|
|
@@ -1,1032 +0,0 @@
|
|
|
-// Copyright 2012 The Go Authors. All rights reserved.
|
|
|
-// Use of this source code is governed by a BSD-style
|
|
|
-// license that can be found in the LICENSE file.
|
|
|
-
|
|
|
-package ssh
|
|
|
-
|
|
|
-import (
|
|
|
- "bytes"
|
|
|
- "crypto"
|
|
|
- "crypto/dsa"
|
|
|
- "crypto/ecdsa"
|
|
|
- "crypto/elliptic"
|
|
|
- "crypto/md5"
|
|
|
- "crypto/rsa"
|
|
|
- "crypto/sha256"
|
|
|
- "crypto/x509"
|
|
|
- "encoding/asn1"
|
|
|
- "encoding/base64"
|
|
|
- "encoding/hex"
|
|
|
- "encoding/pem"
|
|
|
- "errors"
|
|
|
- "fmt"
|
|
|
- "io"
|
|
|
- "math/big"
|
|
|
- "strings"
|
|
|
-
|
|
|
- "golang.org/x/crypto/ed25519"
|
|
|
-)
|
|
|
-
|
|
|
-// These constants represent the algorithm names for key types supported by this
|
|
|
-// package.
|
|
|
-const (
|
|
|
- KeyAlgoRSA = "ssh-rsa"
|
|
|
- KeyAlgoDSA = "ssh-dss"
|
|
|
- KeyAlgoECDSA256 = "ecdsa-sha2-nistp256"
|
|
|
- KeyAlgoECDSA384 = "ecdsa-sha2-nistp384"
|
|
|
- KeyAlgoECDSA521 = "ecdsa-sha2-nistp521"
|
|
|
- KeyAlgoED25519 = "ssh-ed25519"
|
|
|
-)
|
|
|
-
|
|
|
-// parsePubKey parses a public key of the given algorithm.
|
|
|
-// Use ParsePublicKey for keys with prepended algorithm.
|
|
|
-func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {
|
|
|
- switch algo {
|
|
|
- case KeyAlgoRSA:
|
|
|
- return parseRSA(in)
|
|
|
- case KeyAlgoDSA:
|
|
|
- return parseDSA(in)
|
|
|
- case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
|
|
|
- return parseECDSA(in)
|
|
|
- case KeyAlgoED25519:
|
|
|
- return parseED25519(in)
|
|
|
- case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoED25519v01:
|
|
|
- cert, err := parseCert(in, certToPrivAlgo(algo))
|
|
|
- if err != nil {
|
|
|
- return nil, nil, err
|
|
|
- }
|
|
|
- return cert, nil, nil
|
|
|
- }
|
|
|
- return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)
|
|
|
-}
|
|
|
-
|
|
|
-// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
|
|
|
-// (see sshd(8) manual page) once the options and key type fields have been
|
|
|
-// removed.
|
|
|
-func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {
|
|
|
- in = bytes.TrimSpace(in)
|
|
|
-
|
|
|
- i := bytes.IndexAny(in, " \t")
|
|
|
- if i == -1 {
|
|
|
- i = len(in)
|
|
|
- }
|
|
|
- base64Key := in[:i]
|
|
|
-
|
|
|
- key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
|
|
|
- n, err := base64.StdEncoding.Decode(key, base64Key)
|
|
|
- if err != nil {
|
|
|
- return nil, "", err
|
|
|
- }
|
|
|
- key = key[:n]
|
|
|
- out, err = ParsePublicKey(key)
|
|
|
- if err != nil {
|
|
|
- return nil, "", err
|
|
|
- }
|
|
|
- comment = string(bytes.TrimSpace(in[i:]))
|
|
|
- return out, comment, nil
|
|
|
-}
|
|
|
-
|
|
|
-// ParseKnownHosts parses an entry in the format of the known_hosts file.
|
|
|
-//
|
|
|
-// The known_hosts format is documented in the sshd(8) manual page. This
|
|
|
-// function will parse a single entry from in. On successful return, marker
|
|
|
-// will contain the optional marker value (i.e. "cert-authority" or "revoked")
|
|
|
-// or else be empty, hosts will contain the hosts that this entry matches,
|
|
|
-// pubKey will contain the public key and comment will contain any trailing
|
|
|
-// comment at the end of the line. See the sshd(8) manual page for the various
|
|
|
-// forms that a host string can take.
|
|
|
-//
|
|
|
-// The unparsed remainder of the input will be returned in rest. This function
|
|
|
-// can be called repeatedly to parse multiple entries.
|
|
|
-//
|
|
|
-// If no entries were found in the input then err will be io.EOF. Otherwise a
|
|
|
-// non-nil err value indicates a parse error.
|
|
|
-func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {
|
|
|
- for len(in) > 0 {
|
|
|
- end := bytes.IndexByte(in, '\n')
|
|
|
- if end != -1 {
|
|
|
- rest = in[end+1:]
|
|
|
- in = in[:end]
|
|
|
- } else {
|
|
|
- rest = nil
|
|
|
- }
|
|
|
-
|
|
|
- end = bytes.IndexByte(in, '\r')
|
|
|
- if end != -1 {
|
|
|
- in = in[:end]
|
|
|
- }
|
|
|
-
|
|
|
- in = bytes.TrimSpace(in)
|
|
|
- if len(in) == 0 || in[0] == '#' {
|
|
|
- in = rest
|
|
|
- continue
|
|
|
- }
|
|
|
-
|
|
|
- i := bytes.IndexAny(in, " \t")
|
|
|
- if i == -1 {
|
|
|
- in = rest
|
|
|
- continue
|
|
|
- }
|
|
|
-
|
|
|
- // Strip out the beginning of the known_host key.
|
|
|
- // This is either an optional marker or a (set of) hostname(s).
|
|
|
- keyFields := bytes.Fields(in)
|
|
|
- if len(keyFields) < 3 || len(keyFields) > 5 {
|
|
|
- return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")
|
|
|
- }
|
|
|
-
|
|
|
- // keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
|
|
|
- // list of hosts
|
|
|
- marker := ""
|
|
|
- if keyFields[0][0] == '@' {
|
|
|
- marker = string(keyFields[0][1:])
|
|
|
- keyFields = keyFields[1:]
|
|
|
- }
|
|
|
-
|
|
|
- hosts := string(keyFields[0])
|
|
|
- // keyFields[1] contains the key type (e.g. “ssh-rsa”).
|
|
|
- // However, that information is duplicated inside the
|
|
|
- // base64-encoded key and so is ignored here.
|
|
|
-
|
|
|
- key := bytes.Join(keyFields[2:], []byte(" "))
|
|
|
- if pubKey, comment, err = parseAuthorizedKey(key); err != nil {
|
|
|
- return "", nil, nil, "", nil, err
|
|
|
- }
|
|
|
-
|
|
|
- return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil
|
|
|
- }
|
|
|
-
|
|
|
- return "", nil, nil, "", nil, io.EOF
|
|
|
-}
|
|
|
-
|
|
|
-// ParseAuthorizedKeys parses a public key from an authorized_keys
|
|
|
-// file used in OpenSSH according to the sshd(8) manual page.
|
|
|
-func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {
|
|
|
- for len(in) > 0 {
|
|
|
- end := bytes.IndexByte(in, '\n')
|
|
|
- if end != -1 {
|
|
|
- rest = in[end+1:]
|
|
|
- in = in[:end]
|
|
|
- } else {
|
|
|
- rest = nil
|
|
|
- }
|
|
|
-
|
|
|
- end = bytes.IndexByte(in, '\r')
|
|
|
- if end != -1 {
|
|
|
- in = in[:end]
|
|
|
- }
|
|
|
-
|
|
|
- in = bytes.TrimSpace(in)
|
|
|
- if len(in) == 0 || in[0] == '#' {
|
|
|
- in = rest
|
|
|
- continue
|
|
|
- }
|
|
|
-
|
|
|
- i := bytes.IndexAny(in, " \t")
|
|
|
- if i == -1 {
|
|
|
- in = rest
|
|
|
- continue
|
|
|
- }
|
|
|
-
|
|
|
- if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
|
|
|
- return out, comment, options, rest, nil
|
|
|
- }
|
|
|
-
|
|
|
- // No key type recognised. Maybe there's an options field at
|
|
|
- // the beginning.
|
|
|
- var b byte
|
|
|
- inQuote := false
|
|
|
- var candidateOptions []string
|
|
|
- optionStart := 0
|
|
|
- for i, b = range in {
|
|
|
- isEnd := !inQuote && (b == ' ' || b == '\t')
|
|
|
- if (b == ',' && !inQuote) || isEnd {
|
|
|
- if i-optionStart > 0 {
|
|
|
- candidateOptions = append(candidateOptions, string(in[optionStart:i]))
|
|
|
- }
|
|
|
- optionStart = i + 1
|
|
|
- }
|
|
|
- if isEnd {
|
|
|
- break
|
|
|
- }
|
|
|
- if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
|
|
|
- inQuote = !inQuote
|
|
|
- }
|
|
|
- }
|
|
|
- for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
|
|
|
- i++
|
|
|
- }
|
|
|
- if i == len(in) {
|
|
|
- // Invalid line: unmatched quote
|
|
|
- in = rest
|
|
|
- continue
|
|
|
- }
|
|
|
-
|
|
|
- in = in[i:]
|
|
|
- i = bytes.IndexAny(in, " \t")
|
|
|
- if i == -1 {
|
|
|
- in = rest
|
|
|
- continue
|
|
|
- }
|
|
|
-
|
|
|
- if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
|
|
|
- options = candidateOptions
|
|
|
- return out, comment, options, rest, nil
|
|
|
- }
|
|
|
-
|
|
|
- in = rest
|
|
|
- continue
|
|
|
- }
|
|
|
-
|
|
|
- return nil, "", nil, nil, errors.New("ssh: no key found")
|
|
|
-}
|
|
|
-
|
|
|
-// ParsePublicKey parses an SSH public key formatted for use in
|
|
|
-// the SSH wire protocol according to RFC 4253, section 6.6.
|
|
|
-func ParsePublicKey(in []byte) (out PublicKey, err error) {
|
|
|
- algo, in, ok := parseString(in)
|
|
|
- if !ok {
|
|
|
- return nil, errShortRead
|
|
|
- }
|
|
|
- var rest []byte
|
|
|
- out, rest, err = parsePubKey(in, string(algo))
|
|
|
- if len(rest) > 0 {
|
|
|
- return nil, errors.New("ssh: trailing junk in public key")
|
|
|
- }
|
|
|
-
|
|
|
- return out, err
|
|
|
-}
|
|
|
-
|
|
|
-// MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
|
|
|
-// authorized_keys file. The return value ends with newline.
|
|
|
-func MarshalAuthorizedKey(key PublicKey) []byte {
|
|
|
- b := &bytes.Buffer{}
|
|
|
- b.WriteString(key.Type())
|
|
|
- b.WriteByte(' ')
|
|
|
- e := base64.NewEncoder(base64.StdEncoding, b)
|
|
|
- e.Write(key.Marshal())
|
|
|
- e.Close()
|
|
|
- b.WriteByte('\n')
|
|
|
- return b.Bytes()
|
|
|
-}
|
|
|
-
|
|
|
-// PublicKey is an abstraction of different types of public keys.
|
|
|
-type PublicKey interface {
|
|
|
- // Type returns the key's type, e.g. "ssh-rsa".
|
|
|
- Type() string
|
|
|
-
|
|
|
- // Marshal returns the serialized key data in SSH wire format,
|
|
|
- // with the name prefix. To unmarshal the returned data, use
|
|
|
- // the ParsePublicKey function.
|
|
|
- Marshal() []byte
|
|
|
-
|
|
|
- // Verify that sig is a signature on the given data using this
|
|
|
- // key. This function will hash the data appropriately first.
|
|
|
- Verify(data []byte, sig *Signature) error
|
|
|
-}
|
|
|
-
|
|
|
-// CryptoPublicKey, if implemented by a PublicKey,
|
|
|
-// returns the underlying crypto.PublicKey form of the key.
|
|
|
-type CryptoPublicKey interface {
|
|
|
- CryptoPublicKey() crypto.PublicKey
|
|
|
-}
|
|
|
-
|
|
|
-// A Signer can create signatures that verify against a public key.
|
|
|
-type Signer interface {
|
|
|
- // PublicKey returns an associated PublicKey instance.
|
|
|
- PublicKey() PublicKey
|
|
|
-
|
|
|
- // Sign returns raw signature for the given data. This method
|
|
|
- // will apply the hash specified for the keytype to the data.
|
|
|
- Sign(rand io.Reader, data []byte) (*Signature, error)
|
|
|
-}
|
|
|
-
|
|
|
-type rsaPublicKey rsa.PublicKey
|
|
|
-
|
|
|
-func (r *rsaPublicKey) Type() string {
|
|
|
- return "ssh-rsa"
|
|
|
-}
|
|
|
-
|
|
|
-// parseRSA parses an RSA key according to RFC 4253, section 6.6.
|
|
|
-func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {
|
|
|
- var w struct {
|
|
|
- E *big.Int
|
|
|
- N *big.Int
|
|
|
- Rest []byte `ssh:"rest"`
|
|
|
- }
|
|
|
- if err := Unmarshal(in, &w); err != nil {
|
|
|
- return nil, nil, err
|
|
|
- }
|
|
|
-
|
|
|
- if w.E.BitLen() > 24 {
|
|
|
- return nil, nil, errors.New("ssh: exponent too large")
|
|
|
- }
|
|
|
- e := w.E.Int64()
|
|
|
- if e < 3 || e&1 == 0 {
|
|
|
- return nil, nil, errors.New("ssh: incorrect exponent")
|
|
|
- }
|
|
|
-
|
|
|
- var key rsa.PublicKey
|
|
|
- key.E = int(e)
|
|
|
- key.N = w.N
|
|
|
- return (*rsaPublicKey)(&key), w.Rest, nil
|
|
|
-}
|
|
|
-
|
|
|
-func (r *rsaPublicKey) Marshal() []byte {
|
|
|
- e := new(big.Int).SetInt64(int64(r.E))
|
|
|
- // RSA publickey struct layout should match the struct used by
|
|
|
- // parseRSACert in the x/crypto/ssh/agent package.
|
|
|
- wirekey := struct {
|
|
|
- Name string
|
|
|
- E *big.Int
|
|
|
- N *big.Int
|
|
|
- }{
|
|
|
- KeyAlgoRSA,
|
|
|
- e,
|
|
|
- r.N,
|
|
|
- }
|
|
|
- return Marshal(&wirekey)
|
|
|
-}
|
|
|
-
|
|
|
-func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
|
|
|
- if sig.Format != r.Type() {
|
|
|
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
|
|
|
- }
|
|
|
- h := crypto.SHA1.New()
|
|
|
- h.Write(data)
|
|
|
- digest := h.Sum(nil)
|
|
|
- return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), crypto.SHA1, digest, sig.Blob)
|
|
|
-}
|
|
|
-
|
|
|
-func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
|
|
|
- return (*rsa.PublicKey)(r)
|
|
|
-}
|
|
|
-
|
|
|
-type dsaPublicKey dsa.PublicKey
|
|
|
-
|
|
|
-func (k *dsaPublicKey) Type() string {
|
|
|
- return "ssh-dss"
|
|
|
-}
|
|
|
-
|
|
|
-func checkDSAParams(param *dsa.Parameters) error {
|
|
|
- // SSH specifies FIPS 186-2, which only provided a single size
|
|
|
- // (1024 bits) DSA key. FIPS 186-3 allows for larger key
|
|
|
- // sizes, which would confuse SSH.
|
|
|
- if l := param.P.BitLen(); l != 1024 {
|
|
|
- return fmt.Errorf("ssh: unsupported DSA key size %d", l)
|
|
|
- }
|
|
|
-
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// parseDSA parses an DSA key according to RFC 4253, section 6.6.
|
|
|
-func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {
|
|
|
- var w struct {
|
|
|
- P, Q, G, Y *big.Int
|
|
|
- Rest []byte `ssh:"rest"`
|
|
|
- }
|
|
|
- if err := Unmarshal(in, &w); err != nil {
|
|
|
- return nil, nil, err
|
|
|
- }
|
|
|
-
|
|
|
- param := dsa.Parameters{
|
|
|
- P: w.P,
|
|
|
- Q: w.Q,
|
|
|
- G: w.G,
|
|
|
- }
|
|
|
- if err := checkDSAParams(¶m); err != nil {
|
|
|
- return nil, nil, err
|
|
|
- }
|
|
|
-
|
|
|
- key := &dsaPublicKey{
|
|
|
- Parameters: param,
|
|
|
- Y: w.Y,
|
|
|
- }
|
|
|
- return key, w.Rest, nil
|
|
|
-}
|
|
|
-
|
|
|
-func (k *dsaPublicKey) Marshal() []byte {
|
|
|
- // DSA publickey struct layout should match the struct used by
|
|
|
- // parseDSACert in the x/crypto/ssh/agent package.
|
|
|
- w := struct {
|
|
|
- Name string
|
|
|
- P, Q, G, Y *big.Int
|
|
|
- }{
|
|
|
- k.Type(),
|
|
|
- k.P,
|
|
|
- k.Q,
|
|
|
- k.G,
|
|
|
- k.Y,
|
|
|
- }
|
|
|
-
|
|
|
- return Marshal(&w)
|
|
|
-}
|
|
|
-
|
|
|
-func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
|
|
|
- if sig.Format != k.Type() {
|
|
|
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
|
|
|
- }
|
|
|
- h := crypto.SHA1.New()
|
|
|
- h.Write(data)
|
|
|
- digest := h.Sum(nil)
|
|
|
-
|
|
|
- // Per RFC 4253, section 6.6,
|
|
|
- // The value for 'dss_signature_blob' is encoded as a string containing
|
|
|
- // r, followed by s (which are 160-bit integers, without lengths or
|
|
|
- // padding, unsigned, and in network byte order).
|
|
|
- // For DSS purposes, sig.Blob should be exactly 40 bytes in length.
|
|
|
- if len(sig.Blob) != 40 {
|
|
|
- return errors.New("ssh: DSA signature parse error")
|
|
|
- }
|
|
|
- r := new(big.Int).SetBytes(sig.Blob[:20])
|
|
|
- s := new(big.Int).SetBytes(sig.Blob[20:])
|
|
|
- if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {
|
|
|
- return nil
|
|
|
- }
|
|
|
- return errors.New("ssh: signature did not verify")
|
|
|
-}
|
|
|
-
|
|
|
-func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {
|
|
|
- return (*dsa.PublicKey)(k)
|
|
|
-}
|
|
|
-
|
|
|
-type dsaPrivateKey struct {
|
|
|
- *dsa.PrivateKey
|
|
|
-}
|
|
|
-
|
|
|
-func (k *dsaPrivateKey) PublicKey() PublicKey {
|
|
|
- return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
|
|
|
-}
|
|
|
-
|
|
|
-func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
|
|
|
- h := crypto.SHA1.New()
|
|
|
- h.Write(data)
|
|
|
- digest := h.Sum(nil)
|
|
|
- r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
|
|
|
- if err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- sig := make([]byte, 40)
|
|
|
- rb := r.Bytes()
|
|
|
- sb := s.Bytes()
|
|
|
-
|
|
|
- copy(sig[20-len(rb):20], rb)
|
|
|
- copy(sig[40-len(sb):], sb)
|
|
|
-
|
|
|
- return &Signature{
|
|
|
- Format: k.PublicKey().Type(),
|
|
|
- Blob: sig,
|
|
|
- }, nil
|
|
|
-}
|
|
|
-
|
|
|
-type ecdsaPublicKey ecdsa.PublicKey
|
|
|
-
|
|
|
-func (k *ecdsaPublicKey) Type() string {
|
|
|
- return "ecdsa-sha2-" + k.nistID()
|
|
|
-}
|
|
|
-
|
|
|
-func (k *ecdsaPublicKey) nistID() string {
|
|
|
- switch k.Params().BitSize {
|
|
|
- case 256:
|
|
|
- return "nistp256"
|
|
|
- case 384:
|
|
|
- return "nistp384"
|
|
|
- case 521:
|
|
|
- return "nistp521"
|
|
|
- }
|
|
|
- panic("ssh: unsupported ecdsa key size")
|
|
|
-}
|
|
|
-
|
|
|
-type ed25519PublicKey ed25519.PublicKey
|
|
|
-
|
|
|
-func (k ed25519PublicKey) Type() string {
|
|
|
- return KeyAlgoED25519
|
|
|
-}
|
|
|
-
|
|
|
-func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
|
|
|
- var w struct {
|
|
|
- KeyBytes []byte
|
|
|
- Rest []byte `ssh:"rest"`
|
|
|
- }
|
|
|
-
|
|
|
- if err := Unmarshal(in, &w); err != nil {
|
|
|
- return nil, nil, err
|
|
|
- }
|
|
|
-
|
|
|
- key := ed25519.PublicKey(w.KeyBytes)
|
|
|
-
|
|
|
- return (ed25519PublicKey)(key), w.Rest, nil
|
|
|
-}
|
|
|
-
|
|
|
-func (k ed25519PublicKey) Marshal() []byte {
|
|
|
- w := struct {
|
|
|
- Name string
|
|
|
- KeyBytes []byte
|
|
|
- }{
|
|
|
- KeyAlgoED25519,
|
|
|
- []byte(k),
|
|
|
- }
|
|
|
- return Marshal(&w)
|
|
|
-}
|
|
|
-
|
|
|
-func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
|
|
|
- if sig.Format != k.Type() {
|
|
|
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
|
|
|
- }
|
|
|
-
|
|
|
- edKey := (ed25519.PublicKey)(k)
|
|
|
- if ok := ed25519.Verify(edKey, b, sig.Blob); !ok {
|
|
|
- return errors.New("ssh: signature did not verify")
|
|
|
- }
|
|
|
-
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {
|
|
|
- return ed25519.PublicKey(k)
|
|
|
-}
|
|
|
-
|
|
|
-func supportedEllipticCurve(curve elliptic.Curve) bool {
|
|
|
- return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
|
|
|
-}
|
|
|
-
|
|
|
-// ecHash returns the hash to match the given elliptic curve, see RFC
|
|
|
-// 5656, section 6.2.1
|
|
|
-func ecHash(curve elliptic.Curve) crypto.Hash {
|
|
|
- bitSize := curve.Params().BitSize
|
|
|
- switch {
|
|
|
- case bitSize <= 256:
|
|
|
- return crypto.SHA256
|
|
|
- case bitSize <= 384:
|
|
|
- return crypto.SHA384
|
|
|
- }
|
|
|
- return crypto.SHA512
|
|
|
-}
|
|
|
-
|
|
|
-// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
|
|
|
-func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
|
|
|
- var w struct {
|
|
|
- Curve string
|
|
|
- KeyBytes []byte
|
|
|
- Rest []byte `ssh:"rest"`
|
|
|
- }
|
|
|
-
|
|
|
- if err := Unmarshal(in, &w); err != nil {
|
|
|
- return nil, nil, err
|
|
|
- }
|
|
|
-
|
|
|
- key := new(ecdsa.PublicKey)
|
|
|
-
|
|
|
- switch w.Curve {
|
|
|
- case "nistp256":
|
|
|
- key.Curve = elliptic.P256()
|
|
|
- case "nistp384":
|
|
|
- key.Curve = elliptic.P384()
|
|
|
- case "nistp521":
|
|
|
- key.Curve = elliptic.P521()
|
|
|
- default:
|
|
|
- return nil, nil, errors.New("ssh: unsupported curve")
|
|
|
- }
|
|
|
-
|
|
|
- key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
|
|
|
- if key.X == nil || key.Y == nil {
|
|
|
- return nil, nil, errors.New("ssh: invalid curve point")
|
|
|
- }
|
|
|
- return (*ecdsaPublicKey)(key), w.Rest, nil
|
|
|
-}
|
|
|
-
|
|
|
-func (k *ecdsaPublicKey) Marshal() []byte {
|
|
|
- // See RFC 5656, section 3.1.
|
|
|
- keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
|
|
|
- // ECDSA publickey struct layout should match the struct used by
|
|
|
- // parseECDSACert in the x/crypto/ssh/agent package.
|
|
|
- w := struct {
|
|
|
- Name string
|
|
|
- ID string
|
|
|
- Key []byte
|
|
|
- }{
|
|
|
- k.Type(),
|
|
|
- k.nistID(),
|
|
|
- keyBytes,
|
|
|
- }
|
|
|
-
|
|
|
- return Marshal(&w)
|
|
|
-}
|
|
|
-
|
|
|
-func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
|
|
|
- if sig.Format != k.Type() {
|
|
|
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
|
|
|
- }
|
|
|
-
|
|
|
- h := ecHash(k.Curve).New()
|
|
|
- h.Write(data)
|
|
|
- digest := h.Sum(nil)
|
|
|
-
|
|
|
- // Per RFC 5656, section 3.1.2,
|
|
|
- // The ecdsa_signature_blob value has the following specific encoding:
|
|
|
- // mpint r
|
|
|
- // mpint s
|
|
|
- var ecSig struct {
|
|
|
- R *big.Int
|
|
|
- S *big.Int
|
|
|
- }
|
|
|
-
|
|
|
- if err := Unmarshal(sig.Blob, &ecSig); err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
-
|
|
|
- if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) {
|
|
|
- return nil
|
|
|
- }
|
|
|
- return errors.New("ssh: signature did not verify")
|
|
|
-}
|
|
|
-
|
|
|
-func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
|
|
|
- return (*ecdsa.PublicKey)(k)
|
|
|
-}
|
|
|
-
|
|
|
-// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
|
|
|
-// *ecdsa.PrivateKey or any other crypto.Signer and returns a
|
|
|
-// corresponding Signer instance. ECDSA keys must use P-256, P-384 or
|
|
|
-// P-521. DSA keys must use parameter size L1024N160.
|
|
|
-func NewSignerFromKey(key interface{}) (Signer, error) {
|
|
|
- switch key := key.(type) {
|
|
|
- case crypto.Signer:
|
|
|
- return NewSignerFromSigner(key)
|
|
|
- case *dsa.PrivateKey:
|
|
|
- return newDSAPrivateKey(key)
|
|
|
- default:
|
|
|
- return nil, fmt.Errorf("ssh: unsupported key type %T", key)
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
|
|
|
- if err := checkDSAParams(&key.PublicKey.Parameters); err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- return &dsaPrivateKey{key}, nil
|
|
|
-}
|
|
|
-
|
|
|
-type wrappedSigner struct {
|
|
|
- signer crypto.Signer
|
|
|
- pubKey PublicKey
|
|
|
-}
|
|
|
-
|
|
|
-// NewSignerFromSigner takes any crypto.Signer implementation and
|
|
|
-// returns a corresponding Signer interface. This can be used, for
|
|
|
-// example, with keys kept in hardware modules.
|
|
|
-func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {
|
|
|
- pubKey, err := NewPublicKey(signer.Public())
|
|
|
- if err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- return &wrappedSigner{signer, pubKey}, nil
|
|
|
-}
|
|
|
-
|
|
|
-func (s *wrappedSigner) PublicKey() PublicKey {
|
|
|
- return s.pubKey
|
|
|
-}
|
|
|
-
|
|
|
-func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
|
|
|
- var hashFunc crypto.Hash
|
|
|
-
|
|
|
- switch key := s.pubKey.(type) {
|
|
|
- case *rsaPublicKey, *dsaPublicKey:
|
|
|
- hashFunc = crypto.SHA1
|
|
|
- case *ecdsaPublicKey:
|
|
|
- hashFunc = ecHash(key.Curve)
|
|
|
- case ed25519PublicKey:
|
|
|
- default:
|
|
|
- return nil, fmt.Errorf("ssh: unsupported key type %T", key)
|
|
|
- }
|
|
|
-
|
|
|
- var digest []byte
|
|
|
- if hashFunc != 0 {
|
|
|
- h := hashFunc.New()
|
|
|
- h.Write(data)
|
|
|
- digest = h.Sum(nil)
|
|
|
- } else {
|
|
|
- digest = data
|
|
|
- }
|
|
|
-
|
|
|
- signature, err := s.signer.Sign(rand, digest, hashFunc)
|
|
|
- if err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- // crypto.Signer.Sign is expected to return an ASN.1-encoded signature
|
|
|
- // for ECDSA and DSA, but that's not the encoding expected by SSH, so
|
|
|
- // re-encode.
|
|
|
- switch s.pubKey.(type) {
|
|
|
- case *ecdsaPublicKey, *dsaPublicKey:
|
|
|
- type asn1Signature struct {
|
|
|
- R, S *big.Int
|
|
|
- }
|
|
|
- asn1Sig := new(asn1Signature)
|
|
|
- _, err := asn1.Unmarshal(signature, asn1Sig)
|
|
|
- if err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- switch s.pubKey.(type) {
|
|
|
- case *ecdsaPublicKey:
|
|
|
- signature = Marshal(asn1Sig)
|
|
|
-
|
|
|
- case *dsaPublicKey:
|
|
|
- signature = make([]byte, 40)
|
|
|
- r := asn1Sig.R.Bytes()
|
|
|
- s := asn1Sig.S.Bytes()
|
|
|
- copy(signature[20-len(r):20], r)
|
|
|
- copy(signature[40-len(s):40], s)
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return &Signature{
|
|
|
- Format: s.pubKey.Type(),
|
|
|
- Blob: signature,
|
|
|
- }, nil
|
|
|
-}
|
|
|
-
|
|
|
-// NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
|
|
|
-// or ed25519.PublicKey returns a corresponding PublicKey instance.
|
|
|
-// ECDSA keys must use P-256, P-384 or P-521.
|
|
|
-func NewPublicKey(key interface{}) (PublicKey, error) {
|
|
|
- switch key := key.(type) {
|
|
|
- case *rsa.PublicKey:
|
|
|
- return (*rsaPublicKey)(key), nil
|
|
|
- case *ecdsa.PublicKey:
|
|
|
- if !supportedEllipticCurve(key.Curve) {
|
|
|
- return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported")
|
|
|
- }
|
|
|
- return (*ecdsaPublicKey)(key), nil
|
|
|
- case *dsa.PublicKey:
|
|
|
- return (*dsaPublicKey)(key), nil
|
|
|
- case ed25519.PublicKey:
|
|
|
- return (ed25519PublicKey)(key), nil
|
|
|
- default:
|
|
|
- return nil, fmt.Errorf("ssh: unsupported key type %T", key)
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
|
|
|
-// the same keys as ParseRawPrivateKey.
|
|
|
-func ParsePrivateKey(pemBytes []byte) (Signer, error) {
|
|
|
- key, err := ParseRawPrivateKey(pemBytes)
|
|
|
- if err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- return NewSignerFromKey(key)
|
|
|
-}
|
|
|
-
|
|
|
-// ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
|
|
|
-// key and passphrase. It supports the same keys as
|
|
|
-// ParseRawPrivateKeyWithPassphrase.
|
|
|
-func ParsePrivateKeyWithPassphrase(pemBytes, passPhrase []byte) (Signer, error) {
|
|
|
- key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passPhrase)
|
|
|
- if err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- return NewSignerFromKey(key)
|
|
|
-}
|
|
|
-
|
|
|
-// encryptedBlock tells whether a private key is
|
|
|
-// encrypted by examining its Proc-Type header
|
|
|
-// for a mention of ENCRYPTED
|
|
|
-// according to RFC 1421 Section 4.6.1.1.
|
|
|
-func encryptedBlock(block *pem.Block) bool {
|
|
|
- return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
|
|
|
-}
|
|
|
-
|
|
|
-// ParseRawPrivateKey returns a private key from a PEM encoded private key. It
|
|
|
-// supports RSA (PKCS#1), DSA (OpenSSL), and ECDSA private keys.
|
|
|
-func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
|
|
|
- block, _ := pem.Decode(pemBytes)
|
|
|
- if block == nil {
|
|
|
- return nil, errors.New("ssh: no key found")
|
|
|
- }
|
|
|
-
|
|
|
- if encryptedBlock(block) {
|
|
|
- return nil, errors.New("ssh: cannot decode encrypted private keys")
|
|
|
- }
|
|
|
-
|
|
|
- switch block.Type {
|
|
|
- case "RSA PRIVATE KEY":
|
|
|
- return x509.ParsePKCS1PrivateKey(block.Bytes)
|
|
|
- case "EC PRIVATE KEY":
|
|
|
- return x509.ParseECPrivateKey(block.Bytes)
|
|
|
- case "DSA PRIVATE KEY":
|
|
|
- return ParseDSAPrivateKey(block.Bytes)
|
|
|
- case "OPENSSH PRIVATE KEY":
|
|
|
- return parseOpenSSHPrivateKey(block.Bytes)
|
|
|
- default:
|
|
|
- return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
|
|
|
-// passphrase from a PEM encoded private key. If wrong passphrase, return
|
|
|
-// x509.IncorrectPasswordError.
|
|
|
-func ParseRawPrivateKeyWithPassphrase(pemBytes, passPhrase []byte) (interface{}, error) {
|
|
|
- block, _ := pem.Decode(pemBytes)
|
|
|
- if block == nil {
|
|
|
- return nil, errors.New("ssh: no key found")
|
|
|
- }
|
|
|
- buf := block.Bytes
|
|
|
-
|
|
|
- if encryptedBlock(block) {
|
|
|
- if x509.IsEncryptedPEMBlock(block) {
|
|
|
- var err error
|
|
|
- buf, err = x509.DecryptPEMBlock(block, passPhrase)
|
|
|
- if err != nil {
|
|
|
- if err == x509.IncorrectPasswordError {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
- return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- switch block.Type {
|
|
|
- case "RSA PRIVATE KEY":
|
|
|
- return x509.ParsePKCS1PrivateKey(buf)
|
|
|
- case "EC PRIVATE KEY":
|
|
|
- return x509.ParseECPrivateKey(buf)
|
|
|
- case "DSA PRIVATE KEY":
|
|
|
- return ParseDSAPrivateKey(buf)
|
|
|
- case "OPENSSH PRIVATE KEY":
|
|
|
- return parseOpenSSHPrivateKey(buf)
|
|
|
- default:
|
|
|
- return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
|
|
|
-// specified by the OpenSSL DSA man page.
|
|
|
-func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
|
|
|
- var k struct {
|
|
|
- Version int
|
|
|
- P *big.Int
|
|
|
- Q *big.Int
|
|
|
- G *big.Int
|
|
|
- Pub *big.Int
|
|
|
- Priv *big.Int
|
|
|
- }
|
|
|
- rest, err := asn1.Unmarshal(der, &k)
|
|
|
- if err != nil {
|
|
|
- return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
|
|
|
- }
|
|
|
- if len(rest) > 0 {
|
|
|
- return nil, errors.New("ssh: garbage after DSA key")
|
|
|
- }
|
|
|
-
|
|
|
- return &dsa.PrivateKey{
|
|
|
- PublicKey: dsa.PublicKey{
|
|
|
- Parameters: dsa.Parameters{
|
|
|
- P: k.P,
|
|
|
- Q: k.Q,
|
|
|
- G: k.G,
|
|
|
- },
|
|
|
- Y: k.Pub,
|
|
|
- },
|
|
|
- X: k.Priv,
|
|
|
- }, nil
|
|
|
-}
|
|
|
-
|
|
|
-// Implemented based on the documentation at
|
|
|
-// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key
|
|
|
-func parseOpenSSHPrivateKey(key []byte) (crypto.PrivateKey, error) {
|
|
|
- magic := append([]byte("openssh-key-v1"), 0)
|
|
|
- if !bytes.Equal(magic, key[0:len(magic)]) {
|
|
|
- return nil, errors.New("ssh: invalid openssh private key format")
|
|
|
- }
|
|
|
- remaining := key[len(magic):]
|
|
|
-
|
|
|
- var w struct {
|
|
|
- CipherName string
|
|
|
- KdfName string
|
|
|
- KdfOpts string
|
|
|
- NumKeys uint32
|
|
|
- PubKey []byte
|
|
|
- PrivKeyBlock []byte
|
|
|
- }
|
|
|
-
|
|
|
- if err := Unmarshal(remaining, &w); err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- if w.KdfName != "none" || w.CipherName != "none" {
|
|
|
- return nil, errors.New("ssh: cannot decode encrypted private keys")
|
|
|
- }
|
|
|
-
|
|
|
- pk1 := struct {
|
|
|
- Check1 uint32
|
|
|
- Check2 uint32
|
|
|
- Keytype string
|
|
|
- Rest []byte `ssh:"rest"`
|
|
|
- }{}
|
|
|
-
|
|
|
- if err := Unmarshal(w.PrivKeyBlock, &pk1); err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- if pk1.Check1 != pk1.Check2 {
|
|
|
- return nil, errors.New("ssh: checkint mismatch")
|
|
|
- }
|
|
|
-
|
|
|
- // we only handle ed25519 and rsa keys currently
|
|
|
- switch pk1.Keytype {
|
|
|
- case KeyAlgoRSA:
|
|
|
- // https://github.com/openssh/openssh-portable/blob/master/sshkey.c#L2760-L2773
|
|
|
- key := struct {
|
|
|
- N *big.Int
|
|
|
- E *big.Int
|
|
|
- D *big.Int
|
|
|
- Iqmp *big.Int
|
|
|
- P *big.Int
|
|
|
- Q *big.Int
|
|
|
- Comment string
|
|
|
- Pad []byte `ssh:"rest"`
|
|
|
- }{}
|
|
|
-
|
|
|
- if err := Unmarshal(pk1.Rest, &key); err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- for i, b := range key.Pad {
|
|
|
- if int(b) != i+1 {
|
|
|
- return nil, errors.New("ssh: padding not as expected")
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- pk := &rsa.PrivateKey{
|
|
|
- PublicKey: rsa.PublicKey{
|
|
|
- N: key.N,
|
|
|
- E: int(key.E.Int64()),
|
|
|
- },
|
|
|
- D: key.D,
|
|
|
- Primes: []*big.Int{key.P, key.Q},
|
|
|
- }
|
|
|
-
|
|
|
- if err := pk.Validate(); err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- pk.Precompute()
|
|
|
-
|
|
|
- return pk, nil
|
|
|
- case KeyAlgoED25519:
|
|
|
- key := struct {
|
|
|
- Pub []byte
|
|
|
- Priv []byte
|
|
|
- Comment string
|
|
|
- Pad []byte `ssh:"rest"`
|
|
|
- }{}
|
|
|
-
|
|
|
- if err := Unmarshal(pk1.Rest, &key); err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- if len(key.Priv) != ed25519.PrivateKeySize {
|
|
|
- return nil, errors.New("ssh: private key unexpected length")
|
|
|
- }
|
|
|
-
|
|
|
- for i, b := range key.Pad {
|
|
|
- if int(b) != i+1 {
|
|
|
- return nil, errors.New("ssh: padding not as expected")
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
|
|
|
- copy(pk, key.Priv)
|
|
|
- return &pk, nil
|
|
|
- default:
|
|
|
- return nil, errors.New("ssh: unhandled key type")
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// FingerprintLegacyMD5 returns the user presentation of the key's
|
|
|
-// fingerprint as described by RFC 4716 section 4.
|
|
|
-func FingerprintLegacyMD5(pubKey PublicKey) string {
|
|
|
- md5sum := md5.Sum(pubKey.Marshal())
|
|
|
- hexarray := make([]string, len(md5sum))
|
|
|
- for i, c := range md5sum {
|
|
|
- hexarray[i] = hex.EncodeToString([]byte{c})
|
|
|
- }
|
|
|
- return strings.Join(hexarray, ":")
|
|
|
-}
|
|
|
-
|
|
|
-// FingerprintSHA256 returns the user presentation of the key's
|
|
|
-// fingerprint as unpadded base64 encoded sha256 hash.
|
|
|
-// This format was introduced from OpenSSH 6.8.
|
|
|
-// https://www.openssh.com/txt/release-6.8
|
|
|
-// https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
|
|
|
-func FingerprintSHA256(pubKey PublicKey) string {
|
|
|
- sha256sum := sha256.Sum256(pubKey.Marshal())
|
|
|
- hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])
|
|
|
- return "SHA256:" + hash
|
|
|
-}
|