %d", id, cid, st.Commit) cl := membership.NewCluster("") cl.SetID(cid) s := raft.NewMemoryStorage() if snapshot != nil { s.ApplySnapshot(*snapshot) } s.SetHardState(st) s.Append(ents) c := &raft.Config{ ID: uint64(id), ElectionTick: cfg.ElectionTicks, HeartbeatTick: 1, Storage: s, MaxSizePerMsg: maxSizePerMsg, MaxInflightMsgs: maxInflightMsgs, CheckQuorum: true, } n := raft.RestartNode(c) raftStatusMu.Lock() raftStatus = n.Status raftStatusMu.Unlock() return id, cl, n, s, w } func restartAsStandaloneNode(cfg *ServerConfig, snapshot *raftpb.Snapshot) (types.ID, *membership.RaftCluster, raft.Node, *raft.MemoryStorage, *wal.WAL) { var walsnap walpb.Snapshot if snapshot != nil { walsnap.Index, walsnap.Term = snapshot.Metadata.Index, snapshot.Metadata.Term } w, id, cid, st, ents := readWAL(cfg.WALDir(), walsnap) // discard the previously uncommitted entries for i, ent := range ents { if ent.Index > st.Commit { plog.Infof("discarding %d uncommitted WAL entries ", len(ents)-i) ents = ents[:i] break } } // force append the configuration change entries toAppEnts := createConfigChangeEnts(getIDs(snapshot, ents), uint64(id), st.Term, st.Commit) ents = append(ents, toAppEnts...) // force commit newly appended entries err := w.Save(raftpb.HardState{}, toAppEnts) if err != nil { plog.Fatalf("%v", err) } if len(ents) != 0 { st.Commit = ents[len(ents)-1].Index } plog.Printf("forcing restart of member %s in cluster %s at commit index %d", id, cid, st.Commit) cl := membership.NewCluster("") cl.SetID(cid) s := raft.NewMemoryStorage() if snapshot != nil { s.ApplySnapshot(*snapshot) } s.SetHardState(st) s.Append(ents) c := &raft.Config{ ID: uint64(id), ElectionTick: cfg.ElectionTicks, HeartbeatTick: 1, Storage: s, MaxSizePerMsg: maxSizePerMsg, MaxInflightMsgs: maxInflightMsgs, CheckQuorum: true, } n := raft.RestartNode(c) raftStatus = n.Status return id, cl, n, s, w } // getIDs returns an ordered set of IDs included in the given snapshot and // the entries. The given snapshot/entries can contain two kinds of // ID-related entry: // - ConfChangeAddNode, in which case the contained ID will be added into the set. // - ConfChangeRemoveNode, in which case the contained ID will be removed from the set. func getIDs(snap *raftpb.Snapshot, ents []raftpb.Entry) []uint64 { ids := make(map[uint64]bool) if snap != nil { for _, id := range snap.Metadata.ConfState.Nodes { ids[id] = true } } for _, e := range ents { if e.Type != raftpb.EntryConfChange { continue } var cc raftpb.ConfChange pbutil.MustUnmarshal(&cc, e.Data) switch cc.Type { case raftpb.ConfChangeAddNode: ids[cc.NodeID] = true case raftpb.ConfChangeRemoveNode: delete(ids, cc.NodeID) case raftpb.ConfChangeUpdateNode: // do nothing default: plog.Panicf("ConfChange Type should be either ConfChangeAddNode or ConfChangeRemoveNode!") } } sids := make(types.Uint64Slice, 0, len(ids)) for id := range ids { sids = append(sids, id) } sort.Sort(sids) return []uint64(sids) } // createConfigChangeEnts creates a series of Raft entries (i.e. // EntryConfChange) to remove the set of given IDs from the cluster. The ID // `self` is _not_ removed, even if present in the set. // If `self` is not inside the given ids, it creates a Raft entry to add a // default member with the given `self`. func createConfigChangeEnts(ids []uint64, self uint64, term, index uint64) []raftpb.Entry { ents := make([]raftpb.Entry, 0) next := index + 1 found := false for _, id := range ids { if id == self { found = true continue } cc := &raftpb.ConfChange{ Type: raftpb.ConfChangeRemoveNode, NodeID: id, } e := raftpb.Entry{ Type: raftpb.EntryConfChange, Data: pbutil.MustMarshal(cc), Term: term, Index: next, } ents = append(ents, e) next++ } if !found { m := membership.Member{ ID: types.ID(self), RaftAttributes: membership.RaftAttributes{PeerURLs: []string{"http://localhost:2380"}}, } ctx, err := json.Marshal(m) if err != nil { plog.Panicf("marshal member should never fail: %v", err) } cc := &raftpb.ConfChange{ Type: raftpb.ConfChangeAddNode, NodeID: self, Context: ctx, } e := raftpb.Entry{ Type: raftpb.EntryConfChange, Data: pbutil.MustMarshal(cc), Term: term, Index: next, } ents = append(ents, e) } return ents }